Next Article in Journal
Tick Haller’s Organ, a New Paradigm for Arthropod Olfaction: How Ticks Differ from Insects
Next Article in Special Issue
Correction: Mariko Nishizaki, et al. Bioactivity of NANOZR Induced by Alkali Treatment. Int. J. Mol. Sci. 2017, 18, 780
Previous Article in Journal
DNA2—An Important Player in DNA Damage Response or Just Another DNA Maintenance Protein?
Previous Article in Special Issue
Effects of Titanium Mesh Surfaces-Coated with Hydroxyapatite/β-Tricalcium Phosphate Nanotubes on Acetabular Bone Defects in Rabbits
Article Menu
Issue 7 (July) cover image

Export Article

Open AccessCommunication
Int. J. Mol. Sci. 2017, 18(7), 1555;

Therapeutic Efficacy of the Novel Stimuli-Sensitive Nano-Ferritins Containing Doxorubicin in a Head and Neck Cancer Model

Department of Medical, Oral and Biotechnological Sciences and CeSI-Met Centro Scienze dell’Invecchiamento e Medicina Traslazionale, Universita “G. d’Annunzio” di Chieti-Pescara, Chieti 66100, Italy
Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome 00185, Italy
Department of Medicine, University of Verona, Verona 37134, Italy
Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Rome 00185, Italy
Authors to whom correspondence should be addressed.
Received: 23 June 2017 / Revised: 14 July 2017 / Accepted: 15 July 2017 / Published: 18 July 2017
(This article belongs to the Collection Bioactive Nanoparticles)
Full-Text   |   PDF [3401 KB, uploaded 18 July 2017]   |  


Doxorubicin is employed alone or in combination for the treatment of several hematological and solid malignancies; despite its efficacy, there are associated cardiotoxicity limits both in its application in patients with heart disease risk factors and also in its long-term use. HFt-MP-PAS40 is a genetically engineered human ferritin heavy chain (HFt)-based construct able to efficiently entrap and deliver doxorubicin to cancer cells. HF-MP-PAS contains a short motif sequence (defined as MP) responsive to proteolytic cleavage by tumor matrix metalloproteases (MMPs), located between each HFt subunit and a masking polypeptide sequence rich in proline (P), alanine (A), and serine (S) residues (PAS). This carrier displayed excellent therapeutic efficacy in a xenogenic pancreatic cancer model in vivo, leading to a significant increase in overall animal survival in treated mice. Herein, we describe the HFt-MP-PAS40-Dox efficacy against squamous cell carcinomas of the head and neck (HNSCC) with the goal of validating the application of our nano-drug for the treatment of different solid tumors. In addition, a tolerability study in healthy mice was also performed. The results indicate that HFt-MP-PAS40-Dox produced increased anti-tumor effects both in vitro and in vivo in comparison to the free drug in several HNSCC cell lines. In the acute toxicity studies, the maximum tolerated dose (MTD) of HFt-MP-PAS40-Dox was about 3.5 higher than the free drug: 25 mg/kg versus 7 mg/kg doxorubicin equivalents. Importantly, evaluation of heart tissues provided evidence that doxorubicin is less cardio-toxic when encapsulated inside the ferritin carrier. In conclusion, HFt-MP-PAS40-Dox may be administered safely at higher doses compared with the free drug, resulting in superior efficacy to control HNSCC malignancies. View Full-Text
Keywords: pasylated ferritin; stimuli-sensitive peptides; doxorubicin; drug-delivery; head and neck cancer pasylated ferritin; stimuli-sensitive peptides; doxorubicin; drug-delivery; head and neck cancer

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Damiani, V.; Falvo, E.; Fracasso, G.; Federici, L.; Pitea, M.; De Laurenzi, V.; Sala, G.; Ceci, P. Therapeutic Efficacy of the Novel Stimuli-Sensitive Nano-Ferritins Containing Doxorubicin in a Head and Neck Cancer Model. Int. J. Mol. Sci. 2017, 18, 1555.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Int. J. Mol. Sci. EISSN 1422-0067 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top