Contact Lenses Delivering Nitric Oxide under Daylight for Reduction of Bacterial Contamination
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Instrumentation
3.3. Chemical Detection of NO
3.4. Loading of the NOPD 1 in the CL
3.5. Biological Assays
3.5.1. Bacterial Killing Assay
3.5.2. Phototoxicity Assay on Human Corneal Epithelial Cells
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Carvalho, I.M.; Marques, C.S.; Oliveira, R.S.; Coelho, P.B.; Costa, P.C.; Ferreira, D.C. Sustained drug release by contact lenses for glaucoma treatment—A review. J. Control. Release 2015, 202, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.W.; Kim, J. Therapeutic Contact Lenses with Polymeric Vehicles for Ocular Drug Delivery: A Review. Materials 2018, 11, 1125. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Lorenzo, C.; Anguiano-Igea, S.; Varela-García, A.; Vivero-Lopez, M.; Concheiro, A. Bioinspired hydrogels for drug-eluting contact lenses. Acta Biomater. 2019, 84, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Willcox, M.D.P.; Sankaridurg, P.; Zhu, H. Silicone Hydrogels: The Rebirth of Continuous Wear Contact Lenses; Sweeny, D.F., Ed.; Clarendon Press: Oxford, UK, 2000; pp. 90–125. [Google Scholar]
- Jalbert, I.; Willcox, M.D.; Sweeney, D.F. Isolation of Staphylococcus aureus from a contact lens at the time of a contact lens-induced peripheral ulcer: Case report. Cornea 2000, 19, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Elder, M.J.; Stapleton, F.; Evans, E.; Dart, J.K. Biofilm-related infections in ophthalmology. Eye 1995, 9, 102–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleiszig, S.M.; Evans, D.J. Pathogenesis of contact lens-associated microbial keratitis. Optom. Vis. Sci. 2010, 87, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Xiao, A.; Dhand, C.; Leung, C.M.; Beuerman, R.W.; Ramakrishna, S.; Lakshminarayanan, R. Strategies to design antimicrobial contact lenses and contact lens cases. J. Mater. Chem. B 2018, 6, 2171–2186. [Google Scholar] [CrossRef]
- Dantam, J.; Zhu, H.; Stapleton, F. Biocidal efficacy of silver-impregnated contact lens storage cases in vitro. Investig. Ophthalmol. Vis. Sci. 2011, 52, 51–57. [Google Scholar] [CrossRef]
- Morgera, F.; Antcheva, N.; Pacor, S.; Quaroni, L.; Berti, F.; Vaccari, L.; Tossi, A. Structuring and interactions of human β-defensins2 and 3 with model membranes. J. Pept. Sci. 2008, 14, 518–523. [Google Scholar] [CrossRef]
- George, M.; Pierce, G.; Gabriel, M.; Morris, C.; Ahearn, D. Effects of quorum sensing molecules of Pseudomonas aeruginosa on organism growth, elastase B production, and primary adhesion to hydrogel contact lenses. Eye Contact Lens 2005, 31, 54–61. [Google Scholar] [CrossRef]
- Beattie, T.K.; Tomlinson, A.; Seal, D.V.; McFadven, A.K. Salcylate inhibition of acanthamoebal attachment to contact lens. Optom. Vis. Sci. 2011, 88, 1422–1432. [Google Scholar]
- Nitric Oxide: Biology and Pathobiology; Ignarro, L.J. (Ed.) Elsevier Inc.: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Fang, F.C. Antimicrobial reactive oxygen and nitrogen species: Concepts and controversies. Nat. Rev. Microbiol. 2004, 2, 820–832. [Google Scholar] [CrossRef] [PubMed]
- Gardner, P.R.; Gardner, A.M.; Martin, L.A.; Salzman, A.L. Nitric oxide dioxygenase: An enzymic function for flavohemoglobin. Proc. Natl. Acad. Sci. USA 1998, 95, 10378–10383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sortino, S. Light-controlled nitric oxide delivering molecular assemblies. Chem. Soc. Rev. 2010, 39, 2903–2913. [Google Scholar] [CrossRef]
- Ford, P.C. Photochemical delivery of nitric oxide. Nitric Oxide 2013, 34, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Fry, N.L.; Mascharak, P.K. Photoactive ruthenium nitrosyls as NO donors: How to sensitize them toward visible light. Acc. Chem. Res. 2011, 44, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-H.; Kim, J.-Y.; Kim, D.J.; Kim, M.; Chang, M.; Chuck, R.S.; Park, C.Y. Effect of nitric oxide on human corneal epithelial cell viability and corneal wound healing. Sci. Rep. 2017, 7, 8093–8102. [Google Scholar] [CrossRef]
- Fraix, A.; Sortino, S. Combination of PDT photosensitizers with NO photodononors. Photochem. Photobiol. Sci. 2018, 17, 1709–1727. [Google Scholar] [CrossRef]
- Fraix, A.; Marino, N.; Sortino, S. Phototherapeutic release of nitric oxide with engineered nanoconstructs. Top. Curr. Chem. 2016, 370, 225–257. [Google Scholar]
- Sortino, S. Photoactivated nanomaterials for biomedical release applications. J. Mater. Chem. 2012, 22, 301–318. [Google Scholar] [CrossRef]
- Fraix, A.; Sortino, S. Photoactivable platforms for nitric oxide delivery with fluorescence imaging. Chem. Asian J. 2015, 10, 1116–1125. [Google Scholar] [CrossRef] [PubMed]
- Quaglia, F.; Sortino, S. Applied Photochemistry: When Light Meets Molecules; Bergamini, G., Silvi, S., Eds.; Springer International Publishing: Basel, Switzerland, 2016; pp. 397–426. [Google Scholar]
- Marino, N.; Perez-Lloret, M.; Blanco, A.R.; Venuta, A.; Quaglia, F.; Sortino, S. Photo-antimicrobial polymeric films releasing nitric oxide with fluorescent reporting under visible light. J. Mater. Chem. B 2016, 4, 5138–5143. [Google Scholar] [CrossRef]
- Caruso, E.B.; Petralia, S.; Conoci, S.; Giuffrida, S.; Sortino, S. Photodelivery of nitric oxide from water-soluble platinum nanoparticles. J. Am. Chem. Soc. 2007, 129, 480–481. [Google Scholar] [CrossRef] [PubMed]
- Conoci, S.; Petralia, S.; Sortino, S. Use of Nitroaniline Derivatives for the Production of Nitric Oxide. EP 2051935A1/US 20090191284, 26 July 2006. [Google Scholar]
- Monti, S.; Sortino, S. Photoprocesses of photosensitizing drugs within cyclodextrin cavities. Chem. Soc. Rev. 2002, 31, 287–300. [Google Scholar] [CrossRef] [PubMed]
- Swaminathan, S.; Garcia-Amoròs, J.; Fraix, A.; Kandoth, N.; Sortino, S.; Raymo, F.M. Photoresponsive polymer nanocarriers with a multifunctional cargo. Chem. Soc. Rev. 2014, 43, 4167–4178. [Google Scholar] [CrossRef] [PubMed]
- Misko, T.P.; Schilling, R.J.; Salvemini, D.; Moore, W.M.; Currie, M.G. A fluorometric assay for the measurement of nitrite in biological samples. Anal. Biochem. 1993, 214, 11–16. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seggio, M.; Nostro, A.; Ginestra, G.; Quaglia, F.; Sortino, S. Contact Lenses Delivering Nitric Oxide under Daylight for Reduction of Bacterial Contamination. Int. J. Mol. Sci. 2019, 20, 3735. https://doi.org/10.3390/ijms20153735
Seggio M, Nostro A, Ginestra G, Quaglia F, Sortino S. Contact Lenses Delivering Nitric Oxide under Daylight for Reduction of Bacterial Contamination. International Journal of Molecular Sciences. 2019; 20(15):3735. https://doi.org/10.3390/ijms20153735
Chicago/Turabian StyleSeggio, Mimimorena, Antonia Nostro, Giovanna Ginestra, Fabiana Quaglia, and Salvatore Sortino. 2019. "Contact Lenses Delivering Nitric Oxide under Daylight for Reduction of Bacterial Contamination" International Journal of Molecular Sciences 20, no. 15: 3735. https://doi.org/10.3390/ijms20153735
APA StyleSeggio, M., Nostro, A., Ginestra, G., Quaglia, F., & Sortino, S. (2019). Contact Lenses Delivering Nitric Oxide under Daylight for Reduction of Bacterial Contamination. International Journal of Molecular Sciences, 20(15), 3735. https://doi.org/10.3390/ijms20153735