A High Diet Quality Based on Dietary Recommendations Is Not Associated with Lower Incidence of Type 2 Diabetes in the Malmö Diet and Cancer Cohort
Abstract
:1. Introduction
2. Results and Discussion
2.1. Description of Study Population
2.2. Diet Quality and Risk of Type 2 Diabetes
2.3. Discussion
3. Materials and Methods
3.1. Study Population
3.2. Type 2 Diabetes Case Ascertainment
3.3. Dietary Assessment
3.4. Assessment of Other Covariates
3.5. Statistical Analysis
Acknowledgments
Author Contributions
Conflicts of Interest
References
- International Diabetes Federation. Diabetes Atlas; International Diabetes Federation: Brussels, Belgium, 2015. [Google Scholar]
- Lazarou, C.; Panagiotakos, D.; Matalas, A.L. The role of diet in prevention and management of type 2 diabetes: Implications for public health. Crit. Rev. Food Sci. Nutr. 2012, 52, 382–389. [Google Scholar] [CrossRef] [PubMed]
- Heidemann, C.; Hoffmann, K.; Spranger, J.; Klipstein-Grobusch, K.; Mohlig, M.; Pfeiffer, A.F.; Boeing, H. A dietary pattern protective against type 2 diabetes in the European prospective investigation into cancer and nutrition (EPIC)—Potsdam study cohort. Diabetologia 2005, 48, 1126–1134. [Google Scholar] [CrossRef] [PubMed]
- Shirani, F.; Salehi-Abargouei, A.; Azadbakht, L. Effects of dietary approaches to stop hypertension (DASH) diet on some risk for developing type 2 diabetes: A systematic review and meta-analysis on controlled clinical trials. Nutrition 2013, 29, 939–947. [Google Scholar] [CrossRef] [PubMed]
- De Koning, L.; Chiuve, S.E.; Fung, T.T.; Willett, W.C.; Rimm, E.B.; Hu, F.B. Diet-quality scores and the risk of type 2 diabetes in men. Diabetes Care 2011, 34, 1150–1156. [Google Scholar] [CrossRef] [PubMed]
- Montonen, J.; Knekt, P.; Harkanen, T.; Jarvinen, R.; Heliovaara, M.; Aromaa, A.; Reunanen, A. Dietary patterns and the incidence of type 2 diabetes. Am. J. Epidemiol. 2005, 161, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Hoffmann, G. Diet quality as assessed by the healthy eating index, the alternate healthy eating index, the dietary approaches to stop hypertension score, and health outcomes: A systematic review and meta-analysis of cohort studies. J. Acad. Nutr. Diet. 2015, 115, 780–800. [Google Scholar] [CrossRef] [PubMed]
- Hlebowicz, J.; Drake, I.; Gullberg, B.; Sonestedt, E.; Wallstrom, P.; Persson, M.; Nilsson, J.; Hedblad, B.; Wirfalt, E. A high diet quality is associated with lower incidence of cardiovascular events in the malmo diet and cancer cohort. PLoS ONE 2013, 8, e71095. [Google Scholar] [CrossRef] [PubMed]
- Nordic Council of Ministers. Nordic Nutrition Recemmendations 2012—Intergrating Nutrition and Physical Activity, 5th ed.; Nordic Council of Ministers: Copenhagen, Denmark, 2014. [Google Scholar]
- Drake, I.; Gullberg, B.; Ericson, U.; Sonestedt, E.; Nilsson, J.; Wallstrom, P.; Hedblad, B.; Wirfalt, E. Development of a diet quality index assessing adherence to the swedish nutrition recommendations and dietary guidelines in the malmo diet and cancer cohort. Public Health Nutr. 2011, 14, 835–845. [Google Scholar] [CrossRef] [PubMed]
- Drake, I.; Gullberg, B.; Sonestedt, E.; Wallstrom, P.; Persson, M.; Hlebowicz, J.; Nilsson, J.; Hedblad, B.; Wirfalt, E. Scoring models of a diet quality index and the predictive capability of mortality in a population-based cohort of swedish men and women. Public Health Nutr. 2013, 16, 468–478. [Google Scholar] [CrossRef] [PubMed]
- Maghsoudi, Z.; Azadbakht, L. How dietary patterns could have a role in prevention, progression, or management of diabetes mellitus? Review on the current evidence. J. Res. Med. Sci. 2012, 17, 694–709. [Google Scholar] [PubMed]
- InterAct Consortium. Adherence to predefined dietary patterns and incident type 2 diabetes in European populations: EPIC-interAct study. Diabetologia 2014, 57, 321–333. [Google Scholar]
- Lacoppidan, S.; Kyro, C.; Loft, S.; Helnaes, A.; Christensen, J.; Hansen, C.P.; Dahm, C.C.; Overvad, K.; Tjonneland, A.; Olsen, A. Adherence to a healthy nordic food index is associated with a lower risk of type-2 diabetes-the danish diet, cancer and health cohort study. Nutrients 2015, 7, 8633–8644. [Google Scholar] [CrossRef] [PubMed]
- InterAct Consortium. Mediterranean diet and type 2 diabetes risk in the European prospective investigation into cancer and nutrition (EPIC) study: The interact project. Diabetes Care 2011, 34, 1913–1918. [Google Scholar]
- Chiuve, S.E.; Fung, T.T.; Rimm, E.B.; Hu, F.B.; McCullough, M.L.; Wang, M.; Stampfer, M.J.; Willett, W.C. Alternative dietary indices both strongly predict risk of chronic disease. J. Nutr. 2012, 142, 1009–1018. [Google Scholar] [CrossRef] [PubMed]
- Hamer, M.; Chida, Y. Intake of fruit, vegetables, and antioxidants and risk of type 2 diabetes: Systematic review and meta-analysis. J. Hypertens. 2007, 25, 2361–2369. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Dong, J.Y.; Wu, Z.W.; Li, W.; Qin, L.Q. Dairy consumption and risk of type 2 diabetes mellitus: A meta-analysis of cohort studies. Eur. J. Clin. Nutr. 2011, 65, 1027–1031. [Google Scholar] [CrossRef] [PubMed]
- Margolis, K.L.; Wei, F.; de Boer, I.H.; Howard, B.V.; Liu, S.; Manson, J.E.; Mossavar-Rahmani, Y.; Phillips, L.S.; Shikany, J.M.; Tinker, L.F.; et al. A diet high in low-fat dairy products lowers diabetes risk in postmenopausal women. J. Nutr. 2011, 141, 1969–1974. [Google Scholar] [CrossRef] [PubMed]
- Ericson, U.; Hellstrand, S.; Brunkwall, L.; Schulz, C.A.; Sonestedt, E.; Wallstrom, P.; Gullberg, B.; Wirfalt, E.; Orho-Melander, M. Food sources of fat may clarify the inconsistent role of dietary fat intake for incidence of type 2 diabetes. Am. J. Clin. Nutr. 2015, 101, 1065–1080. [Google Scholar] [CrossRef] [PubMed]
- Forouhi, N.G.; Koulman, A.; Sharp, S.J.; Imamura, F.; Kroger, J.; Schulze, M.B.; Crowe, F.L.; Huerta, J.M.; Guevara, M.; Beulens, J.W.; et al. Differences in the prospective association between individual plasma phospholipid saturated fatty acids and incident type 2 diabetes: The EPIC-interAct case-cohort study. Lancet Diabetes Endocrinol. 2014, 2, 810–818. [Google Scholar] [CrossRef]
- Wu, J.H.; Micha, R.; Imamura, F.; Pan, A.; Biggs, M.L.; Ajaz, O.; Djousse, L.; Hu, F.B.; Mozaffarian, D. Omega-3 fatty acids and incident type 2 diabetes: A systematic review and meta-analysis. Br. J. Nutr. 2012, 107, S214–S227. [Google Scholar] [CrossRef] [PubMed]
- Nanri, A.; Mizoue, T.; Noda, M.; Takahashi, Y.; Matsushita, Y.; Poudel-Tandukar, K.; Kato, M.; Oba, S.; Inoue, M.; Tsugane, S.; et al. Fish intake and type 2 diabetes in japanese men and women: The Japan public health center-based prospective study. Am. J. Clin. Nutr. 2011, 94, 884–891. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.S.; Huang, T.; Yang, J.; Fu, Y.Q.; Li, D. Marine n-3 polyunsaturated fatty acids are inversely associated with risk of type 2 diabetes in Asians: A systematic review and meta-analysis. PLoS ONE 2012, 7, e44525. [Google Scholar] [CrossRef] [PubMed]
- Ericson, U.; Sonestedt, E.; Gullberg, B.; Hellstrand, S.; Hindy, G.; Wirfalt, E.; Orho-Melander, M. High intakes of protein and processed meat associate with increased incidence of type 2 diabetes. Br. J. Nutr. 2013, 109, 1143–1153. [Google Scholar] [CrossRef] [PubMed]
- InterAct Consortium. Consumption of sweet beverages and type 2 diabetes incidence in European adults: Results from EPIC-interAct. Diabetologia 2013, 56, 1520–1530. [Google Scholar]
- Sempos, C.T.; Liu, K.; Ernst, N.D. Food and nutrient exposures: What to consider when evaluating epidemiologic evidence. Am. J. Clin. Nutr. 1999, 69, 1330S–1338S. [Google Scholar] [PubMed]
- Waijers, P.M.; Feskens, E.J.; Ocke, M.C. A critical review of predefined diet quality scores. Br. J. Nutr. 2007, 97, 219–231. [Google Scholar] [CrossRef] [PubMed]
- Kourlaba, G.; Panagiotakos, D.B. Dietary quality indices and human health: A review. Maturitas 2009, 62, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Franks, P.W.; Pearson, E.; Florez, J.C. Gene-environment and gene-treatment interactions in type 2 diabetes: Progress, pitfalls, and prospects. Diabetes Care 2013, 36, 1413–1421. [Google Scholar] [CrossRef] [PubMed]
- Manjer, J.; Carlsson, S.; Elmstahl, S.; Gullberg, B.; Janzon, L.; Lindstrom, M.; Mattisson, I.; Berglund, G. The malmo diet and cancer study: Representativity, cancer incidence and mortality in participants and non-participants. Eur. J. Cancer Prev. 2001, 10, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Berglund, G.; Elmstahl, S.; Janzon, L.; Larsson, S.A. The malmo diet and cancer study. Design and feasibility. J. Intern. Med. 1993, 233, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Hedblad, B.; Nilsson, P.; Engstrom, G.; Berglund, G.; Janzon, L. Insulin resistance in non-diabetic subjects is associated with increased incidence of myocardial infarction and death. Diabet. Med. 2002, 19, 470–475. [Google Scholar] [CrossRef] [PubMed]
- Berglund, G.; Nilsson, P.; Eriksson, K.F.; Nilsson, J.A.; Hedblad, B.; Kristenson, H.; Lindgarde, F. Long-term outcome of the malmo preventive project: Mortality and cardiovascular morbidity. J. Intern. Med. 2000, 247, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Cederholm, J.; Eeg-Olofsson, K.; Eliasson, B.; Zethelius, B.; Nilsson, P.M.; Gudbjornsdottir, S. Risk prediction of cardiovascular disease in type 2 diabetes: A risk equation from the swedish national diabetes register. Diabetes Care 2008, 31, 2038–2043. [Google Scholar] [CrossRef] [PubMed]
- Lindholm, E.; Agardh, E.; Tuomi, T.; Groop, L.; Agardh, C.D. Classifying diabetes according to the new who clinical stages. Eur. J. Epidemiol. 2001, 17, 983–989. [Google Scholar] [CrossRef] [PubMed]
- Sonestedt, E.; Lyssenko, V.; Ericson, U.; Gullberg, B.; Wirfalt, E.; Groop, L.; Orho-Melander, M. Genetic variation in the glucose-dependent insulinotropic polypeptide receptor modifies the association between carbohydrate and fat intake and risk of type 2 diabetes in the malmo diet and cancer cohort. J. Clin. Endocrinol. Metab. 2012, 97, E810–E818. [Google Scholar] [CrossRef] [PubMed]
- Hanas, R.; John, G. 2010 consensus statement on the worldwide standardization of the hemoglobin a1c measurement. Pediatr. Diabetes 2010, 11, 209–211. [Google Scholar] [CrossRef] [PubMed]
- Hoelzel, W.; Weykamp, C.; Jeppsson, J.O.; Miedema, K.; Barr, J.R.; Goodall, I.; Hoshino, T.; John, W.G.; Kobold, U.; Little, R.; et al. Ifcc reference system for measurement of hemoglobin a1c in human blood and the national standardization schemes in the United States, Japan, and Sweden: A method-comparison study. Clin. Chem. 2004, 50, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Rosvall, M.; Persson, M.; Ostling, G.; Nilsson, P.M.; Melander, O.; Hedblad, B.; Engstrom, G. Risk factors for the progression of carotid intima-media thickness over a 16-year follow-up period: The malmo diet and cancer study. Atherosclerosis 2015, 239, 615–621. [Google Scholar] [CrossRef] [PubMed]
- Callmer, E.; Riboli, E.; Saracci, R.; Akesson, B.; Lindgarde, F. Dietary assessment methods evaluated in the malmo food study. J. Intern. Med. 1993, 233, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Elmstahl, S.; Riboli, E.; Lindgarde, F.; Gullberg, B.; Saracci, R. The malmo food study: The relative validity of a modified diet history method and an extensive food frequency questionnaire for measuring food intake. Eur. J. Clin. Nutr. 1996, 50, 143–151. [Google Scholar] [PubMed]
- Riboli, E.; Elmstahl, S.; Saracci, R.; Gullberg, B.; Lindgarde, F. The malmo food study: Validity of two dietary assessment methods for measuring nutrient intake. Int. J. Epidemiol. 1997, 26, S161–S173. [Google Scholar] [CrossRef] [PubMed]
- Wirfalt, E.; Mattisson, I.; Johansson, U.; Gullberg, B.; Wallstrom, P.; Berglund, G. A methodological report from the malmo diet and cancer study: Development and evaluation of altered routines in dietary data processing. Nutr. J. 2002, 1. [Google Scholar] [CrossRef] [Green Version]
- Manjer, J.; Elmstahl, S.; Janzon, L.; Berglund, G. Invitation to a population-based cohort study: Differences between subjects recruited using various strategies. Scand. J. Public Health 2002, 30, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Richardson, M.T.; Leon, A.S.; Jacobs, D.R., Jr.; Ainsworth, B.E.; Serfass, R. Comprehensive evaluation of the minnesota leisure time physical activity questionnaire. J. Clin. Epidemiol. 1994, 47, 271–281. [Google Scholar] [CrossRef]
- Mattisson, I.; Wirfalt, E.; Aronsson, C.A.; Wallstrom, P.; Sonestedt, E.; Gullberg, B.; Berglund, G. Misreporting of energy: Prevalence, characteristics of misreporters and influence on observed risk estimates in the malmo diet and cancer cohort. Br. J. Nutr. 2005, 94, 832–842. [Google Scholar] [CrossRef] [PubMed]
- Sonestedt, E.; Wirfalt, E.; Gullberg, B.; Berglund, G. Past food habit change is related to obesity, lifestyle and socio-economic factors in the malmo diet and cancer cohort. Public Health Nutr. 2005, 8, 876–885. [Google Scholar] [CrossRef] [PubMed]
- Malik, V.S.; Hu, F.B. Sweeteners and risk of obesity and type 2 diabetes: The role of sugar-sweetened beverages. Curr. Diabetes Rep. 2012, 12, 195–203. [Google Scholar] [CrossRef] [PubMed]
Variables | Men | Women | ||||||
---|---|---|---|---|---|---|---|---|
Low (0–1) | Medium (2–4) | High (5–6) | p-Value | Low (0–1) | Medium (2–4) | High (5–6) | p-Value | |
Number of Participants | 1536 | 7756 | 1121 | 2661 | 11,450 | 2344 | ||
Age (years) | 59.1 (7.3) | 59.0 (7.0) | 59.6 (6.8) | 0.05 | 57.2 (8.2) | 57.2 (7.9) | 57.7 (7.4) | 0.02 |
Height (cm) | 176.0 (6.6) | 176.5 (6.6) | 176.4 (6.7) | 0.03 | 163.4 (6.1) | 163.8 (6.0) | 163.6 (6.1) | 0.02 |
Weight (kg) | 80.0 (12.0) | 81.7 (12.0) | 82.0 (11.8) | <0.001 | 66.6 (11.6) | 67.9 (11.5) | 68.5 (11.5) | <0.001 |
Body mass index (kg/m2) | 25.8 (3.4) | 26.2 (3.4) | 26.3 (3.3) | <0.001 | 24.9 (4.1) | 25.3 (4.2) | 25.6 (4.1) | <0.001 |
Waist circumference (cm) | 92.8 (9.9) | 93.6 (9.9) | 93.3 (9.7) | 0.03 | 77.0 (10.2) | 77.6 (10.3) | 77.7 (10.1) | 0.01 |
Body fat (%) | 20.7 (5.0) | 20.7 (5.0) | 20.5 (4.7) | 0.63 | 30.4 (5.1) | 30.7 (4.9) | 30.9 (4.9) | 0.01 |
Plasma glucose (mmol/L) | 5.84 (0.81) | 5.83 (0.94) | 5.77 (0.98) | 0.61 | 5.53 (0.61) | 5.51 (0.72) | 5.48 (0.68) | 0.50 |
Plasma insulin (pmol/L) | 56.9 (57.2) | 51.6 (59.7) | 47.8 (36.2) | 0.02 | 43.8 (26.7) | 42.4 (37.0) | 43.4 (41.8) | 0.21 |
Energy intake (MJ) | 11.1 (2.9) | 11.1 (2.9) | 10.8 (2.6) | <0.001 | 8.7 (2.1) | 8.6 (2.1) | 8.3 (1.9) | <0.001 |
Saturated fat (E%) | 18.3 (3.7) | 16.5 (3.8) | 12.5 (2.4) | <0.001 | 18.1 (3.5) | 16.3 (3.6) | 13.0 (2.4) | <0.001 |
Polyunsaturated fat (E%) | 5.2 (1.7) | 6.3 (1.5) | 6.3 (1.3) | <0.001 | 5.0 (1.5) | 5.9 (1.5) | 6.2 (1.3) | <0.001 |
Sucrose (E%) | 11.3 (4.3) | 7.8 (3.4) | 7.0 (2.2) | <0.001 | 11.3 (3.9) | 8.5 (3.2) | 7.6 (2.0) | <0.001 |
Fiber (g/MJ) | 1.65 (0.36) | 2.00 (0.53) | 2.86 (0.54) | <0.001 | 1.80 (0.36) | 2.29 (0.59) | 3.02 (0.57) | <0.001 |
Fish and shellfish (g/week) | 175 (157) | 361 (276) | 539 (329) | <0.001 | 173 (129) | 297 (209) | 451 (223) | <0.001 |
Fruit and vegetables (g/day) | 241 (107) | 335 (173) | 548 (183) | <0.001 | 272 (106) | 388 (175) | 568 (168) | <0.001 |
Level of energy reporting | 0.04 | <0.001 | ||||||
Under-reporters | 169 (11.0) | 906 (11.7) | 151 (13.5) | 358 (13.5) | 1984 (17.3) | 517 (22.1) | ||
Adequate reporters | 1302 (84.8) | 6564 (84.6) | 943 (84.1) | 2198 (82.6) | 9136 (79.8) | 1797 (76.7) | ||
Over-reporters | 65 (4.2) | 289 (3.7) | 27 (2.4) | 105 (3.9) | 330 (2.9) | 30 (1.3) | ||
Substantial diet change in the past | 229 (15.0) | 1456 (18.8) | 424 (37.8) | <0.001 | 437 (16.4) | 2524 (22.1) | 917 (39.2) | <0.001 |
Season of diet collection | 0.11 | 0.13 | ||||||
January–March | 390 (25.4) | 1756 (22.6) | 245 (21.9) | 638 (24.0) | 2506 (21.9) | 542 (23.1) | ||
April–June | 441 (28.7) | 2386 (30.8) | 362 (32.3) | 737 (27.7) | 3370 (29.4) | 702 (29.9) | ||
July–September | 206 (13.4) | 1109 (14.3) | 142 (12.7) | 397 (14.9) | 1745 (15.2) | 326 (13.9) | ||
October–December | 499 (32.5) | 2505 (32.3) | 372 (33.2) | 889 (33.4) | 3829 (33.4) | 774 (33.0) | ||
Educational level | <0.001 | <0.001 | ||||||
Elementary | 811 (53.1) | 3509 (45.3) | 443 (39.6) | 1167 (43.9) | 4403 (38.6) | 826 (35.3) | ||
Primary and secondary | 284 (18.6) | 1513 (19.5) | 243 (21.7) | 775 (29.2) | 3491 (30.6) | 730 (31.2) | ||
Upper secondary | 142 (9.3) | 955 (12.3) | 142 (12.7) | 193 (7.3) | 803 (7.0) | 156 (6.7) | ||
Further education without a degree | 117 (7.7) | 721 (9.3) | 122 (10.9) | 206 (7.8) | 948 (8.3) | 240 (10.3) | ||
University | 174 (11.4) | 1043 (13.5) | 169 (15.1) | 317 (11.9) | 1771 (15.5) | 289 (16.6) | ||
Alcohol consumption | <0.001 | <0.001 | ||||||
Zero consumers | 101 (6.6) | 303 (3.9) | 50 (4.5) | 283 (10.6) | 781 (6.8) | 142 (6.1) | ||
Quintile 1 | 387 (25.2) | 1364 (17.6) | 213 (19.0) | 615 (23.1) | 1998 (17.4) | 386 (16.5) | ||
Quintile 2 | 294 (19.1) | 1442 (18.6) | 231 (20.6) | 511 (19.2) | 2059 (18.0) | 456 (19.5) | ||
Quintile 3 | 262 (17.1) | 1507 (19.4) | 244 (21.8) | 438 (16.5) | 2163 (18.9) | 460 (19.6) | ||
Quintile 4 | 271 (17.6) | 1529 (19.7) | 216 (19.3) | 399 (15.0) | 2212 (19.3) | 467 (19.9) | ||
Quintile 5 | 221 (14.4) | 1611 (20.8) | 167 (14.9) | 415 (15.6) | 2237 (19.5) | 433 (18.5) | ||
Smoking status | <0.001 | <0.001 | ||||||
Current | 596 (38.8) | 2245 (28.9) | 164 (14.6) | 998 (37.5) | 3219 (28.1) | 413 (17.6) | ||
Former | 552 (38.8) | 3339 (28.9) | 554 (14.6) | 614 (23.1) | 3148 (27.5) | 793 (33.8) | ||
Never | 387 (35.9) | 2168 (43.1) | 403 (49.4) | 1047 (39.3) | 5081 (44.4) | 1137 (48.5) | ||
Leisure-time physical activity | <0.001 | <0.001 | ||||||
Quartile 1 | 509 (33.5) | 1954 (25.4) | 170 (15.2) | 821 (31.0) | 2815 (24.8) | 404 (17.3) | ||
Quartile 2 | 366 (24.1) | 1887 (24.5) | 242 (21.7) | 677 (25.6) | 2923 (25.7) | 578 (24.8) | ||
Quartile 3 | 303 (19.9) | 1843 (23.9) | 310 (27.8) | 612 (23.1) | 2942 (25.9) | 660 (28.3) | ||
Quartile 4 | 343 (22.6) | 2021 (26.2) | 395 (35.4) | 536 (20.3) | 2688 (23.6) | 693 (29.7) |
Model | Low (0–1) | Medium (2–4) | High (5–6) | p-Trend |
---|---|---|---|---|
All | ||||
Cases/person-years | 563/70,894 | 2763/332,587 | 512/62,071 | |
Basic model a | 1.00 | 1.01 (0.92–1.11) | 1.01 (0.90–1.14) | 0.60 |
Multivariable model excl. BMI b | 1.00 | 1.10 (1.00–1.20) | 1.17 (1.03–1.32) | 0.02 |
Multivariable model c | 1.00 | 1.03 (0.94–1.13) | 1.06 (0.94–1.20) | 0.56 |
Adequate reporters in basic model d | 1.00 | 0.99 (0.87–1.11) | 0.91 (0.77–1.08) | 0.03 |
Adequate reporters in multivariable model excl. BMI e | 1.00 | 1.10 (0.98–1.23) | 1.09 (0.91–1.29) | 0.70 |
Adequate reporters in multivariable model f | 1.00 | 1.02 (0.91–1.15) | 1.01 (0.85–1.20) | 0.34 |
Men | ||||
Cases/person-years | 255/25,165 | 1399/126,887 | 205/19,136 | |
Basic model a | 1.00 | 1.04 (0.91–1.18) | 0.99 (0.82–1.19) | 0.55 |
Multivariable model excl. BMI b | 1.00 | 1.10 (0.96–1.26) | 1.10 (0.91–1.32) | 0.39 |
Multivariable model c | 1.00 | 1.04 (0.91–1.19) | 1.02 (0.84–1.23) | 0.96 |
Adequate reporters in basic model d | 1.00 | 1.05 (0.89–1.24) | 0.97 (0.76–1.25) | 0.40 |
Adequate reporters in multivariable model excl. BMI e | 1.00 | 1.14 (0.97–1.35) | 1.15 (0.89–1.48) | 0.98 |
Adequate reporters in multivariable model f | 1.00 | 1.06 (0.89–1.25) | 1.06 (0.82–1.37) | 0.89 |
Women | ||||
Cases/person-years | 308/46,729 | 1364/205,700 | 307/42,936 | |
Basic model a | 1.00 | 0.99 (0.87–1.12) | 1.03 (0.88–1.21) | 0.88 |
Multivariable model excl. BMI b | 1.00 | 1.09 (0.97–1.24) | 1.23 (1.04–1.44) | 0.02 |
Multivariable model c | 1.00 | 1.02 (0.90–1.16) | 1.10 (0.93–1.29) | 0.40 |
Adequate reporters in basic model d | 1.00 | 0.95 (0.81–1.11) | 0.86 (0.68–1.08) | 0.02 |
Adequate reporters in multivariable model excl. BMI e | 1.00 | 1.06 (0.90–1.24) | 1.05 (0.83–1.33) | 0.89 |
Adequate reporters in multivariable model f | 1.00 | 0.99 (0.85–1.17) | 0.97 (0.77–1.23) | 0.26 |
Dietary Components | Non-Adherence | Adherence |
---|---|---|
Saturated fat | >14 E% | ≤14 E% |
Mutually adjusted multivariable model excl. BMI a | 1.00 | 1.19 (1.10–1.29) |
Mutually adjusted multivariable model b | 1.00 | 1.14 (1.06–1.24) |
Adequate reporters in mutually adjusted multivariable model c | 1.00 | 1.02 (0.92–1.14) |
Polyunsaturated fat | <5 E% or >10 E% | 5–10 E% |
Mutually adjusted multivariable model excl. BMI a | 1.00 | 1.04 (0.97–1.12) |
Mutually adjusted multivariable model b | 1.00 | 1.02 (0.95–1.09) |
Adequate reporters in mutually adjusted multivariable model c | 1.00 | 1.05 (0.95–1.15) |
Sucrose | ≥10 E% | ≤10 E% |
Mutually adjusted multivariable model excl. BMI a | 1.00 | 1.07 (1.00–1.16) |
Mutually adjusted multivariable model b | 1.00 | 1.01 (0.94–1.09) |
Adequate reporters in mutually adjusted multivariable model c | 1.00 | 1.02 (0.92–1.12) |
Fiber | ≤2.4 or >3.6 g/MJ | 2.4–3.6 g/MJ |
Mutually adjusted multivariable mode excl. BMI a | 1.00 | 0.85 (0.78–0.92) |
Mutually adjusted multivariable model b | 1.00 | 0.91 (0.84–0.99) |
Adequate reporters in mutually adjusted multivariable model c | 1.00 | 0.89 (0.79–1.00) |
Fish and shellfish | ≤300 g/week | ≥300 g/week |
Mutually adjusted multivariable mode excl. BMI a | 1.00 | 1.02 (0.95–1.09) |
Mutually adjusted multivariable model b | 1.00 | 1.01 (0.94–1.08) |
Adequate reporters in mutually adjusted multivariable model c | 1.00 | 0.99 (0.90–1.08) |
Fruits and vegetables | ≤400 g/day | ≥400 g/day |
Mutually adjusted multivariable mode excl. BMI a | 1.00 | 0.98 (0.91–1.05) |
Mutually adjusted multivariable model b | 1.00 | 0.99 (0.92–1.07) |
Adequate reporters in mutually adjusted multivariable model c | 1.00 | 1.01 (0.91–1.11) |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mandalazi, E.; Drake, I.; Wirfält, E.; Orho-Melander, M.; Sonestedt, E. A High Diet Quality Based on Dietary Recommendations Is Not Associated with Lower Incidence of Type 2 Diabetes in the Malmö Diet and Cancer Cohort. Int. J. Mol. Sci. 2016, 17, 901. https://doi.org/10.3390/ijms17060901
Mandalazi E, Drake I, Wirfält E, Orho-Melander M, Sonestedt E. A High Diet Quality Based on Dietary Recommendations Is Not Associated with Lower Incidence of Type 2 Diabetes in the Malmö Diet and Cancer Cohort. International Journal of Molecular Sciences. 2016; 17(6):901. https://doi.org/10.3390/ijms17060901
Chicago/Turabian StyleMandalazi, Emmanuel, Isabel Drake, Elisabet Wirfält, Marju Orho-Melander, and Emily Sonestedt. 2016. "A High Diet Quality Based on Dietary Recommendations Is Not Associated with Lower Incidence of Type 2 Diabetes in the Malmö Diet and Cancer Cohort" International Journal of Molecular Sciences 17, no. 6: 901. https://doi.org/10.3390/ijms17060901