ARID1A Mutations and PI3K/AKT Pathway Alterations in Endometriosis and Endometriosis-Associated Ovarian Carcinomas
Abstract
:1. Introduction
2. ARID1A Mutations
2.1. Background
2.2. ARID1A Mutations in Endometriosis-Associated Ovarian Carcinomas
2.3. Loss of ARID1A Expression in Endometriosis
2.4. Correlation between ARID1A Mutations and Loss of ARID1A Expression in Immunohistochemistry
3. PI3K/AKT-Pathway Alterations
3.1. Introduction
3.2. PI3K/AKT Pathway Activation in Endometriosis
3.3. PI3K/AKT Pathway Alterations in OCCC and EnOC
3.4. PIK3CA Mutations in Endometriosis-Associated Ovarian Cancer and Endometriosis
3.5. Targeting the PI3K/AKT-Pathway in OCCC and EnOC
4. Further Implications
4.1. Functional Studies about the Loss of ARID1A Expression In Vitro and In Vivo
4.2. Evidence for Cooperative Mechanisms between ARID1A and the PI3K/AKT Pathway
4.3. Possible Clinical Implications of ARID1A Mutations
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Cornen, S.; Adelaide, J.; Bertucci, F.; Finetti, P.; Guille, A.; Birnbaum, D.J.; Birnbaum, D.; Chaffanet, M. Mutations and deletions of arid1a in breast tumors. Oncogene 2012, 31, 4255–4256. [Google Scholar] [Green Version]
- Popovic, R.; Licht, J.D. Emerging epigenetic targets and therapies in cancer medicine. Cancer Discov 2012, 2, 405–413. [Google Scholar] [Green Version]
- Oike, T.; Ogiwara, H.; Tominaga, Y.; Ito, K.; Ando, O.; Tsuta, K.; Mizukami, T.; Shimada, Y.; Isomura, H.; Komachi, M.; et al. A synthetic lethality-based strategy to treat cancers harboring a genetic deficiency in the chromatin remodeling factor brg1. Cancer Res. 2013. [Google Scholar] [CrossRef]
- Wiegand, K.C.; Shah, S.P.; Al-Agha, O.M.; Zhao, Y.; Tse, K.; Zeng, T.; Senz, J.; McConechy, M.K.; Anglesio, M.S.; Kalloger, S.E.; et al. Arid1a mutations in endometriosis-associated ovarian carcinomas. N. Engl. J. Med 2010, 363, 1532–1543. [Google Scholar] [Green Version]
- Jones, S.; Wang, T.L.; Shih, I.M.; Mao, T.L.; Nakayama, K.; Roden, R.; Glas, R.; Slamon, D.; Diaz, L.A.; Vogelstein, B.; et al. Frequent mutations of chromatin remodeling gene arid1a in ovarian clear cell carcinoma. Science 2010, 330, 228–231. [Google Scholar] [Green Version]
- Birrer, M.J. The origin of ovarian cancer—Is it getting clearer? N. Engl. J. Med 2010, 363, 1574–1575. [Google Scholar] [Green Version]
- Nissenblatt, M. Endometriosis-associated ovarian carcinomas. N. Engl. J. Med 2011, 364, 482–483. [Google Scholar] [Green Version]
- Bulun, S.E. Endometriosis. N. Engl. J. Med 2009, 360, 268–279. [Google Scholar] [Green Version]
- Buck Louis, G.M.; Hediger, M.L.; Peterson, C.M.; Croughan, M.; Sundaram, R.; Stanford, J.; Chen, Z.; Fujimoto, V.Y.; Varner, M.W.; Trumble, A.; et al. Incidence of endometriosis by study population and diagnostic method: The endo study. Fertil. Steril 2011, 96, 360–365. [Google Scholar] [Green Version]
- Giudice, L.C.; Kao, L.C. Endometriosis. Lancet 2004, 364, 1789–1799. [Google Scholar] [Green Version]
- Giudice, L.C. Clinical practice. Endometriosis. N. Engl. J. Med 2010, 362, 2389–2398. [Google Scholar] [Green Version]
- Somigliana, E.; Vigano’, P.; Parazzini, F.; Stoppelli, S.; Giambattista, E.; Vercellini, P. Association between endometriosis and cancer: A comprehensive review and a critical analysis of clinical and epidemiological evidence. Gynecol. Oncol 2006, 101, 331–341. [Google Scholar] [Green Version]
- Sampson, J.A. Endometrial carcinoma of the ovary, arising in endometrial tissue in that organ. Arch. Surg 1925, 10, 1–72. [Google Scholar] [Green Version]
- Ness, R.B. Endometriosis and ovarian cancer: Thoughts on shared pathophysiology. Am. J. Obstet. Gynecol 2003, 189, 280–294. [Google Scholar] [Green Version]
- Brinton, L.A.; Gridley, G.; Persson, I.; Baron, J.; Bergqvist, A. Cancer risk after a hospital discharge diagnosis of endometriosis. Am. J. Obstet. Gynecol 1997, 176, 572–579. [Google Scholar] [Green Version]
- Melin, A.; Sparen, P.; Persson, I.; Bergqvist, A. Endometriosis and the risk of cancer with special emphasis on ovarian cancer. Hum. Reprod 2006, 21, 1237–1242. [Google Scholar] [Green Version]
- Kobayashi, H.; Sumimoto, K.; Moniwa, N.; Imai, M.; Takakura, K.; Kuromaki, T.; Morioka, E.; Arisawa, K.; Terao, T. Risk of developing ovarian cancer among women with ovarian endometrioma: A cohort study in shizuoka, Japan. Int. J. Gynecol. Cancer 2007, 17, 37–43. [Google Scholar] [Green Version]
- Rossing, M.A.; Cushing-Haugen, K.L.; Wicklund, K.G.; Doherty, J.A.; Weiss, N.S. Risk of epithelial ovarian cancer in relation to benign ovarian conditions and ovarian surgery. Cancer Causes Control 2008, 19, 1357–1364. [Google Scholar] [Green Version]
- Wu, A.H.; Pearce, C.L.; Tseng, C.C.; Templeman, C.; Pike, M.C. Markers of inflammation and risk of ovarian cancer in los angeles county. Int. J. Cancer 2009, 124, 1409–1415. [Google Scholar] [Green Version]
- Ness, R.B.; Cramer, D.W.; Goodman, M.T.; Kjaer, S.K.; Mallin, K.; Mosgaard, B.J.; Purdie, D.M.; Risch, H.A.; Vergona, R.; Wu, A.H. Infertility, fertility drugs, and ovarian cancer: A pooled analysis of case-control studies. Am. J. Epidemiol 2002, 155, 217–224. [Google Scholar] [Green Version]
- Merritt, M.A.; Green, A.C.; Nagle, C.M.; Webb, P.M.; Cancer, A.C.S.O.; Group, A.O.C.S. Talcum powder, chronic pelvic inflammation and nsaids in relation to risk of epithelial ovarian cancer. Int. J. Cancer 2008, 122, 170–176. [Google Scholar] [Green Version]
- Venn, A.; Watson, L.; Bruinsma, F.; Giles, G.; Healy, D. Risk of cancer after use of fertility drugs with in vitro fertilisation. Lancet 1999, 354, 1586–1590. [Google Scholar] [Green Version]
- Borgfeldt, C.; Andolf, E. Cancer risk after hospital discharge diagnosis of benign ovarian cysts and endometriosis. Acta Obstet. Gynecol. Scand 2004, 83, 395–400. [Google Scholar] [Green Version]
- Brinton, L.A.; Sakoda, L.C.; Sherman, M.E.; Frederiksen, K.; Kjaer, S.K.; Graubard, B.I.; Olsen, J.H.; Mellemkjaer, L. Relationship of benign gynecologic diseases to subsequent risk of ovarian and uterine tumors. Cancer Epidemiol. Biomark. Prev 2005, 14, 2929–2935. [Google Scholar] [Green Version]
- Ness, R.B.; Grisso, J.A.; Cottreau, C.; Klapper, J.; Vergona, R.; Wheeler, J.E.; Morgan, M.; Schlesselman, J.J. Factors related to inflammation of the ovarian epithelium and risk of ovarian cancer. Epidemiology 2000, 11, 111–117. [Google Scholar] [Green Version]
- Brinton, L.A.; Lamb, E.J.; Moghissi, K.S.; Scoccia, B.; Althuis, M.D.; Mabie, J.E.; Westhoff, C.L. Ovarian cancer risk associated with varying causes of infertility. Fertil. Steril 2004, 82, 405–414. [Google Scholar] [Green Version]
- Vercellini, P.; Parazzini, F.; Bolis, G.; Carinelli, S.; Dindelli, M.; Vendola, N.; Luchini, L.; Crosignani, P.G. Endometriosis and ovarian cancer. Am. J. Obstet. Gynecol 1993, 169, 181–182. [Google Scholar] [Green Version]
- Pearce, C.L.; Templeman, C.; Rossing, M.A.; Lee, A.; Near, A.M.; Webb, P.M.; Nagle, C.M.; Doherty, J.A.; Cushing-Haugen, K.L.; Wicklund, K.G.; et al. Association between endometriosis and risk of histological subtypes of ovarian cancer: A pooled analysis of case-control studies. Lancet Oncol 2012, 13, 385–394. [Google Scholar] [Green Version]
- Sieh, W.; Kobel, M.; Longacre, T.A.; Bowtell, D.D.; Defazio, A.; Goodman, M.T.; Hogdall, E.; Deen, S.; Wentzensen, N.; Moysich, K.B.; et al. Hormone-receptor expression and ovarian cancer survival: An ovarian tumor tissue analysis consortium study. Lancet Oncol 2013, 14, 853–862. [Google Scholar] [Green Version]
- Kurman, R.J.; Shih, I.M. Molecular pathogenesis and extraovarian origin of epithelial ovarian cancer-shifting the paradigm. Hum. Pathol 2011, 42, 918–931. [Google Scholar] [Green Version]
- Kurman, R.J.; Shih, I.M. Pathogenesis of ovarian cancer: Lessons from morphology and molecular biology and their clinical implications. Int. J. Gynecol. Pathol 2008, 27, 151–160. [Google Scholar] [Green Version]
- Shih, I.M.; Kurman, R.J. Ovarian tumorigenesis: A proposed model based on morphological and molecular genetic analysis. Am. J. Pathol 2004, 164, 1511–1518. [Google Scholar] [Green Version]
- Shih, I.M.; Kurman, R.J. Molecular pathogenesis of ovarian borderline tumors: New insights and old challenges. Clin. Cancer Res 2005, 11, 7273–7279. [Google Scholar] [Green Version]
- Kurman, R.J.; Visvanathan, K.; Roden, R.; Wu, T.C.; Shih, I.M. Early detection and treatment of ovarian cancer: Shifting from early stage to minimal volume of disease based on a new model of carcinogenesis. Am. J. Obstet. Gynecol 2008, 198, 351–356. [Google Scholar] [Green Version]
- Vang, R.; Shih, I.M.; Kurman, R.J. Fallopian tube precursors of ovarian low- and high-grade serous neoplasms. Histopathology 2013, 62, 44–58. [Google Scholar] [Green Version]
- Dubeau, L. The cell of origin of ovarian epithelial tumours. Lancet Oncol 2008, 9, 1191–1197. [Google Scholar] [Green Version]
- Hough, C.D.; Sherman-Baust, C.A.; Pizer, E.S.; Montz, F.J.; Im, D.D.; Rosenshein, N.B.; Cho, K.R.; Riggins, G.J.; Morin, P.J. Large-scale serial analysis of gene expression reveals genes differentially expressed in ovarian cancer. Cancer Res 2000, 60, 6281–6287. [Google Scholar] [Green Version]
- Dubeau, L. The cell of origin of ovarian epithelial tumors and the ovarian surface epithelium dogma: Does the emperor have no clothes? Gynecol. Oncol 1999, 72, 437–442. [Google Scholar] [Green Version]
- Crum, C.P.; Drapkin, R.; Miron, A.; Ince, T.A.; Muto, M.; Kindelberger, D.W.; Lee, Y. The distal fallopian tube: A new model for pelvic serous carcinogenesis. Curr. Opin. Obstet. Gynecol 2007, 19, 3–9. [Google Scholar] [Green Version]
- Roh, M.H.; Kindelberger, D.; Crum, C.P. Serous tubal intraepithelial carcinoma and the dominant ovarian mass: Clues to serous tumor origin? Am. J. Surg. Pathol 2009, 33, 376–383. [Google Scholar] [Green Version]
- Semmel, D.R.; Folkins, A.K.; Hirsch, M.S.; Nucci, M.R.; Crum, C.P. Intercepting early pelvic serous carcinoma by routine pathological examination of the fimbria. Mod. Pathol 2009, 22, 985–988. [Google Scholar] [Green Version]
- Wei, J.J.; Wu, J.; Luan, C.; Yeldandi, A.; Lee, P.; Keh, P.; Liu, J. Hmga2: A potential biomarker complement to p53 for detection of early-stage high-grade papillary serous carcinoma in fallopian tubes. Am. J. Surg. Pathol 2010, 34, 18–26. [Google Scholar] [Green Version]
- Sehdev, A.S.; Kurman, R.J.; Kuhn, E.; Shih, I.M. Serous tubal intraepithelial carcinoma upregulates markers associated with high-grade serous carcinomas including rsf-1 (hbxap), cyclin e and fatty acid synthase. Mod. Pathol 2010, 23, 844–855. [Google Scholar] [Green Version]
- Kuhn, E.; Kurman, R.J.; Vang, R.; Sehdev, A.S.; Han, G.; Soslow, R.; Wang, T.L.; Shih, I.M. Tp53 mutations in serous tubal intraepithelial carcinoma and concurrent pelvic high-grade serous carcinoma-evidence supporting the clonal relationship of the two lesions. J. Pathol 2012, 226, 421–426. [Google Scholar] [Green Version]
- Kuhn, E.; Meeker, A.; Wang, T.L.; Sehdev, A.S.; Kurman, R.J.; Shih, I.M. Shortened telomeres in serous tubal intraepithelial carcinoma: An early event in ovarian high-grade serous carcinogenesis. Am. J. Surg. Pathol 2010, 34, 829–836. [Google Scholar] [Green Version]
- Cibula, D.; Widschwendter, M.; Majek, O.; Dusek, L. Tubal ligation and the risk of ovarian cancer: Review and meta-analysis. Hum. Reprod. Update 2011, 17, 55–67. [Google Scholar] [Green Version]
- Narod, S.A.; Sun, P.; Ghadirian, P.; Lynch, H.; Isaacs, C.; Garber, J.; Weber, B.; Karlan, B.; Fishman, D.; Rosen, B.; et al. Tubal ligation and risk of ovarian cancer in carriers of brca1 or brca2 mutations: A case-control study. Lancet 2001, 357, 1467–1470. [Google Scholar] [Green Version]
- Miracle-McMahill, H.L.; Calle, E.E.; Kosinski, A.S.; Rodriguez, C.; Wingo, P.A.; Thun, M.J.; Heath, C.W. Tubal ligation and fatal ovarian cancer in a large prospective cohort study. Am. J. Epidemiol 1997, 145, 349–357. [Google Scholar] [Green Version]
- Hankinson, S.E.; Hunter, D.J.; Colditz, G.A.; Willett, W.C.; Stampfer, M.J.; Rosner, B.; Hennekens, C.H.; Speizer, F.E. Tubal ligation, hysterectomy, and risk of ovarian cancer. A prospective study. JAMA 1993, 270, 2813–2818. [Google Scholar] [Green Version]
- Ogawa, S.; Kaku, T.; Amada, S.; Kobayashi, H.; Hirakawa, T.; Ariyoshi, K.; Kamura, T.; Nakano, H. Ovarian endometriosis associated with ovarian carcinoma: A clinicopathological and immunohistochemical study. Gynecol. Oncol 2000, 77, 298–304. [Google Scholar] [Green Version]
- Lim, M.C.; Chun, K.C.; Shin, S.J.; Lee, I.H.; Lim, K.T.; Cho, C.H.; Park, S.Y.; Nam, J.H. Clinical presentation of endometrioid epithelial ovarian cancer with concurrent endometriosis: A multicenter retrospective study. Cancer Epidemiol. Biomark. Prev 2010, 19, 398–404. [Google Scholar] [Green Version]
- Aris, A. Endometriosis-associated ovarian cancer: A ten-year cohort study of women living in the estrie region of quebec, canada. J. Ovarian Res 2010, 3, 2. [Google Scholar] [Green Version]
- Czernobilsky, B.; Morris, W.J. A histologic study of ovarian endometriosis with emphasis on hyperplastic and atypical changes. Obstet. Gynecol 1979, 53, 318–323. [Google Scholar] [Green Version]
- LaGrenade, A.; Silverberg, S.G. Ovarian tumors associated with atypical endometriosis. Hum. Pathol 1988, 19, 1080–1084. [Google Scholar] [Green Version]
- Anglesio, M.S.; Carey, M.S.; Kobel, M.; Mackay, H.; Huntsman, D.G. Gynecol. Oncol. 2011, 121, 407–415.
- Sugiyama, T.; Kamura, T.; Kigawa, J.; Terakawa, N.; Kikuchi, Y.; Kita, T.; Suzuki, M.; Sato, I.; Taguchi, K. Clinical characteristics of clear cell carcinoma of the ovary: A distinct histologic type with poor prognosis and resistance to platinum-based chemotherapy. Cancer 2000, 88, 2584–2589. [Google Scholar] [Green Version]
- Itamochi, H.; Kigawa, J.; Terakawa, N. Mechanisms of chemoresistance and poor prognosis in ovarian clear cell carcinoma. Cancer Sci 2008, 99, 653–658. [Google Scholar] [Green Version]
- Mackay, H.J.; Brady, M.F.; Oza, A.M.; Reuss, A.; Pujade-Lauraine, E.; Swart, A.M.; Siddiqui, N.; Colombo, N.; Bookman, M.A.; Pfisterer, J.; et al. Prognostic relevance of uncommon ovarian histology in women with stage iii/iv epithelial ovarian cancer. Int. J. Gynecol. Cancer 2010, 20, 945–952. [Google Scholar] [Green Version]
- Kobel, M.; Kalloger, S.E.; Huntsman, D.G.; Santos, J.L.; Swenerton, K.D.; Seidman, J.D.; Gilks, C.B. Cheryl Brown Ovarian Cancer Outcomes Unit of the British Columbia Cancer Agency; Vancouver, B.C. Differences in tumor type in low-stage versus high-stage ovarian carcinomas. Int. J. Gynecol. Pathol 2010, 29, 203–211. [Google Scholar] [Green Version]
- McCluggage, W.G. My approach to and thoughts on the typing of ovarian carcinomas. J. Clin. Pathol 2008, 61, 152–163. [Google Scholar] [Green Version]
- Chan, J.K.; Teoh, D.; Hu, J.M.; Shin, J.Y.; Osann, K.; Kapp, D.S. Do clear cell ovarian carcinomas have poorer prognosis compared to other epithelial cell types? A study of 1411 clear cell ovarian cancers. Gynecol. Oncol 2008, 109, 370–376. [Google Scholar] [Green Version]
- Jacoby, V.L.; Fujimoto, V.Y.; Giudice, L.C.; Kuppermann, M.; Washington, A.E. Racial and ethnic disparities in benign gynecologic conditions and associated surgeries. Am. J. Obstet. Gynecol 2010, 202, 514–521. [Google Scholar] [Green Version]
- Takano, M.; Kikuchi, Y.; Yaegashi, N.; Kuzuya, K.; Ueki, M.; Tsuda, H.; Suzuki, M.; Kigawa, J.; Takeuchi, S.; Moriya, T.; et al. Clear cell carcinoma of the ovary: A retrospective multicentre experience of 254 patients with complete surgical staging. Br. J. Cancer 2006, 94, 1369–1374. [Google Scholar] [Green Version]
- Ho, C.M.; Huang, Y.J.; Chen, T.C.; Huang, S.H.; Liu, F.S.; Chang Chien, C.C.; Yu, M.H.; Mao, T.L.; Wang, T.Y.; Hsieh, C.Y. Pure-type clear cell carcinoma of the ovary as a distinct histological type and improved survival in patients treated with paclitaxel-platinum-based chemotherapy in pure-type advanced disease. Gynecol. Oncol 2004, 94, 197–203. [Google Scholar] [Green Version]
- Pectasides, D.; Fountzilas, G.; Aravantinos, G.; Kalofonos, C.; Efstathiou, H.; Farmakis, D.; Skarlos, D.; Pavlidis, N.; Economopoulos, T.; Dimopoulos, M.A. Advanced stage clear-cell epithelial ovarian cancer: The hellenic cooperative oncology group experience. Gynecol. Oncol 2006, 102, 285–291. [Google Scholar] [Green Version]
- Utsunomiya, H.; Akahira, J.; Tanno, S.; Moriya, T.; Toyoshima, M.; Niikura, H.; Ito, K.; Morimura, Y.; Watanabe, Y.; Yaegashi, N. Paclitaxel-platinum combination chemotherapy for advanced or recurrent ovarian clear cell adenocarcinoma: A multicenter trial. Int. J. Gynecol. Cancer 2006, 16, 52–56. [Google Scholar] [Green Version]
- Tan, D.S.; Kaye, S. Ovarian clear cell adenocarcinoma: A continuing enigma. J. Clin. Pathol 2007, 60, 355–360. [Google Scholar] [Green Version]
- Duska, L.R.; Garrett, L.; Henretta, M.; Ferriss, J.S.; Lee, L.; Horowitz, N. When ‘never-events’ occur despite adherence to clinical guidelines: The case of venous thromboembolism in clear cell cancer of the ovary compared with other epithelial histologic subtypes. Gynecol. Oncol 2010, 116, 374–377. [Google Scholar] [Green Version]
- Beral, V.; Gaitskell, K.; Hermon, C.; Moser, K.; Reeves, G.; Peto, R. Collaborative Group on Epidemiological Studies of Ovarian Cancer. Ovarian cancer and smoking: Individual participant meta-analysis including 28,114 women with ovarian cancer from 51 epidemiological studies. Lancet Oncol. 2012, 13, 946–956. [Google Scholar] [Green Version]
- Maeda, D.; Shih, I.M. Pathogenesis and the role of arid1a mutation in endometriosis-related ovarian neoplasms. Adv. Anat. Pathol 2013, 20, 45–52. [Google Scholar] [Green Version]
- Eifel, P.; Hendrickson, M.; Ross, J.; Ballon, S.; Martinez, A.; Kempson, R. Simultaneous presentation of carcinoma involving the ovary and the uterine corpus. Cancer 1982, 50, 163–170. [Google Scholar] [Green Version]
- Zaino, R.J.; Unger, E.R.; Whitney, C. Synchronous carcinomas of the uterine corpus and ovary. Gynecol. Oncol 1984, 19, 329–335. [Google Scholar] [Green Version]
- Ulbright, T.M.; Roth, L.M. Metastatic and independent cancers of the endometrium and ovary: A clinicopathologic study of 34 cases. Hum. Pathol 1985, 16, 28–34. [Google Scholar] [Green Version]
- Kline, R.C.; Wharton, J.T.; Atkinson, E.N.; Burke, T.W.; Gershenson, D.M.; Edwards, C.L. Endometrioid carcinoma of the ovary: Retrospective review of 145 cases. Gynecol. Oncol 1990, 39, 337–346. [Google Scholar] [Green Version]
- Falkenberry, S.S.; Steinhoff, M.M.; Gordinier, M.; Rappoport, S.; Gajewski, W.; Granai, C.O. Synchronous endometrioid tumors of the ovary and endometrium. A clinicopathologic study of 22 cases. J. Reprod. Med 1996, 41, 713–718. [Google Scholar] [Green Version]
- McMeekin, D.S.; Burger, R.A.; Manetta, A.; DiSaia, P.; Berman, M.L. Endometrioid adenocarcinoma of the ovary and its relationship to endometriosis. Gynecol. Oncol 1995, 59, 81–86. [Google Scholar] [Green Version]
- Rutgers, J.L.; Scully, R.E. Ovarian mullerian mucinous papillary cystadenomas of borderline malignancy. A clinicopathologic analysis. Cancer 1988, 61, 340–348. [Google Scholar] [Green Version]
- Kim, K.R.; Choi, J.; Hwang, J.E.; Baik, Y.A.; Shim, J.Y.; Kim, Y.M.; Robboy, S.J. Endocervical-like (mullerian) mucinous borderline tumours of the ovary are frequently associated with the kras mutation. Histopathology 2010, 57, 587–596. [Google Scholar] [Green Version]
- Fukunaga, M.; Ushigome, S. Epithelial metaplastic changes in ovarian endometriosis. Mod. Pathol 1998, 11, 784–788. [Google Scholar] [Green Version]
- Wu, J.N.; Roberts, C.W. Arid1a mutations in cancer: Another epigenetic tumor suppressor? Cancer Discov 2013, 3, 35–43. [Google Scholar] [Green Version]
- Wilsker, D.; Probst, L.; Wain, H.M.; Maltais, L.; Tucker, P.W.; Moran, E. Nomenclature of the arid family of dna-binding proteins. Genomics 2005, 86, 242–251. [Google Scholar] [Green Version]
- Wang, X.; Nagl, N.G.; Wilsker, D.; van Scoy, M.; Pacchione, S.; Yaciuk, P.; Dallas, P.B.; Moran, E. Two related arid family proteins are alternative subunits of human swi/snf complexes. Biochem. J 2004, 383, 319–325. [Google Scholar] [Green Version]
- Wilson, B.G.; Roberts, C.W. Swi/snf nucleosome remodellers and cancer. Nat. Rev. Cancer 2011, 11, 481–492. [Google Scholar] [Green Version]
- Kozmik, Z.; Machon, O.; Kralova, J.; Kreslova, J.; Paces, J.; Vlcek, C. Characterization of mammalian orthologues of the drosophila osa gene: Cdna cloning, expression, chromosomal localization, and direct physical interaction with brahma chromatin-remodeling complex. Genomics 2001, 73, 140–148. [Google Scholar] [Green Version]
- Flores-Alcantar, A.; Gonzalez-Sandoval, A.; Escalante-Alcalde, D.; Lomeli, H. Dynamics of expression of arid1a and arid1b subunits in mouse embryos and in cells during the cell cycle. Cell Tissue Res 2011, 345, 137–148. [Google Scholar] [Green Version]
- Beausoleil, S.A.; Jedrychowski, M.; Schwartz, D.; Elias, J.E.; Villen, J.; Li, J.; Cohn, M.A.; Cantley, L.C.; Gygi, S.P. Large-scale characterization of hela cell nuclear phosphoproteins. Proc. Natl. Acad. Sci. USA 2004, 101, 12130–12135. [Google Scholar] [Green Version]
- Guan, B.; Wang, T.L.; Shih, I.M. Arid1a, a factor that promotes formation of swi/snf-mediated chromatin remodeling, is a tumor suppressor in gynecologic cancers. Cancer Res 2011, 71, 6718–6727. [Google Scholar] [Green Version]
- Nie, Z.; Xue, Y.; Yang, D.; Zhou, S.; Deroo, B.J.; Archer, T.K.; Wang, W. A specificity and targeting subunit of a human swi/snf family-related chromatin-remodeling complex. Mol. Cell. Biol 2000, 20, 8879–8888. [Google Scholar] [Green Version]
- Shain, A.H.; Pollack, J.R. The spectrum of swi/snf mutations, ubiquitous in human cancers. PLoS One 2013, 8, e55119. [Google Scholar] [Green Version]
- Wiegand, K.C.; Lee, A.F.; Al-Agha, O.M.; Chow, C.; Kalloger, S.E.; Scott, D.W.; Steidl, C.; Wiseman, S.M.; Gascoyne, R.D.; Gilks, B.; et al. Loss of baf250a (arid1a) is frequent in high-grade endometrial carcinomas. J. Pathol 2011, 224, 328–333. [Google Scholar] [Green Version]
- Guan, B.; Mao, T.L.; Panuganti, P.K.; Kuhn, E.; Kurman, R.J.; Maeda, D.; Chen, E.; Jeng, Y.M.; Wang, T.L.; Shih, I.M. Mutation and loss of expression of arid1a in uterine low-grade endometrioid carcinoma. Am. J. Surg. Pathol 2011, 35, 625–632. [Google Scholar] [Green Version]
- Shain, A.H.; Giacomini, C.P.; Matsukuma, K.; Karikari, C.A.; Bashyam, M.D.; Hidalgo, M.; Maitra, A.; Pollack, J.R. Convergent structural alterations define switch/sucrose nonfermentable (swi/snf) chromatin remodeler as a central tumor suppressive complex in pancreatic cancer. Proc. Natl. Acad. Sci. USA 2012, 109, E252–E259. [Google Scholar] [Green Version]
- Birnbaum, D.J.; Adelaide, J.; Mamessier, E.; Finetti, P.; Lagarde, A.; Monges, G.; Viret, F.; Goncalves, A.; Turrini, O.; Delpero, J.R.; et al. Genome profiling of pancreatic adenocarcinoma. Genes Chromosomes Cancer 2011, 50, 456–465. [Google Scholar] [Green Version]
- Wang, K.; Kan, J.; Yuen, S.T.; Shi, S.T.; Chu, K.M.; Law, S.; Chan, T.L.; Kan, Z.; Chan, A.S.; Tsui, W.Y.; et al. Exome sequencing identifies frequent mutation of arid1a in molecular subtypes of gastric cancer. Nat. Genet 2011, 43, 1219–1223. [Google Scholar] [Green Version]
- Zang, Z.J.; Cutcutache, I.; Poon, S.L.; Zhang, S.L.; McPherson, J.R.; Tao, J.; Rajasegaran, V.; Heng, H.L.; Deng, N.; Gan, A.; et al. Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nat. Genet 2012, 44, 570–574. [Google Scholar] [Green Version]
- Abe, H.; Maeda, D.; Hino, R.; Otake, Y.; Isogai, M.; Ushiku, A.S.; Matsusaka, K.; Kunita, A.; Ushiku, T.; Uozaki, H.; et al. Arid1a expression loss in gastric cancer: Pathway-dependent roles with and without epstein-barr virus infection and microsatellite instability. Virchows Arch 2012, 461, 367–377. [Google Scholar] [Green Version]
- Guichard, C.; Amaddeo, G.; Imbeaud, S.; Ladeiro, Y.; Pelletier, L.; Maad, I.B.; Calderaro, J.; Bioulac-Sage, P.; Letexier, M.; Degos, F.; et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat. Genet 2012, 44, 694–698. [Google Scholar] [Green Version]
- Fujimoto, A.; Totoki, Y.; Abe, T.; Boroevich, K.A.; Hosoda, F.; Nguyen, H.H.; Aoki, M.; Hosono, N.; Kubo, M.; Miya, F.; et al. Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators. Nat. Genet 2012, 44, 760–764. [Google Scholar] [Green Version]
- Huang, J.; Deng, Q.; Wang, Q.; Li, K.Y.; Dai, J.H.; Li, N.; Zhu, Z.D.; Zhou, B.; Liu, X.Y.; Liu, R.F.; et al. Exome sequencing of hepatitis B virus-associated hepatocellular carcinoma. Nat. Genet 2012, 44, 1117–1121. [Google Scholar] [Green Version]
- Mamo, A.; Cavallone, L.; Tuzmen, S.; Chabot, C.; Ferrario, C.; Hassan, S.; Edgren, H.; Kallioniemi, O.; Aleynikova, O.; Przybytkowski, E.; et al. An integrated genomic approach identifies arid1a as a candidate tumor-suppressor gene in breast cancer. Oncogene 2012, 31, 2090–2100. [Google Scholar] [Green Version]
- Jones, S.; Li, M.; Parsons, D.W.; Zhang, X.; Wesseling, J.; Kristel, P.; Schmidt, M.K.; Markowitz, S.; Yan, H.; Bigner, D.; et al. Somatic mutations in the chromatin remodeling gene arid1a occur in several tumor types. Hum. Mutat 2012, 33, 100–103. [Google Scholar] [Green Version]
- Maeda, D.; Mao, T.L.; Fukayama, M.; Nakagawa, S.; Yano, T.; Taketani, Y.; Shih, I.M. Clinicopathological significance of loss of arid1a immunoreactivity in ovarian clear cell carcinoma. Int. J. Mol. Sci 2010, 11, 5120–5128. [Google Scholar] [Green Version]
- Katagiri, A.; Nakayama, K.; Rahman, M.T.; Rahman, M.; Katagiri, H.; Nakayama, N.; Ishikawa, M.; Ishibashi, T.; Iida, K.; Kobayashi, H.; et al. Loss of arid1a expression is related to shorter progression-free survival and chemoresistance in ovarian clear cell carcinoma. Mod. Pathol 2012, 25, 282–288. [Google Scholar] [Green Version]
- Yamamoto, S.; Tsuda, H.; Takano, M.; Tamai, S.; Matsubara, O. Loss of arid1a protein expression occurs as an early event in ovarian clear-cell carcinoma development and frequently coexists with pik3ca mutations. Mod. Pathol 2012, 25, 615–624. [Google Scholar] [Green Version]
- Lowery, W.J.; Schildkraut, J.M.; Akushevich, L.; Bentley, R.; Marks, J.R.; Huntsman, D.; Berchuck, A. Loss of arid1a-associated protein expression is a frequent event in clear cell and endometrioid ovarian cancers. Int. J. Gynecol. Cancer 2012, 22, 9–14. [Google Scholar] [Green Version]
- Yamamoto, S.; Tsuda, H.; Takano, M.; Tamai, S.; Matsubara, O. Pik3ca mutations and loss of arid1a protein expression are early events in the development of cystic ovarian clear cell adenocarcinoma. Virchows Arch 2012, 460, 77–87. [Google Scholar] [Green Version]
- Xiao, W.; Awadallah, A.; Xin, W. Loss of arid1a/baf250a expression in ovarian endometriosis and clear cell carcinoma. Int. J. Clin. Exp. Pathol 2012, 5, 642–650. [Google Scholar] [Green Version]
- Samartzis, E.P.; Samartzis, N.; Noske, A.; Fedier, A.; Caduff, R.; Dedes, K.J.; Fink, D.; Imesch, P. Loss of arid1a/baf250a-expression in endometriosis: A biomarker for risk of carcinogenic transformation? Mod. Pathol 2012, 25, 885–892. [Google Scholar] [Green Version]
- Ayhan, A.; Mao, T.L.; Seckin, T.; Wu, C.H.; Guan, B.; Ogawa, H.; Futagami, M.; Mizukami, H.; Yokoyama, Y.; Kurman, R.J.; et al. Loss of arid1a expression is an early molecular event in tumor progression from ovarian endometriotic cyst to clear cell and endometrioid carcinoma. Int. J. Gynecol. Cancer 2012, 22, 1310–1315. [Google Scholar] [Green Version]
- Bosse, T.; Ter Haar, N.T.; Seeber, L.M.; Diest, P.J.; Hes, F.J.; Vasen, H.F.; Nout, R.A.; Creutzberg, C.L.; Morreau, H.; Smit, V.T. Loss of arid1a expression and its relationship with pi3k-akt pathway alterations, tp53 and microsatellite instability in endometrial cancer. Mod. Pathol. 2013. [Google Scholar] [CrossRef]
- Han, G.; Sidhu, D.; Duggan, M.A.; Arseneau, J.; Cesari, M.; Clement, P.B.; Ewanowich, C.A.; Kalloger, S.E.; Kobel, M. Reproducibility of histological cell type in high-grade endometrial carcinoma. Mod. Pathol. 2013. [Google Scholar] [CrossRef]
- Allo, G.; Bernardini, M.Q.; Wu, R.C.; Shih, I.M.; Kalloger, S.; Pollett, A.; Gilks, C.B.; Clarke, B.A. Arid1a loss correlates with mismatch repair deficiency and intact p53 expression in high-grade endometrial carcinomas. Mod. Pathol. 2013. [Google Scholar] [CrossRef]
- Engelman, J.A. Targeting pi3k signalling in cancer: Opportunities, challenges and limitations. Nat. Rev. Cancer 2009, 9, 550–562. [Google Scholar] [Green Version]
- Liu, P.; Cheng, H.; Roberts, T.M.; Zhao, J.J. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat. Rev. Drug Discov 2009, 8, 627–644. [Google Scholar] [Green Version]
- Wullschleger, S.; Loewith, R.; Hall, M.N. Tor signaling in growth and metabolism. Cell 2006, 124, 471–484. [Google Scholar] [Green Version]
- Yin, X.; Pavone, M.E.; Lu, Z.; Wei, J.; Kim, J.J. Increased activation of the pi3k/akt pathway compromises decidualization of stromal cells from endometriosis. J. Clin. Endocrinol. Metab 2012, 97, E35–E43. [Google Scholar] [Green Version]
- Honda, H.; Barrueto, F.F.; Gogusev, J.; Im, D.D.; Morin, P.J. Serial analysis of gene expression reveals differential expression between endometriosis and normal endometrium. Possible roles for axl and shc1 in the pathogenesis of endometriosis. Reprod. Biol. Endocrinol 2008, 6, 59. [Google Scholar] [Green Version]
- Zhang, H.; Zhao, X.; Liu, S.; Li, J.; Wen, Z.; Li, M. 17betae2 promotes cell proliferation in endometriosis by decreasing pten via nfkappab-dependent pathway. Mol. Cell. Endocrinol 2010, 317, 31–43. [Google Scholar] [Green Version]
- Laudanski, P.; Szamatowicz, J.; Kowalczuk, O.; Kuzmicki, M.; Grabowicz, M.; Chyczewski, L. Expression of selected tumor suppressor and oncogenes in endometrium of women with endometriosis. Hum. Reprod 2009, 24, 1880–1890. [Google Scholar] [Green Version]
- Li, M.Q.; Luo, X.Z.; Meng, Y.H.; Mei, J.; Zhu, X.Y.; Jin, L.P.; Li, D.J. Cxcl8 enhances proliferation and growth and reduces apoptosis in endometrial stromal cells in an autocrine manner via a cxcr1-triggered pten/akt signal pathway. Hum. Reprod 2012, 27, 2107–2116. [Google Scholar] [Green Version]
- Zhang, H.; Li, M.; Zheng, X.; Sun, Y.; Wen, Z.; Zhao, X. Endometriotic stromal cells lose the ability to regulate cell-survival signaling in endometrial epithelial cells in vitro. Mol. Hum. Reprod 2009, 15, 653–663. [Google Scholar] [Green Version]
- Matsuzaki, S.; Canis, M.; Vaurs-Barriere, C.; Boespflug-Tanguy, O.; Dastugue, B.; Mage, G. Dna microarray analysis of gene expression in eutopic endometrium from patients with deep endometriosis using laser capture microdissection. Fertil. Steril 2005, 84, S1180–S1190. [Google Scholar] [Green Version]
- Grund, E.M.; Kagan, D.; Tran, C.A.; Zeitvogel, A.; Starzinski-Powitz, A.; Nataraja, S.; Palmer, S.S. Tumor necrosis factor-alpha regulates inflammatory and mesenchymal responses via mitogen-activated protein kinase kinase, p38, and nuclear factor kappab in human endometriotic epithelial cells. Mol. Pharmacol 2008, 73, 1394–1404. [Google Scholar] [Green Version]
- Klemmt, P.A.; Carver, J.G.; Kennedy, S.H.; Koninckx, P.R.; Mardon, H.J. Stromal cells from endometriotic lesions and endometrium from women with endometriosis have reduced decidualization capacity. Fertil. Steril 2006, 85, 564–572. [Google Scholar] [Green Version]
- Aghajanova, L.; Hamilton, A.; Kwintkiewicz, J.; Vo, K.C.; Giudice, L.C. Steroidogenic enzyme and key decidualization marker dysregulation in endometrial stromal cells from women with versus without endometriosis. Biol. Reprod 2009, 80, 105–114. [Google Scholar] [Green Version]
- Velarde, M.C.; Aghajanova, L.; Nezhat, C.R.; Giudice, L.C. Increased mitogen-activated protein kinase kinase/extracellularly regulated kinase activity in human endometrial stromal fibroblasts of women with endometriosis reduces 3′,5′-cyclic adenosine 5′-monophosphate inhibition of cyclin d1. Endocrinology 2009, 150, 4701–4712. [Google Scholar] [Green Version]
- Wynn, R.M. Ultrastructural development of the human decidua. Am. J. Obstet. Gynecol 1974, 118, 652–670. [Google Scholar] [Green Version]
- Feroze-Zaidi, F.; Fusi, L.; Takano, M.; Higham, J.; Salker, M.S.; Goto, T.; Edassery, S.; Klingel, K.; Boini, K.M.; Palmada, M.; et al. Role and regulation of the serum- and glucocorticoid-regulated kinase 1 in fertile and infertile human endometrium. Endocrinology 2007, 148, 5020–5029. [Google Scholar] [Green Version]
- Labied, S.; Kajihara, T.; Madureira, P.A.; Fusi, L.; Jones, M.C.; Higham, J.M.; Varshochi, R.; Francis, J.M.; Zoumpoulidou, G.; Essafi, A.; et al. Progestins regulate the expression and activity of the forkhead transcription factor foxo1 in differentiating human endometrium. Mol. Endocrinol 2006, 20, 35–44. [Google Scholar] [Green Version]
- Kim, J.J.; Kurita, T.; Bulun, S.E. Progesterone action in endometrial cancer, endometriosis, uterine fibroids, and breast cancer. Endocr. Rev 2013, 34, 130–162. [Google Scholar] [Green Version]
- Banerjee, S.; Kaye, S.B. New strategies in the treatment of ovarian cancer: Current clinical perspectives and future potential. Clin. Cancer Res 2013, 19, 961–968. [Google Scholar] [Green Version]
- Kuo, K.T.; Mao, T.L.; Jones, S.; Veras, E.; Ayhan, A.; Wang, T.L.; Glas, R.; Slamon, D.; Velculescu, V.E.; Kuman, R.J.; et al. Frequent activating mutations of pik3ca in ovarian clear cell carcinoma. Am. J. Pathol 2009, 174, 1597–1601. [Google Scholar] [Green Version]
- Hashiguchi, Y.; Tsuda, H.; Inoue, T.; Berkowitz, R.S.; Mok, S.C. Pten expression in clear cell adenocarcinoma of the ovary. Gynecol. Oncol 2006, 101, 71–75. [Google Scholar] [Green Version]
- Tan, D.S.; Iravani, M.; McCluggage, W.G.; Lambros, M.B.; Milanezi, F.; Mackay, A.; Gourley, C.; Geyer, F.C.; Vatcheva, R.; Millar, J.; et al. Genomic analysis reveals the molecular heterogeneity of ovarian clear cell carcinomas. Clin. Cancer Res 2011, 17, 1521–1534. [Google Scholar] [Green Version]
- Carden, C.P.; Stewart, A.; Thavasu, P.; Kipps, E.; Pope, L.; Crespo, M.; Miranda, S.; Attard, G.; Garrett, M.D.; Clarke, P.A.; et al. The association of pi3 kinase signaling and chemoresistance in advanced ovarian cancer. Mol. Cancer Ther 2012, 11, 1609–1617. [Google Scholar] [Green Version]
- Tan, D.S.; Miller, R.E.; Kaye, S.B. New perspectives on molecular targeted therapy in ovarian clear cell carcinoma. Br. J. Cancer 2013, 108, 1553–1559. [Google Scholar] [Green Version]
- Yamamoto, S.; Tsuda, H.; Takano, M.; Iwaya, K.; Tamai, S.; Matsubara, O. Pik3ca mutation is an early event in the development of endometriosis-associated ovarian clear cell adenocarcinoma. J. Pathol 2011, 225, 189–194. [Google Scholar] [Green Version]
- Campbell, I.G.; Russell, S.E.; Choong, D.Y.; Montgomery, K.G.; Ciavarella, M.L.; Hooi, C.S.; Cristiano, B.E.; Pearson, R.B.; Phillips, W.A. Mutation of the pik3ca gene in ovarian and breast cancer. Cancer Res 2004, 64, 7678–7681. [Google Scholar] [Green Version]
- Wang, Y.; Helland, A.; Holm, R.; Kristensen, G.B.; Borresen-Dale, A.L. Pik3ca mutations in advanced ovarian carcinomas. Hum. Mutat 2005, 25, 322. [Google Scholar] [Green Version]
- Levine, D.A.; Bogomolniy, F.; Yee, C.J.; Lash, A.; Barakat, R.R.; Borgen, P.I.; Boyd, J. Frequent mutation of the pik3ca gene in ovarian and breast cancers. Clin. Cancer Res 2005, 11, 2875–2878. [Google Scholar] [Green Version]
- Willner, J.; Wurz, K.; Allison, K.H.; Galic, V.; Garcia, R.L.; Goff, B.A.; Swisher, E.M. Alternate molecular genetic pathways in ovarian carcinomas of common histological types. Hum. Pathol 2007, 38, 607–613. [Google Scholar] [Green Version]
- Rahman, M.; Nakayama, K.; Rahman, M.T.; Nakayama, N.; Ishikawa, M.; Katagiri, A.; Iida, K.; Nakayama, S.; Otsuki, Y.; Shih, I.M.; et al. Clinicopathologic and biological analysis of pik3ca mutation in ovarian clear cell carcinoma. Hum. Pathol 2012, 43, 2197–2206. [Google Scholar] [Green Version]
- McConechy, M.K.; Ding, J.; Senz, J.; Yang, W.; Melnyk, N.; Tone, A.A.; Prentice, L.M.; Wiegand, K.C.; McAlpine, J.N.; Shah, S.P.; et al. Ovarian and endometrial endometrioid carcinomas have distinct ctnnb1 and pten mutation profiles. Mod. Pathol. 2013. [Google Scholar] [CrossRef]
- Vestergaard, A.L.; Thorup, K.; Knudsen, U.B.; Munk, T.; Rosbach, H.; Poulsen, J.B.; Guldberg, P.; Martensen, P.M. Oncogenic events associated with endometrial and ovarian cancers are rare in endometriosis. Mol. Hum. Reprod 2011, 17, 758–761. [Google Scholar] [Green Version]
- Janku, F.; Wheler, J.J.; Westin, S.N.; Moulder, S.L.; Naing, A.; Tsimberidou, A.M.; Fu, S.; Falchook, G.S.; Hong, D.S.; Garrido-Laguna, I.; et al. Pi3k/akt/mtor inhibitors in patients with breast and gynecologic malignancies harboring pik3ca mutations. J. Clin. Oncol 2012, 30, 777–782. [Google Scholar] [Green Version]
- Church, D.; Koppensteiner, R.; Yap, T.; Fink, D.; Dedes, K. Pi3k-akt-mtor inhibitors for the systematic treatment of endometrial cancer. Expert Rev. Obstet. Gynecol 2012, 5, 421–430. [Google Scholar] [Green Version]
- Yap, T.A.; Carden, C.P.; Kaye, S.B. Beyond chemotherapy: Targeted therapies in ovarian cancer. Nat. Rev. Cancer 2009, 9, 167–181. [Google Scholar] [Green Version]
- Mabuchi, S.; Kawase, C.; Altomare, D.A.; Morishige, K.; Sawada, K.; Hayashi, M.; Tsujimoto, M.; Yamoto, M.; Klein-Szanto, A.J.; Schilder, R.J.; et al. Mtor is a promising therapeutic target both in cisplatin-sensitive and cisplatin-resistant clear cell carcinoma of the ovary. Clin. Cancer Res 2009, 15, 5404–5413. [Google Scholar] [Green Version]
- Verhaak, R.G.; Tamayo, P.; Yang, J.Y.; Hubbard, D.; Zhang, H.; Creighton, C.J.; Fereday, S.; Lawrence, M.; Carter, S.L.; Mermel, C.H.; et al. Prognostically relevant gene signatures of high-grade serous ovarian carcinoma. J. Clin. Invest 2013, 123, 517–525. [Google Scholar] [Green Version]
- Mabuchi, S.; Altomare, D.A.; Cheung, M.; Zhang, L.; Poulikakos, P.I.; Hensley, H.H.; Schilder, R.J.; Ozols, R.F.; Testa, J.R. Rad001 inhibits human ovarian cancer cell proliferation, enhances cisplatin-induced apoptosis, and prolongs survival in an ovarian cancer model. Clin. Cancer Res 2007, 13, 4261–4270. [Google Scholar] [Green Version]
- Di Nicolantonio, F.; Arena, S.; Tabernero, J.; Grosso, S.; Molinari, F.; Macarulla, T.; Russo, M.; Cancelliere, C.; Zecchin, D.; Mazzucchelli, L.; et al. Deregulation of the pi3k and kras signaling pathways in human cancer cells determines their response to everolimus. J. Clin. Invest 2010, 120, 2858–2866. [Google Scholar] [Green Version]
- Ihle, N.T.; Lemos, R.; Wipf, P.; Yacoub, A.; Mitchell, C.; Siwak, D.; Mills, G.B.; Dent, P.; Kirkpatrick, D.L.; Powis, G. Mutations in the phosphatidylinositol-3-kinase pathway predict for antitumor activity of the inhibitor px-866 whereas oncogenic ras is a dominant predictor for resistance. Cancer Res 2009, 69, 143–150. [Google Scholar] [Green Version]
- Shimizu, T.; Tolcher, A.W.; Papadopoulos, K.P.; Beeram, M.; Rasco, D.W.; Smith, L.S.; Gunn, S.; Smetzer, L.; Mays, T.A.; Kaiser, B.; et al. The clinical effect of the dual-targeting strategy involving pi3k/akt/mtor and ras/mek/erk pathways in patients with advanced cancer. Clin. Cancer Res 2012, 18, 2316–2325. [Google Scholar] [Green Version]
- Gao, X.; Tate, P.; Hu, P.; Tjian, R.; Skarnes, W.C.; Wang, Z. Es cell pluripotency and germ-layer formation require the swi/snf chromatin remodeling component baf250a. Proc. Natl. Acad. Sci. USA 2008, 105, 6656–6661. [Google Scholar] [Green Version]
- Luo, B.; Cheung, H.W.; Subramanian, A.; Sharifnia, T.; Okamoto, M.; Yang, X.; Hinkle, G.; Boehm, J.S.; Beroukhim, R.; Weir, B.A.; et al. Highly parallel identification of essential genes in cancer cells. Proc. Natl. Acad. Sci. USA 2008, 105, 20380–20385. [Google Scholar] [Green Version]
- Nagl, N.G.; Wang, X.; Patsialou, A.; van Scoy, M.; Moran, E. Distinct mammalian swi/snf chromatin remodeling complexes with opposing roles in cell-cycle control. EMBO J 2007, 26, 752–763. [Google Scholar] [Green Version]
- Nagl, N.G.; Patsialou, A.; Haines, D.S.; Dallas, P.B.; Beck, G.R.; Moran, E. The p270 (arid1a/smarcf1) subunit of mammalian swi/snf-related complexes is essential for normal cell cycle arrest. Cancer Res 2005, 65, 9236–9244. [Google Scholar] [Green Version]
- Zhang, X.; Zhang, Y.; Yang, Y.; Niu, M.; Sun, S.; Ji, H.; Ma, Y.; Yao, G.; Jiang, Y.; Shan, M.; et al. Frequent low expression of chromatin remodeling gene arid1a in breast cancer and its clinical significance. Cancer Epidemiol 2012, 36, 288–293. [Google Scholar] [Green Version]
- Liang, H.; Cheung, L.W.; Li, J.; Ju, Z.; Yu, S.; Stemke-Hale, K.; Dogruluk, T.; Lu, Y.; Liu, X.; Gu, C.; et al. Whole-exome sequencing combined with functional genomics reveals novel candidate driver cancer genes in endometrial cancer. Genome Res 2012, 22, 2120–2129. [Google Scholar] [Green Version]
- Darr, J.; Klochendler, A.; Isaac, S.; Eden, A. Loss of igfbp7 expression and persistent akt activation contribute to smarcb1/snf5-mediated tumorigenesis. Oncogene 2013. [Google Scholar] [CrossRef]
- Guan, B.; Wang, T.L.; Shih, I.M. Arid1a Loss in Collaboration with pi3k Pathway Activation Leads to Ovarian Tumorigenesis in Mouse; Proceedings of the 104th Annual Meeting of the American Association for Cancer Research, Washington, DC, USA, 6–10 April 2013, Walter, E., Ed.; AACR: Philadelphia, PA, USA, 2013; p. LB-259. [Google Scholar]
- Gui, Y.; Guo, G.; Huang, Y.; Hu, X.; Tang, A.; Gao, S.; Wu, R.; Chen, C.; Li, X.; Zhou, L.; et al. Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder. Nat. Genet 2011, 43, 875–878. [Google Scholar] [Green Version]
- Fadare, O.; Renshaw, I.L.; Liang, S.X. Does the loss of arid1a (baf-250a) expression in endometrial clear cell carcinomas have any clinicopathologic significance? A pilot assessment. J. Cancer 2012, 3, 129–136. [Google Scholar] [Green Version]
Authors, year of publication | Ovarian carcinoma subtypes | Loss of ARID1A protein expression | ARID1A mutations by sequencing methods | Ref. |
---|---|---|---|---|
Jones et al., 2010 | 42 OCCC | - | 57% somatic ARID1A mutations in a total of 42 OCCC | [2] |
Wiegand et al., 2010 | 18 OCCC tumor samples and 1 OCCC cell line (whole transcriptome)—discovery cohort | Loss of ARID1A protein expression correlated strongly with the presence of ARID1A mutations in the mutation discovery and validation cohort. | Somatic ARID1A mutations (3 nonsense, 2 insertion/deletion, 1 missense and 1 gene rearrangement) in the discovery cohort | [1] |
210 ovarian carcinomas and a second OCCC cell line (ARID1A sequencing); mutation validation cohort | ARID1A mutations in 55 of 119 OCCC (46%), 10 of 33 EnOC (30%) and none of the 76 high-grade serous ovarian carcinomas | |||
455 ovarian carcinomas (IHC validation cohort) | Loss of ARID1A protein expression in 55 (42%) of 132 OCCC, 39 (31%) of 125 EnOC, and 12 (6%) of 198 high-grade serous ovarian carcinomas. | |||
Maeda et al., 2010 | OCCC | Negative ARID1A expression in 88 of 149 (59%) OCCC tumor samples by IHC | Sequencing of 12 OCCC tumor samples; 9 samples with ARID1A mutations and 3 with wild-type expression | [99] |
Guan et al., 2011 | serous and mucinous OC | No loss of ARID1A expression in 221 high-grade serous, 15 low-grade serous, and 36 mucinous ovarian carcinomas | No ARID1A mutations detected in 32 high-grade serous, 19 low-grade serous and 5 mucinous ovarian carcinomas | [88] |
Katagiri et al., 2011 | OCCC | Loss of ARID1A expression in 9 (15%) of 60 OCCC | - | [100] |
Yamamoto et al., 2012 | OCCC | Loss of ARID1A expression in 23 (55%) of 42 OCCC | - | [101] |
Yamamoto et al., 2012 | 90 cases of primary OCCC (including 42 previously examined) | Loss of ARID1A expression in 44% of 90 OCCC samples | - | [102] |
Lowery et al., 2012 | 212 OCCC and EnOC | Loss of ARID1A expression in 34 (41%) of 82 OCCC and 62 (48%) of 130 EnOC | - | [103] |
Samartzis et al., 2012 | 136 ovarian cancer samples as study control (23 OCCC, 28 EnOC, 63 serous ovarian carcinomas, 15 mucinous ovarian carcinomas) | Loss of ARID1A expression in 5 (22%) of 23 OCCC, 13 (46%) of 28 EnOC, 7 (11%) of 63 serous ovarian carcinomas, 4 (27%) of 15 mucinous ovarian carcinomas | - | [104] |
Authors, year of publication | Endometriosis samples | Loss of ARID1A protein expression | ARID1A mutations by sequencing | Ref. |
---|---|---|---|---|
Wiegand et al., 2010 | Two cases with atypical endometriosis adjacent to ARID1A-deficient OCCC (adjacent and distant endometriosis was investigated from both cases) | In two patients, loss of ARID1A expression were evident in the tumor and contiguous atypical endometriosis, but not in distant endometriotic lesions | ARID1A mutations in the tumor and contiguous atypical endometriosis, but not in distant endometriosis | [1] |
Wiegand et al., 2011 | 10 cases of atypical endometriosis | Loss of ARID1A expression in 1 of 10 samples in the atypical areas, with retention in non-atypical endometriosis | - | [87] |
Yamamoto et al., 2012 | 59 endometriotic lesions present in 90 cases of OCCC (28 cases adjacent to tumor samples) | Complete loss of ARID1A expression in 28 endometriotic samples, of those, 17 adjacent to tumor tissue | - | [102] |
Yamamoto et al., 2012 | 22 solitary benign endometriosis samples and 28 endometriosis samples (14 non-atypical and 14 atypical) issuing from 17 patients with ARID1A-deficient endometriosis-associated ovarian carcinomas | All the 22 non-tumor associated endometriosis samples were ARID1A positive; 12 (86%) of the 14 tumor associated non-atypical endometrioses were ARID1A-deficient, and all of the 14 atypical endometrioses were ARID1A-deficient | - | [101] |
Samartzis et al., 2012 | 74 samples of non-atypical endometriosis: ovarian (n = 27), peritoneal (n = 19); deep-infiltrating (n = 28); 30 samples of normal endometrium as control | Complete lack of ARID1A expression was observed in three endometriomas (n = 3/20, 15%) and one deep-infiltrating endometriosis sample (n = 1/22, 5%); in addition, clonal expression loss was observable in cases of partially negative ARID1A expression | - | [104] |
Ayhan et al., 2012 | 15 discrete endometriotic foci remote from endometriotic cyst and ovarian carcinoma; 4 ovarian endometriomas without carcinoma and 6 cases of peritoneal endometriosis as controls | All cases retained ARID1A expression | - | [105] |
Xiao et al., 2012 | 36 cases of solitary ovarian endometriosis; normal eutopic endometrium as control | Loss of ARID1A expression in 20% of benign endometriomas; normal endometrium retained ARID1A expression | - | [106] |
Authors, year of publication | Samples | PIK3CA mutations | Ref. |
---|---|---|---|
Campbell et al., 2004 | 167 primary epithelial ovarian carcinomas, of which, 40 were samples of EnOC and OCCC and 88 were samples of serous ovarian carcinomas (all coding exons of PIK3CA analyzed) | PIK3CA mutations in 8 (20%) of 40 EnOC and OCCC compared to only 2 (2.3%) of 88 in serous ovarian carcinomas (p = 0.001); mutation or gene amplification of PIK3CA was found in a total of 45% of OCCC and EnOC | [135] |
Wang et al., 2005 | 109 advanced ovarian carcinomas, including inter alia 2 OCCC and 5 EnOC, as well as 90 serous and 4 mucinous ovarian carcinomas (PIK3CA exon 9 and 20 analyzed) | A total of 4 activating missense PIK3CA mutations in 109 tumors were found (in 1 of 2 OCCC, 1 mucinous and 2 serous ovarian carcinomas) | [136] |
Levine et al., 2005 | 198 unselected invasive epithelial ovarian carcinomas (exon 9 and 20 analyzed) | PIK3CA mutations in 24 of 198 (12%) ovarian carcinomas (not significantly different between different histological subtypes) | [137] |
Willner et al., 2007 | 12 OCCC, 26 EnOC and 51 serous ovarian carcinomas | Mutations in 3 of 12 (25%) OCCC, in 3 of 26 (12%) EnOC, but in none of 51 serous ovarian carcinomas PIK3CA gene amplification found in 0/22 EnOC and OCCC compared to 19/94 (20%) in SC | [138] |
Kuo et al., 2009 | 97 OCCC (18 OCCC with affinity-purified tumor cells from fresh specimen, 69 microdissected tumors from paraffin tissues, 10 tumor cell lines) | PIK3CA mutations in 33% of the 97 OCCC (46% of the 28 affinity-purified OCCC and OCCC cell lines) | [129] |
Jones et al., 2010 | Whole exome sequencing in 8 OCCC samples and validation in 42 OCCC (including the 8 tumor samples of the discovery cohort) by Sanger sequencing of all exon | Mutations of PIK3CA in 40% of the 42 tumors (a total of 17 mutations), the majority at codons 542, 545, 546 or 1,047 | [2] |
Yamamoto et al., 2011 | 23 OCCC (sequencing of PIK3CA exons 9 and 20) | PIK3CA mutations in 10 (43%) of 23 OCCC (H1047R mutations in the kinase domain in all cases) | [134] |
Yamamoto et al., 2012 | 42 OCCC (28 endometriosis-associated cases and 14 clear-cell adenofibroma-associated carcinoma cases (sequencing of exons 9 and 20) | 17 (40%) of the 42 OCCC harboring PIK3CA mutations (majority of them ARID1A-deficient carcinomas (71%), suggesting frequent co-occurrence of mutations in these two genes | [101] |
Yamamoto et al., 2012 | 90 cases of OCCC (including 42 cases previously examined in [101]; sequencing of PIK3CA exons 9 and 20) | PIK3CA mutations found in 34 (39%) of 88 informative OCCC cases | [102] |
Rahman et al., 2012 | Mutational analysis of PIK3CA (exons 1, 9, 20) and immunohistochemistry for phospho-AKT and -mTOR in 56 OCCC samples 13 ovarian carcinoma cell lines (4 serous, 9 clear cell) for in vitro inhibitor studies | Missense mutations in 16 (28.6%) of 56 OCCC tumor samples No correlation of PIK3CA mutations with the immunohistochemical pattern of phosphorylated AKT or mTOR No correlation of PIK3CA mutations with sensitivity to PI3K/AKT/mTOR inhibitors in OCCC cell lines | [139] |
McConechy et al., 2013 | Select exon capture sequencing in 33 EnOC samples in addition to 307 endometrial endometrioid carcinomas | 12 (40%) of 30 EnOC mutated in PIK3CA. 107 (39%) of 307 low-grade endometrial endometrioid carcinomas mutated in PIK3CA | [140] |
Authors, year of publication | Samples | PIK3CA mutations | Ref. |
---|---|---|---|
Laudanski et al., 2009 | Gene expression study using micro fluidic gene array in eutopic endometrium of 40 women with endometriosis and 41 controls without endometriosis | PIK3CA expression in ovarian endometriosis significantly increased compared to endometrium of same patient. PIK3CA in endometrium of patients with endometriosis expressed at same level as in control endometrium. No mutations examined | [116] |
Yamamoto et al., 2011 | Tumor-adjacent endometriotic epithelium in 10 (of totally 23 OCCC) that harbored mutations in PIK3CA (sequencing of PIK3CA exons 9 and 20) | Same H1047R mutation found in endometriotic epithelium adjacent to OCCC in 9 (90%) of 10 cases In 6 of the 9 lesions, the same mutation was found even in nonatypical endometriotic epithelium, indicating that PIK3CA are occurring very early in the tumorigenesis of OCCC | [134] |
Vestergaard et al., 2011 | 23 ectopic endometriotic samples (PIK3CA exon 9 and 20) | No PIK3CA mutations detected in this collective | [141] |
© 2013 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Samartzis, E.P.; Noske, A.; Dedes, K.J.; Fink, D.; Imesch, P. ARID1A Mutations and PI3K/AKT Pathway Alterations in Endometriosis and Endometriosis-Associated Ovarian Carcinomas. Int. J. Mol. Sci. 2013, 14, 18824-18849. https://doi.org/10.3390/ijms140918824
Samartzis EP, Noske A, Dedes KJ, Fink D, Imesch P. ARID1A Mutations and PI3K/AKT Pathway Alterations in Endometriosis and Endometriosis-Associated Ovarian Carcinomas. International Journal of Molecular Sciences. 2013; 14(9):18824-18849. https://doi.org/10.3390/ijms140918824
Chicago/Turabian StyleSamartzis, Eleftherios P., Aurelia Noske, Konstantin J. Dedes, Daniel Fink, and Patrick Imesch. 2013. "ARID1A Mutations and PI3K/AKT Pathway Alterations in Endometriosis and Endometriosis-Associated Ovarian Carcinomas" International Journal of Molecular Sciences 14, no. 9: 18824-18849. https://doi.org/10.3390/ijms140918824
APA StyleSamartzis, E. P., Noske, A., Dedes, K. J., Fink, D., & Imesch, P. (2013). ARID1A Mutations and PI3K/AKT Pathway Alterations in Endometriosis and Endometriosis-Associated Ovarian Carcinomas. International Journal of Molecular Sciences, 14(9), 18824-18849. https://doi.org/10.3390/ijms140918824