Regulation of 3β-Hydroxysteroid Dehydrogenase/Δ5-Δ4 Isomerase: A Review
Abstract
:1. Introduction
2. 3β-Hydroxysteroid Dehydrogenase
3. Subcellular Localization
4. Transcriptional Regulation of 3β-HSD
- Another nuclear receptor known to influence 3β-HSD expression is fetoprotein transcription factor, also known as liver receptor homologue-1 (LRH-1, NR5A2) [38], which is found in the ovaries, testes and adipose tissue. Using a gene-reporter assay, a study demonstrated that co-transfection of LRH-1 with a reporter containing the promoter region of the 3β-HSD gene resulted in greater reporter activity [39].
- In Leydig cells, 3β-HSD transcription has been demonstrated to be regulated via the LH/hCG-receptor and the promoter androgen response element [42] and regulated in the liver via the receptors estrogen receptor α (ERα), androgen receptor (AR), and cyclin D1 expression [43]. Steroids have been demonstrated to be correlated with the expression of 3β-HSD in pig follicles [44], and in rainbow trout ovaries, 3β-HSD I is down-regulated by estradiol-17β in vivo [45]. 3β-HSD expression has also been demonstrated to be induced by peroxisome proliferator-activated receptor α (PPARα) activation in human liver cell lines [46].
- It has been demonstrated using knockout mice that the liver X receptor (LXR) represses 3β-HSD expression in very much the same manner that the constitutive androstane receptor is represses the expression of some of the CYPs. Therefore, the binding of LXR agonists can lead to increased 3β-HSD expression [47].
- Havelock et al. [48] found that follicle stimulating hormone (FSH) could stimulate the expression of nerve growth factor-induced clone B, which, in turn, up-regulates 3β-HSD type 2 in the human ovary.
5. 3β-HSD Isoforms in the Liver
6. 3β-HSD in Testicular Leydig Cells
7. 3β-HSD in Other Tissues
8. Dietary Influence on 3β-HSD
9. The Boar Taint Phenomenon
10. Conclusions
Acknowledgements
Conflicts of Interest
References
- Payne, A.H.; Clarke, T.R.; Bain, P.A. The murine 3β-hydroxysteroid dehydrogenase multigene family: Structure, function and tissue-specific expression. J. Steroid Biochem. Mol. Biol 1995, 53, 111–118. [Google Scholar] [Green Version]
- Payne, A.H.; Abbaszade, I.G.; Clarke, T.R.; Bain, P.A.; Park, C.H. The multiple murine 3β-hydroxysteroid dehydrogenase isoforms: Structure, function, and tissue- and developmentally specific expression. Steroids 1997, 1, 169–175. [Google Scholar] [Green Version]
- Doran, E.; Whittington, F.M.; Wood, J.D.; McGivan, J.D. Characterisation of androstenone metabolism in pig liver microsomes. Chem. Biol. Interact 2004, 2, 141–149. [Google Scholar] [Green Version]
- Hu, G.X.; Zhao, B.H.; Chu, Y.H.; Zhou, H.Y.; Akingbemi, B.T.; Zheng, Z.Q.; Ge, R.S. Effects of genistein and equol on human and rat testicular 3 beta-hydroxysteroid dehydrogenase and 17 beta-hydroxysteroid dehydrogenase 3 activities. Asian J. Androl 2010, 4, 519–526. [Google Scholar] [Green Version]
- Fink-Gremmels, J.; Malekinejad, H. Clinical effects and biochemical mechanisms associated with exposure to the mycoestrogen zearalenone. Anim. Feed Sci. Technol 2007, 137, 326–341. [Google Scholar] [Green Version]
- Zinedine, A.; Soriano, J.M.; Moltó, J.C.; Mañes, J. Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: An oestrogenic mycotoxin. Food Chem. Toxicol 2007, 1, 1–18. [Google Scholar] [Green Version]
- Kiessling, K.H.; Pettersson, H. Metabolism of zearalenone in rat-liver. Acta Pharm Toxicol 1978, 4, 285–290. [Google Scholar] [Green Version]
- Hassan, M.; Roel, F.M.-B.; Johanna, F. Bioactivation of zearalenone by porcine hepatic biotransformation. Vet. Res 2005, 36, 799–810. [Google Scholar] [Green Version]
- Samuels, L.T.; Helmreich, M.L.; Lasater, M.B.; Reich, H. An enzyme in endocrine tissues which oxidizes delta 5–3 hydroxy steroids to α, β unsaturated ketones. Science 1951, 2939, 490–491. [Google Scholar] [Green Version]
- The, V.L.; Lachance, Y.; Labrie, C.; Leblanc, G.; Thomas, J.L.; Strickler, R.C.; Labrie, F. Full length cDNA structure and deduced amino acid sequence of human β-hydroxy-5-ene steroid dehydrogenase. Mol. Endocrinol 1989, 8, 1310–1312. [Google Scholar] [Green Version]
- Lorence, M.C.; Murry, B.A.; Trant, J.M.; Mason, J.I. Human 3β-hydroxysteroid dehydrogenase/5-4 isomerase from placenta: Expression in nonsteroidogenic cells of a protein that catalyzes the dehydrogenation/isomerization of C21 and C19 steroids. Endocrinology 1990, 5, 2493–2498. [Google Scholar] [Green Version]
- Kallberg, Y.; Oppermann, U.; Jörnvall, H.; Persson, B. Short-chain dehydrogenase/reductase (SDR) relationships: A large family with eight clusters common to human, animal, and plant genomes. Protein Sci 2002, 3, 636–641. [Google Scholar] [Green Version]
- Simard, J.; Ricketts, M.L.; Gingras, S.; Soucy, P.; Feltus, F.A.; Melner, M.H. Molecular biology of the 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase gene family. Endocr. Rev 2005, 4, 525–582. [Google Scholar] [Green Version]
- Joernvall, H.; Persson, B.; Krook, M.; Atrian, S.; Gonzalez-Duarte, R.; Jeffery, J.; Ghosh, D. Short-chain dehydrogenases/reductases (SDR). Biochemistry 1995, 18, 6003–6013. [Google Scholar] [Green Version]
- Banner, D.W.; Bloomer, A.C.; Petsko, G.A.; Phillips, D.C.; Pogson, C.I.; Wilson, I.A.; Corran, P.H.; Furth, A.J.; Milman, J.D.; Offord, R.E.; et al. Structure of chicken muscle triose phosphate isomerase determined crystallographically at 2.5[Å] resolution: Using amino acid sequence data. Nature 1975, 5510, 609–614. [Google Scholar] [Green Version]
- Hoog, S.S.; Pawlowski, J.E.; Alzari, P.M.; Penning, T.M.; Lewis, M. Three-dimensional structure of rat liver 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase: A member of the aldo-keto reductase superfamily. Proc. Natl. Acad. Sci. USA 1994, 7, 2517–2521. [Google Scholar] [Green Version]
- Mizrachi, D.; Auchus, R.J. Androgens, estrogens, and hydroxysteroid dehydrogenases. Mol. Cell. Endocrinol 2009, 301, 37–42. [Google Scholar] [Green Version]
- Stayrook, K.R.; Rogers, P.M.; Savkur, R.S.; Wang, Y.; Su, C.; Varga, G.; Bu, X.; Wei, T.; Nagpal, S.; Liu, X.S.; et al. Regulation of human 3β-hydroxysteroid dehydrogenase (AKR1C4) expression by the liver X receptor α. Mol. Pharm 2008, 2, 607–612. [Google Scholar] [Green Version]
- Mason, J.I.; Naville, D.; Evans, B.W.; Thomas, J.L. Functional activity of 3beta-hydroxysteroid dehydrogenase/isomerase. Endocr. Res 1998, 24, 549–557. [Google Scholar] [Green Version]
- Labrie, F.; Luu-The, V.; Lin, S.X.; Simard, J.; Labrie, C.; El-Alfy, M.; Pelletier, G.; Belanger, A. Intracrinology: Role of the family of 17 beta-hydroxysteroid dehydrogenases in human physiology and disease. J. Mol. Endocrinol 2000, 1, 1–16. [Google Scholar] [Green Version]
- Penning, T.M. Hydroxysteroid dehydrogenases and pre-receptor regulation of steroid hormone action. Hum. Reprod. Update 2003, 3, 193–205. [Google Scholar] [Green Version]
- Cherradi, N.; Defaye, G.; Chambaz, E.M. Dual subcellular localization of the 3β-hydroxysteroid dehydrogenase isomerase: Characterization of the mitochondrial enzyme in the bovine adrenal cortex. J. Steroid Biochem. Mol. Biol 1993, 6, 773–779. [Google Scholar] [Green Version]
- Sauer, L.A.; Chapman, J.C.; Dauchy, R.T. Topology of 3 beta-hydroxy-5-ene-steroid dehydrogenase/delta 5-delta 4-isomerase in adrenal cortex mitochondria and microsomes. Endocrinology 1994, 2, 751–759. [Google Scholar] [Green Version]
- Berchtold, J.P. Ultracytochemical demonstration and probable localization of 3β-hydroxysteroid dehydrogenase activity with a ferricyanide technique. Histochemistry 1977, 3, 175–190. [Google Scholar] [Green Version]
- Headon, D.R.; Hsiao, J.; Ungar, F. The intracellular localization of adrenal 3β-hydroxysteroiddehydrogenase/Δ5-isomerase by density gradient perturbation. Biochem. Biophys. Res. Commun 1978, 3, 1006–1012. [Google Scholar] [Green Version]
- Dupont, E.; Luu-The, V.; Labrie, F.; Pelletier, G. Light microscopic immunocytochemical localization of 3β-hydroxy-5-ene-steroid dehydrogenase/Δ5-Δ4-isomerase in the gonads and adrenal glands of the guinea pig. Endocrinology 1990, 6, 2906–2909. [Google Scholar] [Green Version]
- Abbaszade, I.G.; Arensburg, J.; Park, C.H.; Kasa-Vubu, J.Z.; Orly, J.; Payne, A.H. Isolation of a new mouse β-Hydroxysteroid dehydrogenase isoform, 3β-HSD VI, expressed during early pregnancy. Endocrinology 1997, 4, 1392–1399. [Google Scholar] [Green Version]
- Simard, J.; Couet, J.; Durocher, F.; Labrie, Y.; Sanchez, R.; Breton, N.; Turgeon, C.; Labrie, F. Structure and tissue-specific expression of a novel member of the rat 3 beta-hydroxysteroid dehydrogenase/delta 5-delta 4 isomerase (3 beta-HSD) family. The exclusive 3 beta-HSD gene expression in the skin. J. Biol. Chem. 1993, 26, 19659–19668. [Google Scholar] [Green Version]
- Von Teichman, A.; Joerg, H.; Werner, P.; Brenig, B.; Stranzinger, G. cDNA cloning and physical mapping of porcine 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase. Anim. Genet 2001, 5, 298–302. [Google Scholar] [Green Version]
- Siiteri, P.K.; Wilson, J.D. Testosterone formation and metabolism during male sexual differentiation in the human embryo. J. Clin. Endocrinol. Metab 1974, 1, 113–125. [Google Scholar] [Green Version]
- Tremblay, Y.; Beaudoin, C. Regulation of 3 beta-hydroxysteroid dehydrogenase and 17 beta-hydroxysteroid dehydrogenase messenger ribonucleic acid levels by cyclic adenosine 3′,5′-monophosphate and phorbol myristate acetate in human choriocarcinoma cells. Mol. Endocrinol 1993, 3, 355–364. [Google Scholar] [Green Version]
- Keeney, D.S.; Mason, J.I. Expression of testicular 3 beta-hydroxysteroid dehydrogenase/delta 5–4-isomerase: Regulation by luteinizing hormone and forskolin in Leydig cells of adult rats. Endocrinology 1992, 4, 2007–2015. [Google Scholar] [Green Version]
- Saez, J.M. Leydig cells: Endocrine, paracrine, and autocrine regulation. Endocr. Rev 1994, 5, 574–626. [Google Scholar] [Green Version]
- Chedrese, P.J.; Zhang, D.; The, V.L.; Labrie, F.; Juorio, A.V.; Murphy, B.D. Regulation of mRNA expression of 3β-hydroxy-5-ene steroid dehydrogenase in porcine granulosa cells in culture: A role for the protein kinase-c pathway. Mol. Endocrinol 1990, 10, 1532–1538. [Google Scholar] [Green Version]
- Coulter, C.L.; Goldsmith, P.C.; Mesiano, S.; Voytek, C.C.; Martin, M.C.; Mason, J.I.; Jaffe, R.B. Functional maturation of the primate fetal adrenal in vivo. II. Ontogeny of corticosteroid synthesis is dependent upon specific zonal expression of 3 beta-hydroxysteroid dehydrogenase/isomerase. Endocrinology 1996, 11, 4953–4959. [Google Scholar] [Green Version]
- Leers-Sucheta, S.; Morohashi, K.I.; Mason, I.; Melner, M.H. Synergistic activation of the human type II 3β-Hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase promoter by the transcription factor steroidogenic factor-1/adrenal 4-binding protein and phorbol ester. J. Biol. Chem 1997, 12, 7960–7967. [Google Scholar] [Green Version]
- Val, P.; Lefrancois-Martinez, A.M.; Veyssiere, G.; Martinez, A. SF-1 a key player in the development and differentiation of steroidogenic tissues. Nucl. Recept 2003, 1, 8. [Google Scholar] [Green Version]
- Labelle-Dumais, C.; Paré, J.F.; Bélanger, L.; Farookhi, R.; Dufort, D. Impaired progesterone production in Nr5a2+/− mice leads to a reduction in female reproductive function. Biol. Reprod 2007, 2, 217–225. [Google Scholar] [Green Version]
- Sirianni, R.; Seely, J.B.; Attia, G.; Stocco, D.M.; Carr, B.R.; Pezzi, V.; Rainey, W.E. Liver receptor homologue-1 is expressed in human steroidogenic tissues and activates transcription of genes encoding steroidogenic enzymes. J. Endocrinol 2002, 3, R13–R17. [Google Scholar] [Green Version]
- LaVoie, H.A.; King, S.R. Transcriptional regulation of steroidogenic genes: STARD1, CYP11A1 and HSD3B. Exp. Biol. Med 2009, 8, 880–907. [Google Scholar] [Green Version]
- Martin, L.J.; Taniguchi, H.; Robert, N.M.; Simard, J.; Tremblay, J.J.; Viger, R.S. GATA factors and the nuclear receptors, steroidogenic factor 1/liver receptor homolog 1, are key mutual partners in the regulation of the human 3β-hydroxysteroid dehydrogenase type 2 promoter. Mol. Endocrinol 2005, 9, 2358–2370. [Google Scholar] [Green Version]
- Tang, P.Z.; Tsai-Morris, C.H.; Dufau, M.L. Regulation of 3β-hydroxysteroid dehydrogenase in gonadotropin-induced steroidogenic desensitization of Leydig cells. Endocrinology 1998, 11, 4496–4505. [Google Scholar] [Green Version]
- Mullany, L.K.; Hanse, E.A.; Romano, A.; Blomquist, C.H.; Mason, I.; Delvoux, B.; Anttila, C.; Albrecht, J.H. Cyclin D1 regulates hepatic estrogen and androgen metabolism. Am. J. Physiol 2010, 6, G884–G895. [Google Scholar] [Green Version]
- Sun, Y.L.; Zhang, J.; Ping, Z.G.; Fan, L.N.; Wang, C.Q.; Li, W.H.; Lu, C.; Zheng, L.W.; Zhou, X. Expression of 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) in normal and cystic follicles in sows. Afr. J. Biotechnol 2011, 32, 6184–6189. [Google Scholar] [Green Version]
- Nakamura, I.; Kusakabe, M.; Young, G. Differential suppressive effects of low physiological doses of estradiol-17β in vivo on levels of mRNAs encoding steroidogenic acute regulatory protein and three steroidogenic enzymes in previtellogenic ovarian follicles of rainbow trout. Gen. Comp. Endocrinol 2009, 3, 318–323. [Google Scholar] [Green Version]
- Matsunaga, T.; Endo, S.; Maeda, S.; Ishikura, S.; Tajima, K.; Tanaka, N.; Nakamura, K.T.; Imamura, Y.; Hara, A. Characterization of human DHRS4: An inducible short-chain dehydrogenase/reductase enzyme with 3β-hydroxysteroid dehydrogenase activity. Arch. Biochem. Biophys 2008, 2, 339–347. [Google Scholar] [Green Version]
- Beltowski, J.; Semczuk, A. Liver X receptor (LXR) and the reproductive system—A potential novel target for therapeutic intervention. Pharm. Rep 2010, 1, 15–27. [Google Scholar] [Green Version]
- Havelock, J.C.; Smith, A.L.; Seely, J.B.; Dooley, C.A.; Rodgers, R.J.; Rainey, W.E.; Carr, B.R. The NGFI-B family of transcription factors regulates expression of 3β-hydroxysteroid dehydrogenase type 2 in the human ovary. Mol. Hum. Reprod 2005, 2, 79–85. [Google Scholar] [Green Version]
- Kostic, T.S.; Stojkov, N.J.; Bjelic, M.M.; Mihajlovic, A.I.; Janjic, M.M.; Andric, S.A. Pharmacological doses of testosterone upregulated androgen receptor and 3-beta-hydroxysteroid dehydrogenase/delta-5-delta-4 isomerase and impaired Leydig cells steroidogenesis in adult rats. Toxicol. Sci 2011, 2, 397–407. [Google Scholar] [Green Version]
- Galarreta, C.; Fanjul, L.; Adashi, E.; Hsueh, A. Regulation of 3β-hydroxysteroid dehydrogenase activity by human chorionic gonadotropin, androgens, and antiandrogens in cultured testicular cells. Ann. N. Y. Acad. Sci 1984, 1, 663–665. [Google Scholar] [Green Version]
- Payne, A.H.; Sha, L.I. Multiple mechanisms for regulation of 3β-hydroxysteroid dehydrogenase/d5-d4-isomerase, 17α-hydroxylase/c17–20 lyase cytochrome p450, and cholesterol side-chain cleavage cytochrome p450 messenger ribonucleic acid levels in primary cultures of mouse Leydig cells. Endocrinology 1991, 3, 1429–1435. [Google Scholar] [Green Version]
- Nicolau-Solano, S.I.; Doran, O. Effect of testosterone, estrone sulphate and androstenone on 3β-hydroxysteroid dehydrogenase protein expression in primary cultured hepatocytes. Livest. Sci 2008, 114, 202–210. [Google Scholar] [Green Version]
- Rasmussen, M.; Brunius, C.; Ekstrand, B.; Zamaratskaia, G. Expression of hepatic 3β-hydroxysteroid dehydrogenase and sulfotransferase 2A1 in entire and castrated male pigs. Mol. Biol. Rep. 2012, 7927–7932. [Google Scholar]
- Gingras, S.; Moriggl, R.; Groner, B.; Simard, J. Induction of 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase type 1 gene transcription in human breast cancer cell lines and in normal mammary epithelial cells by interleukin-4 and interleukin-13. Mol. Endocrinol 1999, 1, 66–81. [Google Scholar] [Green Version]
- Gingras, S.; Côté, S.; Simard, J. Multiple signaling pathways mediate interleukin-4-induced 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase type 1 gene expression in human breast cancer cells. Mol. Endocrinol 2000, 2, 229–240. [Google Scholar] [Green Version]
- Papacleovoulou, G.; Hogg, K.; Fegan, K.S.; Critchley, H.O.D.; Hillier, S.G.; Mason, J.I. Regulation of 3β-hydroxysteroid dehydrogenase type 1 and type 2 gene expression and function in the human ovarian surface epithelium by cytokines. Mol. Hum. Reprod 2009, 6, 379–392. [Google Scholar] [Green Version]
- Takikawa, H.; Stolz, A.; Sugiyama, Y.; Yoshida, H.; Yamanaka, M.; Kaplowitz, N. Relationship between the newly identified bile-acid binder and bile-acid oxidoreductases in human-liver. J. Biol. Chem 1990, 4, 2132–2136. [Google Scholar] [Green Version]
- Takikawa, H.; Fujiyoshi, M.; Nishikawa, K.; Yamanaka, M. Purification of 3-alpha-hydroxysteroid and 3-beta-hydroxysteroid dehydrogenases from human liver cytosol. Hepatology 1992, 2, 365–371. [Google Scholar] [Green Version]
- Park, C.H.; Abbaszade, I.G.; Payne, A.H. Expression of multiple forms of 3β-hydroxysteroid dehydrogenase in the mouse liver during fetal and postnatal development. Mol. Cell. Endocrinol 1996, 2, 157–164. [Google Scholar] [Green Version]
- Zhao, H.F.; Rhgaurae, E.; Trudel, C.; Couet, J.; Labrie, F.; Simard, J. Structure and sexual dimorphic expression of a liver-specific rat 3β-hydroxysteroid dehydrogenaase/isomerase. Endocrinology 1990, 6, 3237–3239. [Google Scholar] [Green Version]
- Couet, J.; Simard, J.; Martel, C.; Trudel, C.; Labrie, Y.; Labrie, F. Regulation of 3-ketosteroid reductase messenger ribonucleic acid levels and 3 beta-hydroxysteroid dehydrogenase/delta 5-delta 4-isomerase activity in rat liver by sex steroids and pituitary hormones. Endocrinology 1992, 6, 3034–3044. [Google Scholar] [Green Version]
- De Launoit, Y.; Zhao, H.F.; Belanger, A.; Labrie, F.; Simard, J. Expression of liver-specific member of the 3 beta-hydroxysteroid dehydrogenase family, an isoform possessing an almost exclusive 3-ketosteroid reductase activity. J. Biol. Chem. 1992, 7, 4513–4517. [Google Scholar] [Green Version]
- Naville, D.; Keeney, D.S.; Jenkin, G.; Murry, B.A.; Head, J.R.; Mason, J.I. Regulation of expression of male-specific rat liver microsomal 3β-hydroxysteroid dehydrogenase. Mol. Endocrinol 1991, 8, 1090–1100. [Google Scholar] [Green Version]
- Shapiro, B.H.; Agrawal, A.K.; Pampori, N.A. Gender differences in drug metabolism regulated by growth hormone. Int. J. Biochem. Cell Biol 1995, 1, 9–20. [Google Scholar] [Green Version]
- Mason, J.I.; Keeney, D.S.; Bird, I.M.; Rainey, W.E.; Morohashi, K.I.; Leers-Sucheta, S.; Melner, M.H. The regulation of 3β-hydroxysteroid dehydrogenase expression. Steroids 1997, 1, 164–168. [Google Scholar] [Green Version]
- Mode, A.; Gustafsson, J. Sex and the liver—A journey through five decades. Drug Metab. Rev 2006, 38, 197–207. [Google Scholar] [Green Version]
- Waxman, D.J.; Holloway, M.G. Sex differences in the expression of hepatic drug metabolizing enzymes. Mol. Pharm 2009, 2, 215–228. [Google Scholar] [Green Version]
- Waxman, D.J.; O’Connor, C. Growth hormone regulation of sex-dependent liver gene expression. Mol. Endocrinol 2006, 11, 2613–2629. [Google Scholar] [Green Version]
- Keeney, D.S.; Murry, B.A.; Bartke, A.; Wagner, T.E.; Mason, J.I. Growth hormone transgenes regulate the expression of sex-specific isoforms of 3 beta-hydroxysteroid dehydrogenase/Δ5-Δ4-isomerase in mouse liver and gonads. Endocrinology 1993, 3, 1131–1138. [Google Scholar] [Green Version]
- Furster, C.; Zhang, J.; Toll, A. Purification of a 3β-hydroxy-Δ5-C27-steroid dehydrogenase from pig liver microsomes active in major and alternative pathways of bile acid biosynthesis. J. Biol. Chem 1996, 34, 20903–20907. [Google Scholar] [Green Version]
- Furster, C. Hepatic and extrahepatic dehydrogenation/isomerization of 5-cholestene-3β,7α-diol: localization of 3β-hydroxy-Δ5-C27-steroid dehydrogenase in pig tissues and subcellular fractions. Biochim. Biophys. Acta 1999, 3, 343–353. [Google Scholar] [Green Version]
- Cue, R.A.; Nicolau-Solano, S.I.; McGivan, J.D.; Wood, J.D.; Doran, O. Breed-associated variations in the sequence of the pig 3β-hydroxysteroid dehydrogenase gene. J. Anim. Sci 2007, 3, 571–576. [Google Scholar] [Green Version]
- Benton, L.; Shan, L.X.; Hardy, M.P. Differentiation of adult Leydig cells. J. Steroid Biochem. Mol. Biol 1995, 53, 61–68. [Google Scholar] [Green Version]
- Majdic, G.; Millar, M.R.; Saunders, P.T.K. Immunolocalisation of androgen receptor to interstitial cells in fetal rat testes and to mesenchymal and epithelial cells of associated ducts. J. Endocrinol 1995, 2, 285–293. [Google Scholar] [Green Version]
- Haider, S.G.; Servos, G. Ultracytochemistry of 3 beta-hydroxysteroid dehydrogenase in Leydig cell precursors and vascular endothelial cells of the postnatal rat testis. Anat. Embryol 1998, 2, 101–110. [Google Scholar] [Green Version]
- Pelletier, G.; Li, S.; Luu-The, V.; Tremblay, Y.; Belanger, A.; Labrie, F. Immunoelectron microscopic localization of three key steroidogenic enzymes (cytochrome P450(scc), 3 beta-hydroxysteroid dehydrogenase and cytochrome P450(c17)) in rat adrenal cortex and gonads. J. Endocrinol 2001, 2, 373–383. [Google Scholar] [Green Version]
- Clark, A.M.; Chuzel, F.; Sanchez, P.; Saez, J.M. Regulation by gonadotropins of the messenger ribonucleic acid for P450 side-chain cleavage, P450(17) alpha-hydroxylase/C17,20-lyase, and 3 beta-hydroxysteroid dehydrogenase in cultured pig Leydig cells. Biol. Reprod 1996, 2, 347–354. [Google Scholar] [Green Version]
- Liang, J.H.; Sankai, T.; Yoshida, T.; Cho, F.; Yoshikawa, Y. Localization of testosterone and 3 beta-hydroxysteroid dehydrogenase Delta(5)-Delta(4)-isomerase in cynomolgus monkey (Macaca fascicularis) testes. J. Med. Primatol 1998, 1, 10–14. [Google Scholar] [Green Version]
- Nakajin, S.; Ishii, A.; Shinoda, M. Purification and characterization of 5-alpha-dihydrotestosterone 3-beta-hydroxysteroid dehydrogenase from mature pig testicular cytosol. Biol. Pharm. Bull 1994, 9, 1155–1160. [Google Scholar] [Green Version]
- Garrett, W.M.; Guthrie, H.D. Expression of androgen receptors and steroidogenic enzymes in relation to follicular growth and atresia following ovulation in pigs. Biol. Reprod 1996, 5, 949–955. [Google Scholar] [Green Version]
- Conley, A.J.; Rainey, W.E.; Mason, J.I. Ontogeny of steroidogenic enzyme expression in the porcine conceptus. J. Mol. Endocrinol 1994, 2, 155–165. [Google Scholar] [Green Version]
- Sordoillet, M.; Chauvin, M.; Peretti, E.; Morera, A.; Benahmed, M. Epidermal growth factor directly stimulates steroidogenesis in primary cultures of porcine Leydig cells: Actions and Sites of Action. Endocrinology 1991, 4, 2160–2168. [Google Scholar] [Green Version]
- Cooke, G.M. Identification of phospholipids capable of modulating the activities of some enzymes involved in androgen and 16-androstene biosynthesis in the immature pig testis. J. Steroid Biochem. Mol. Biol 1992, 2, 151–159. [Google Scholar] [Green Version]
- Conley, A.J.; Bird, I.M. The role of cytochrome P450 17 alpha-hydroxylase and 3 beta-hydroxysteroid dehydrogenase in the integration of gonadal and adrenal steroidogenesis via the delta 5 and delta 4 pathways of steroidogenesis in mammals. Biol. Reprod 1997, 4, 789–799. [Google Scholar] [Green Version]
- Belanger, B.; Belanger, A.; Labrie, F.; Dupont, A.; Cusan, L.; Monfette, G. Comparison of residual C-19 steroids in plasma and prostatic tissue of human, rat and guinea pig after castration: Unique importance of extratesticular androgens in men. J. Steroid Biochem 1989, 5, 695–698. [Google Scholar] [Green Version]
- Conley, A.J.; Kaminski, M.A.; Dubowsky, S.A.; Jablonka-Shariff, A.; Redmer, D.A.; Reynolds, L.P. Immunohistochemical localization of 3 beta-hydroxysteroid dehydrogenase and P450 17 alpha-hydroxylase during follicular and luteal development in pigs, sheep, and cows. Biol. Reprod 1995, 5, 1081–1094. [Google Scholar] [Green Version]
- Kozlowska, A.; Majewski, M.; Jana, B. Expression of steroidogenic enzymes in porcine polycystic ovaries. Folia Histochem. Cytobiol 2009, 2, 257–264. [Google Scholar] [Green Version]
- Yuan, W.; Lucy, M.C. Messenger ribonucleic acid expression for growth hormone receptor, luteinizing hormone receptor, and steroidogenic enzymes during the estrous cycle and pregnancy in porcine and bovine corpora lutea. Domest. Anim. Endocrinol 1996, 5, 431–444. [Google Scholar] [Green Version]
- Garrett, W.M.; Guthrie, H.D. Steroidogenic enzyme expression during preovulatory follicle maturation in pigs. Biol. Reprod 1997, 6, 1424–1431. [Google Scholar] [Green Version]
- Picon, R.; Darmoul, D.; Rouiller, V.; Duranteau, L. Activity of 3β-hydroxysteroid dehydrogenase/isomerase in the fetal rat ovary. J. Steroid Biochem 1988, 5, 839–843. [Google Scholar] [Green Version]
- Mcallister, J.M.; Kerin, J.F.P.; Trant, J.M.; Estabrook, R.W.; Mason, J.I.; Waterman, M.R.; Simpson, E.R. Regulation of cholesterol side-chain cleavage and 17α-hydroxylase/lyase activities in proliferating human theca interna cells in long term monolayer culture. Endocrinology 1989, 4, 1959–1966. [Google Scholar] [Green Version]
- Kaynard, A.H.; Periman, L.M.; Simard, J.; Melner, M.H. Ovarian 3 beta-hydroxysteroid dehydrogenase and sulfated glycoprotein-2 gene expression are differentially regulated by the induction of ovulation, pseudopregnancy, and luteolysis in the immature rat. Endocrinology 1992, 4, 2192–2200. [Google Scholar] [Green Version]
- Hild-Petito, S.; West, N.B.; Brenner, R.M.; Stouffer, R.L. Localization of androgen receptor in the follicle and corpus luteum of the primate ovary during the menstrual cycle. Biol. Reprod 1991, 3, 561–568. [Google Scholar] [Green Version]
- Suzuki, T.; Sasano, H.; Kimura, N.; Tamura, M.; Fukaya, T.; Yajima, A.; Nagura, H. Physiology: Immunohistochemical distribution of progesterone, androgen and oestrogen receptors in the human ovary during the menstrual cycle: relationship to expression of steroidogenic enzymes. Hum. Reprod 1994, 9, 1589–1595. [Google Scholar] [Green Version]
- Sasano, H.; Suzuki, T. Localization of steroidogenesis and steroid receptors in human corpus luteum—Classification of human corpus luteum (CL) into estrogen-producing CL, steroid-producing degenerating CL, and nonsteroid-producing degenerating CL. Semin. Reprod. Endocrinol 1997, 4, 345–351. [Google Scholar] [Green Version]
- Li, X.M.; Juorio, A.V.; Murphy, B.D. Prostaglandins alter the abundance of messenger ribonucleic acid for steroidogenic enzymes in cultured porcine granulosa cells. Biol. Reprod 1993, 6, 1360–1366. [Google Scholar] [Green Version]
- Chapman, J.; Polanco, J.; Min, S.; Michael, S. Mitochondrial 3 beta-hydroxysteroid dehydrogenase (HSD) is essential for the synthesis of progesterone by corpora lutea: An hypothesis. Reprod. Biol. Endocrinol 2005, 1, 11. [Google Scholar] [Green Version]
- Kershaw, E.E.; Flier, J.S. Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab 2004, 6, 2548–2556. [Google Scholar] [Green Version]
- Kumar, V.; Kural, M.R.; Pereira, B.M.J.; Roy, P. Spearmint induced hypothalamic oxidative stress and testicular anti-androgenicity in male rats—Altered levels of gene expression, enzymes and hormones. Food Chem. Toxicol 2008, 12, 3563–3570. [Google Scholar] [Green Version]
- Chen, G.; Bourneuf, E.; Marklund, S.; Zamaratskaia, G.; Madej, A.; Lundström, K. Gene expression of 3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase in relation to androstenone, testosterone, and estrone sulphate in gonadally intact male and castrated pigs. J. Anim. Sci 2007, 10, 2457–2463. [Google Scholar] [Green Version]
- Rasmussen, M.K.; Brunius, C.; Zamaratskaia, G.; Ekstrand, B. Feeding dried chicory root to pigs decrease androstenone accumulation in fat by increasing hepatic 3β hydroxysteroid dehydrogenase expression. J. Steroid Biochem. Mol. Biol 2012, 130, 90–95. [Google Scholar] [Green Version]
- Wang, D.F.; Zhou, H.L.; Hou, G.Y.; Qi, D.S.; Zhang, N.Y. Soybean isoflavone reduces the residue of zearalenone in the muscle and liver of prepubertal gilts. Animal 2013, 4, 699–703. [Google Scholar] [Green Version]
- Wong, C.K.; Keung, W.M. Bovine adrenal 3β-hydroxysteroid dehydrogenase (E.C. 1.1.1.145)/5-ene-4-ene isomerase (E.C. 5.3.3.1): characterization and its inhibition by isoflavones. J. Steroid Biochem. Mol. Biol 1999, 71, 191–202. [Google Scholar] [Green Version]
- Coniglio, J.G. Testicular lipids. Prog. Lipid Res 1994, 4, 387–401. [Google Scholar] [Green Version]
- Gromadzka-Ostrowska, J.; Przepiorka, M.; Romanowicz, K. Influence of dietary fatty acids composition, level of dietary fat and feeding period on some parameters of androgen metabolism in male rats. Reprod. Biol 2002, 3, 277–293. [Google Scholar] [Green Version]
- Dorgan, J.F.; Judd, J.T.; Longcope, C.; Brown, C.; Schatzkin, A.; Clevidence, B.A.; Campbell, W.S.; Nair, P.P.; Franz, C.; Kahle, L.; et al. Effects of dietary fat and fiber on plasma and urine androgens and estrogens in men: A controlled feeding study. Am. J. Clin. Nutr 1996, 6, 850–855. [Google Scholar] [Green Version]
- Catalfo, G.; Alaniz, M.; Marra, C. Influence of commercial dietary oils on lipid composition and testosterone production in interstitial cells isolated from rat testis. Lipids 2009, 4, 345–357. [Google Scholar] [Green Version]
- Hierlihy, A.M.; Cooke, G.M.; Curran, I.H.A.; Mehta, R.; Karamanos, L.; Price, C.A. Effects of ciprofibrate on testicular and adrenal steroidogenic enzymes in the rat. Reprod. Toxicol 2006, 1, 37–43. [Google Scholar] [Green Version]
- Walstra, P.; Claudi-Magnussen, C.; Chevillon, P.; von Seth, G.; Diestre, A.; Matthews, K.R.; Homer, D.B.; Bonneau, M. An international study on the importance of androstenone and skatole for boar taint: levels of androstenone and skatole by country and season. Livest. Prod. Sci 1999, 1, 15–28. [Google Scholar] [Green Version]
- Zamaratskaia, G.; Squires, E.J. Biochemical, nutritional and genetic effects on boar taint in entire male pigs. Animal 2009, 11, 1508–1521. [Google Scholar] [Green Version]
- Meadus, W.J.; Mason, J.I.; Squires, E.J. Cytochrome P450c17 from porcine and bovine adrenal catalyses the formation of 5,16-androstadien-3β-ol from pregnenolone in the presence of cytochrome b5. J. Steroid Biochem. Mol. Biol 1993, 5, 565–572. [Google Scholar] [Green Version]
- Davis, S.M.; Squires, E.J. Association of cytochrome b5 with 16-androstene steroid synthesis in the testis and accumulation in the fat of male pigs. J. Anim. Sci 1999, 5, 1230–1235. [Google Scholar] [Green Version]
- Brunius, C.; Rasmussen, M.K.; Lacoutiére, H.; Andersson, K.; Ekstrand, B.; Zamaratskaia, G. Expression and activities of hepatic cytochrome P450 (CYP1A, CYP2A and CYP2E1) in entire and castrated male pigs. Animal 2012, 2, 271–277. [Google Scholar] [Green Version]
- Chen, G.; Cue, R.A.; Lundstrom, K.; Wood, J.D.; Doran, O. Regulation of CYP2A6 protein expression by skatole, indole, and testicular steroids in primary cultured pig hepatocytes. Drug Metab. Dispos 2008, 1, 56–60. [Google Scholar] [Green Version]
- Doran, E.; Whittington, F.W.; Wood, J.D.; McGivan, J.D. Cytochrome P450IIE1 (CYP2E1) is induced by skatole and this induction is blocked by androstenone in isolated pig hepatocytes. Chem.-Biol. Interac 2002, 1, 81–92. [Google Scholar] [Green Version]
- Tomankova, J.; Rasmussen, M.K.; Andersson, K.; Ekstrand, B.; Zamaratskaia, G. Improvac does not modify the expression and activities of the major drug metabolizing enzymes cytochrome P450 3A and 2C in pigs. Vaccine 2012, 24, 3515–3518. [Google Scholar] [Green Version]
- Rasmussen, M.K.; Zamaratskaia, G.; Ekstrand, B. Gender-related differences in cytochrome P450 in porcine liver—Implication for activity, expression and inhibition by testicular steroids. Reprod. Domest. Anim 2011, 4, 616–623. [Google Scholar] [Green Version]
- Rasmussen, M.K.; Zamaratskaia, G.; Ekstrand, B. In vitro cytochrome P450 2E1 and 2A activities in the presence of testicular steroids. Reprod. Domest. Anim 2011, 1, 149–154. [Google Scholar] [Green Version]
- Zamaratskaia, G.; Gilmore, W.J.; Lundstrom, K.; Squires, E.J. Effect of testicular steroids on catalytic activities of cytochrome P450 enzymes in porcine liver microsomes. Food Chem. Toxicol 2007, 4, 676–681. [Google Scholar] [Green Version]
- Kim, H.; Lee, S.K.; Hong, M.W.; Park, S.R.; Lee, Y.S.; Kim, J.W.; Lee, H.K.; Jeong, D.K.; Song, Y.H.; Lee, S.J. Association of a single nucleotide polymorphism in the akirin 2 gene with economically important traits in Korean native cattle. Anim. Genet. 2013. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Rasmussen, M.K.; Ekstrand, B.; Zamaratskaia, G. Regulation of 3β-Hydroxysteroid Dehydrogenase/Δ5-Δ4 Isomerase: A Review. Int. J. Mol. Sci. 2013, 14, 17926-17942. https://doi.org/10.3390/ijms140917926
Rasmussen MK, Ekstrand B, Zamaratskaia G. Regulation of 3β-Hydroxysteroid Dehydrogenase/Δ5-Δ4 Isomerase: A Review. International Journal of Molecular Sciences. 2013; 14(9):17926-17942. https://doi.org/10.3390/ijms140917926
Chicago/Turabian StyleRasmussen, Martin Krøyer, Bo Ekstrand, and Galia Zamaratskaia. 2013. "Regulation of 3β-Hydroxysteroid Dehydrogenase/Δ5-Δ4 Isomerase: A Review" International Journal of Molecular Sciences 14, no. 9: 17926-17942. https://doi.org/10.3390/ijms140917926
APA StyleRasmussen, M. K., Ekstrand, B., & Zamaratskaia, G. (2013). Regulation of 3β-Hydroxysteroid Dehydrogenase/Δ5-Δ4 Isomerase: A Review. International Journal of Molecular Sciences, 14(9), 17926-17942. https://doi.org/10.3390/ijms140917926