The Role of MicroRNAs in Breast Cancer Stem Cells
Abstract
1. Introduction
1.1. Breast Cancer and Breast Cancer Stem Cells
1.2. Epithelial to Mesenchymal Transition in Cancer
1.3. Function and Biogenesis of miRNAs
2. Particular miRNAs and Their Role in Tumor-Initiating BCSCs
2.1. miRNAs Down-Regulated in BCSCs
2.1.1. let-7 Family
2.1.2. miR-200 Family
2.1.3. miR-30 Family
2.1.4. miR-128
2.1.5. miR-34c
2.1.6. miR-16
2.2. miRNAs Up-Regulated in BCSCs
2.2.1. miR-181 Family
2.2.2. miR-495
3. Conclusions
Acknowledgements
Conflict of Interest
References
- Jemal, A.; Bray, F.; Center, M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA: Cancer J. Clin 2011, 61, 69–90. [Google Scholar]
- Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics, 2013. CA: Cancer J. Clin 2013, 63, 11–30. [Google Scholar]
- Liu, H. MicroRNAs in breast cancer initiation and progression. Cell. Mol. Life Sci 2012, 69, 3587–3599. [Google Scholar]
- Perou, C.M.; Sørlie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; Rees, C.A.; Pollack, J.R.; Ross, D.T.; Johnsen, H.; Akslen, L.A.; et al. Molecular portraits of human breast tumours. Nature 2000, 406, 747–752. [Google Scholar]
- Magee, J.; Piskounova, E.; Morrison, S.J. Cancer stem cells: Impact, heterogeneity, and uncertainty. Cancer Cell 2012, 21, 283–296. [Google Scholar]
- Visvader, J.E.; Lindeman, G. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat. Rev. Cancer 2008, 8, 755–768. [Google Scholar]
- Vincent, A.; van Seuningen, I. On the epigenetic origin of cancer stem cells. Biochim. Biophys. Acta 2012, 1826, 83–88. [Google Scholar]
- Wicha, M.; Liu, S.; Dontu, G. Cancer stem cells: An old idea—A paradigm shift. Cancer Res 2006, 66, 1883–1890. [Google Scholar]
- Al-Hajj, M. Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA 2003, 100, 3983–3988. [Google Scholar]
- Ginestier, C.; Hur, M.; Charafe-Jauffret, E. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 2007, 1, 555–567. [Google Scholar]
- Dontu, G.; Abdallah, W. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 2003, 17, 1253–1270. [Google Scholar]
- Lehmann, C.; Jobs, G.; Thomas, M.; Burtscher, H.; Kubbies, M. Established breast cancer stem cell markers do not correlate with in vivo tumorigenicity of tumor-initiating cells. Int. J. Oncol 2012, 41, 1932–1942. [Google Scholar]
- Huang, S.-D.; Yuan, Y.; Tang, H.; Liu, X.-H.; Fu, C.-G.; Cheng, H.-Z.; Bi, J.-W.; Yu, Y.-W.; Gong, D.-J.; Zhang, W.; et al. Tumor cells positive and negative for the common cancer stem cell markers are capable of initiating tumor growth and generating both progenies. PLoS One 2013. [Google Scholar] [CrossRef]
- Kiesslich, T.; Berr, F.; Alinger, B.; Kemmerling, R.; Pichler, M.; Ocker, M.; Neureiter, D. Current status of therapeutic targeting of developmental signalling pathways in oncology. Curr. Pharm. Biotechnol 2012, 13, 2184–2220. [Google Scholar]
- Thiery, J.P. Epithelial-mesenchymal transitions in tumour progression. Nat. Rev. Cancer 2002, 2, 442–454. [Google Scholar]
- Mani, S.A.; Guo, W.; Liao, M.-J.; Eaton, E.N.; Ayyanan, A.; Zhou, A.Y.; Brooks, M.; Reinhard, F.; Zhang, C.C.; Shipitsin, M.; et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008, 133, 704–715. [Google Scholar]
- Nana-Sinkam, S.P.; Croce, C.M. Clinical applications for microRNAs in cancer. Clin. Pharmacol. Ther 2013, 93, 98–104. [Google Scholar]
- Munker, R.; Calin, G.A. MicroRNA profiling in cancer. Clin. Sci 2011, 121, 141–158. [Google Scholar]
- Calin, G.A.; Croce, C.M. MicroRNA signatures in human cancers. Nat. Rev. Cancer 2006, 6, 857–866. [Google Scholar]
- Al-Ali, B.M.; Ress, A.L.; Gerger, A.; Pichler, M. MicroRNAs in renal cell carcinoma: implications for pathogenesis, diagnosis, prognosis and therapy. Anticancer Res 2012, 32, 3727–3732. [Google Scholar]
- Pichler, M.; Winter, E.; Stotz, M.; Eberhard, K.; Samonigg, H.; Lax, S.; Hoefler, G. Down-regulation of KRAS-interacting miRNA-143 predicts poor prognosis but not response to EGFR-targeted agents in colorectal cancer. Br. J. Cancer 2012, 106, 1826–1832. [Google Scholar]
- Bach, D.; Fuereder, J.; Karbiener, M.; Scheideler, M.; Ress, A.L.; Neureiter, D.; Kemmerling, R.; Dietze, O.; Wiederstein, M.; Berr, F.; et al. Comprehensive analysis of alterations in the miRNome in response to photodynamic treatment. J. Photochem. Photobiol. B 2013, 120, 74–81. [Google Scholar]
- Van Roosbroeck, K.; Pollet, J.; Calin, G. miRNAs and long noncoding RNAs as biomarkers in human diseases. Expert Rev. Mol. Diagn 2013, 13, 183–204. [Google Scholar]
- Calin, G.A.; Konopleva, M. Small gene, big number, many effects. Blood 2012, 120, 240–241. [Google Scholar]
- Bushati, N.; Cohen, S.M. microRNA functions. Annu. Rev. Cell Dev. Biol 2007, 23, 175–205. [Google Scholar]
- Iorio, M.V.; Croce, C.M. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol. Med 2012, 4, 143–159. [Google Scholar]
- Ahmad, A. Pathways to breast cancer recurrence. ISRN Oncol. 2013, 2013. [Google Scholar] [CrossRef]
- Yu, F.; Yao, H.; Zhu, P.; Zhang, X.; Pan, Q.; Gong, C.; Huang, Y.; Hu, X.; Su, F.; Lieberman, J.; et al. Let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 2007, 131, 1109–1123. [Google Scholar]
- Johnson, C.D.; Esquela-Kerscher, A.; Stefani, G.; Byrom, M.; Kelnar, K.; Ovcharenko, D.; Wilson, M.; Wang, X.; Shelton, J.; Shingara, J.; et al. The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res 2007, 67, 7713–7722. [Google Scholar]
- Kumar, M.S.; Erkeland, S.J.; Pester, R.E.; Chen, C.Y.; Ebert, M.S.; Sharp, P.A.; Jacks, T. Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc. Natl. Acad. Sci. USA 2008, 105, 3903–3908. [Google Scholar]
- Wang, Y.; Hu, X.; Greshock, J.; Shen, L.; Yang, X.; Shao, Z.; Liang, S.; Tanyi, J.L.; Sood, A.K.; Zhang, L. Genomic DNA copy-number alterations of the let-7 family in human cancers. PLoS One 2012. [Google Scholar] [CrossRef]
- Barh, D.; Malhotra, R.; Ravi, B.; Sindhurani, P. Micro rna let-7: An emerging next-generation cancer therapeutic. Curr. Oncol 2010, 17, 70–80. [Google Scholar]
- Newman, M.; Thomson, J.; Hammond, S. Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA 2008, 14, 1539–1549. [Google Scholar]
- Sakurai, M.; Miki, Y.; Masuda, M.; Hata, S.; Shibahara, Y.; Hirakawa, H.; Suzuki, T.; Sasano, H. LIN28: A regulator of tumor-suppressing activity of let-7 microRNA in human breast cancer. J. Steroid Biochem. Mol. Biol 2012, 131, 101–106. [Google Scholar]
- Guo, L.; Chen, C.; Shi, M.; Wang, F.; Chen, X.; Diao, D.; Hu, M.; Yu, M.; Qian, L.; Guo, N. Stat3-coordinated Lin-28-let-7-HMGA2 and miR-200-ZEB1 circuits initiate and maintain oncostatin M-driven epithelial-mesenchymal transition. Oncogene 2013. [Google Scholar] [CrossRef]
- Park, S.-M.; Gaur, A.B.; Lengyel, E.; Peter, M.E. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 2008, 22, 894–907. [Google Scholar]
- Shimono, Y.; Ugalde, M.Z.; Cho, R.W.; Lobo, N.; Dalerba, P.; Qian, D.; Diehn, M.; Liu, H.; Panula, S.P.; Chiao, E.; et al. Down-regulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 2009, 138, 592–603. [Google Scholar]
- Iliopoulos, D.; Lindahl-Allen, M. Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells. Mol. Cell 2010, 39, 761–772. [Google Scholar]
- Onder, T.T.; Gupta, P.B.; Mani, S.A.; Yang, J.; Lander, E.S.; Weinberg, R.A. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res 2008, 68, 3645–3654. [Google Scholar]
- Lim, Y.; Wright, J.; Attema, J.; Gregory, P.; Bert, A.; Smith, E.; Thomas, D.; Drew, P.; Khew-Goodall, Y.; Goodall, G. Epigenetic modulation of the miR-200 family is associated with transition to a breast cancer stem cell-like state. J. Cell Sci. 2013. [Google Scholar] [CrossRef]
- Yu, F.; Deng, H.; Yao, H.; Liu, Q.; Su, F.; Song, E. MiR-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene 2010, 29, 4194–4204. [Google Scholar]
- Ouzounova, M.; Vuong, T.; Ancey, P.-B.; Ferrand, M.; Durand, G.; Le-Calvez Kelm, F.; Croce, C.; Matar, C.; Herceg, Z.; Hernandez-Vargas, H. MicroRNA miR-30 family regulates non-attachment growth of breast cancer cells. BMC Genomics 2013. [Google Scholar] [CrossRef]
- Zhu, Y.; Yu, F.; Jiao, Y.; Feng, J.; Tang, W.; Yao, H.; Gong, C.; Chen, J.; Su, F.; Zhang, Y.; et al. Reduced miR-128 in breast tumor-initiating cells induces chemotherapeutic resistance via Bmi-1 and ABCC5. Clin. Cancer Res 2011, 17, 7105–7115. [Google Scholar]
- Qian, P.; Banerjee, A.; Wu, Z.-S.; Zhang, X.; Wang, H.; Pandey, V.; Zhang, W.-J.; Lv, X.-F.; Tan, S.; Lobie, P.E.; et al. Loss of SNAIL regulated miR-128-2 on chromosome 3p22.3 targets multiple stem cell factors to promote transformation of mammary epithelial cells. Cancer Res 2012, 72, 6036–6050. [Google Scholar]
- Yu, F.; Jiao, Y.; Zhu, Y.; Wang, Y.; Zhu, J.; Cui, X.; Liu, Y.; He, Y.; Park, E.-Y.; Zhang, H.; et al. MicroRNA 34c gene down-regulation via DNA methylation promotes self-renewal and epithelial-mesenchymal transition in breast tumor-initiating cells. J. Biol. Chem 2012, 287, 465–473. [Google Scholar]
- Zhang, X.; Wan, G.; Mlotshwa, S.; Vance, V.; Berger, F.; Chen, H.; Lu, X. Oncogenic Wip1 phosphatase is inhibited by miR-16 in the DNA damage signaling pathway. Cancer Res 2010, 70, 7176–7186. [Google Scholar]
- Wang, Y.; Yu, Y.; Tsuyada, A.; Ren, X.; Wu, X.; Stubblefield, K.; Rankin-Gee, E.; Wang, S. Transforming growth factor β regulates the sphere-initiating stem cell-like feature in breast cancer through miRNA-181 and ATM. Oncogene 2011, 30, 1470–1480. [Google Scholar]
- Hwang-Verslues, W.W.; Chang, P.-H.; Wei, P.-C.; Yang, C.-Y.; Huang, C.-K.; Kuo, W.-H.; Shew, J.-Y.; Chang, K.-J.; Lee, E.Y.-H.P.; Lee, W.-H. miR-495 is upregulated by E12/E47 in breast cancer stem cells, and promotes oncogenesis and hypoxia resistance via downregulation of E-cadherin and REDD1. Oncogene 2011, 30, 2463–2474. [Google Scholar]
| miRNA | Roles in BCSCs |
|---|---|
| let-7 family | downregulated in BCSCs targets RAS and HMGA2 acts as tumor suppressor Lin28 blocks let-7 biogenesis and promotes tumorigenic activity in breast cancer influences mammosphere formation and proliferation in vitro affects tumor formation ability and metastatic potential in vivo reduced let-7 expression inhibits differentiation, maintains proliferation and promotes EMT |
| miR-200 family | downregulated in BCSCs targets Bmi-1 and Suz12 regulation of EMT relevant for stem cell functions in cancer cells (self-renewal, clonal expansion, differentiation) in vitro induces stem-like properties |
| miR-30 family | downregulated in BCSCs targets Ubc9, ITGB3 and AVEN influences self-renewal capacity and anti-apoptotic features important for modulation of the stem-like properties of BCSCs regulates non-attachment growth of mammospheres and mammosphere formation ability controls genes involved in apoptosis and proliferation in BCSCs |
| miR-128 | downregulated in BCSCs targets Bmi-1 and ABCC5 link to chemotherapeutical resistance and survival rates of breast cancer patients influences number and size of mammospheres in vitro reduced tumor growth and induced apoptosis in vivo |
| miR-34c | downregulated in BCSCs targets Notch4 influences self-renewal and EMT acts on mammosphere formation in vitro is epigenetically regulated via methylation controls migration of tumor cells |
| miR-16 | downregulated in BCSCs targets Wip1 influences number and size of mammospheres and cell proliferation responsible for sensitivity to chemotherapeutic drug doxorubicin |
| miR-181 | upregulated in BCSCs targets ATM TGF-β induces mammosphere formation by upregulation of miR-181 |
| miR-495 | upregulated in BCSCs targets REDD1 leads to downregulation of E-cadherin promotes colony formation leads to increased tumor formation in vivo responsible for maintaining a stem-cell line phenotype |
© 2013 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Schwarzenbacher, D.; Balic, M.; Pichler, M. The Role of MicroRNAs in Breast Cancer Stem Cells. Int. J. Mol. Sci. 2013, 14, 14712-14723. https://doi.org/10.3390/ijms140714712
Schwarzenbacher D, Balic M, Pichler M. The Role of MicroRNAs in Breast Cancer Stem Cells. International Journal of Molecular Sciences. 2013; 14(7):14712-14723. https://doi.org/10.3390/ijms140714712
Chicago/Turabian StyleSchwarzenbacher, Daniela, Marija Balic, and Martin Pichler. 2013. "The Role of MicroRNAs in Breast Cancer Stem Cells" International Journal of Molecular Sciences 14, no. 7: 14712-14723. https://doi.org/10.3390/ijms140714712
APA StyleSchwarzenbacher, D., Balic, M., & Pichler, M. (2013). The Role of MicroRNAs in Breast Cancer Stem Cells. International Journal of Molecular Sciences, 14(7), 14712-14723. https://doi.org/10.3390/ijms140714712

