The Efficacy of Edaravone (Radicut), a Free Radical Scavenger, for Cardiovascular Disease
Abstract
:1. Introduction
2. Mechanisms of the Action of Edaravone
3. Edaravone Efficacy in Acute Ischemic Stroke
4. Oxidative Stress and Edaravone Efficacy in Cardiovascular Disease
4.1. Atherosclerosis
4.2. Diabetes
4.3. Hypertension
4.4. Myocardial Infarction
4.5. Heart Failure
4.6. Dilated Cardiomyopathy
4.7. Other Cardiovascular Disease
5. Side Effects of Edaravone
6. Conclusions
Acknowledgments
Abbreviations
AIS | Acute ischemic stroke |
AMI | acute myocardial infarction |
EAM | experimental autoimmune myocarditis |
EDO trial | edaravone vs. sodium ozagrel in acute non-cardioembolic ischemic stroke |
eNOS | endothelial nitric oxide synthase |
ER | endoplasmic reticulum |
HMGB1 | high mobility group box 1 |
HNE | 4-hydroxy-2-nonenal |
HUVEC | human umbilical vein endothelial cell |
IL | interleukin |
iNOS | inducible nitric oxide synthase |
I/R | ischemia and reperfusion |
LDL | low-density lipoprotein |
LV | left ventricle |
MAP | mitogen activated protein kinase |
MCAO | middle cerebral artery occlusion |
MI | myocardial infarction |
NADPH | nicotinamide adenine dinucleotide phosphate |
NIHSS | National Institutes of Health Stroke Scale |
NF-κB | nuclear factor-κB |
NO | nitric oxide |
PKC | protein kinase C |
ROCK | Rho associated coiled-coil forming kinase |
ROS | Reactive oxygen species |
TNF-α | tumor necrosis factor α |
WHO | World Health Organization. |
Conflict of Interest
References
- Lozano, R.; Naghavi, M.; Foreman, K.; Lim, S.; Shibuya, K.; Aboyans, V.; Abraham, J.; Adair, T.; Aggarwal, R.; Ahn, S.Y.; et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the global burden of disease study 2010. Lancet 2012, 380, 2095–2128. [Google Scholar]
- World Health Organization. Cardiovascular disease. Available online: http://www.who.int/cardiovascular_diseases/en/ (on accessed 14 April 2013).
- O’Collins, V.E.; Macleod, M.R.; Donnan, G.A.; Horky, L.L.; van der Worp, B.H.; Howells, D.W. 1026 experimental treatments in acute stroke. Ann. Neurol 2006, 59, 467–477. [Google Scholar]
- The Lancet. Neuroprotection: The end of an era? Lancet 2006, 368, 1548.
- The RANTTAS investigators. A randomized trial of tirilazad mesylate in patients with acute stroke (RANTTAS). Stroke 1996, 27, 1453–1458.
- Asano, T.; Takakura, K.; Sano, K.; Kikuchi, H.; Nagai, H.; Saito, I.; Tamura, A.; Ochiai, C.; Sasaki, T. Effects of a hydroxyl radical scavenger on delayed ischemic neurological deficits following aneurysmal subarachnoid hemorrhage: Results of a multicenter, placebo-controlled double-blind trial. J. Neurosurg 1996, 84, 792–803. [Google Scholar]
- Green, A.R.; Shuaib, A. Therapeutic strategies for the treatment of stroke. Drug. Discov. Today 2006, 11, 681–693. [Google Scholar]
- Shuaib, A.; Lees, K.R.; Lyden, P.; Grotta, J.; Davalos, A.; Davis, S.M.; Diener, H.C.; Ashwood, T.; Wasiewski, W.W.; Emeribe, U. NXY-059 for the treatment of acute ischemic stroke. N. Engl. J. Med 2007, 357, 562–571. [Google Scholar]
- Van der Worp, H.B.; Kappelle, L.J.; Algra, A.; Bar, P.R.; Orgogozo, J.M.; Ringelstein, E.B.; Bath, P.M.; van Gijn, J. The effect of tirilazad mesylate on infarct volume of patients with acute ischemic stroke. Neurology 2002, 58, 133–135. [Google Scholar]
- Myung, S.K.; Ju, W.; Cho, B.; Oh, S.W.; Park, S.M.; Koo, B.K.; Park, B.J. Efficacy of vitamin and antioxidant supplements in prevention of cardiovascular disease: Systematic review and meta-analysis of randomised controlled trials. BMJ 2013, 346, f10. [Google Scholar]
- Kikuchi, K.; Kawahara, K.; Miyagi, N.; Uchikado, H.; Kuramoto, T.; Morimoto, Y.; Tancharoen, S.; Miura, N.; Takenouchi, K.; Oyama, Y.; et al. Edaravone: A new therapeutic approach for the treatment of acute stroke. Med. Hypothese 2010, 75, 583–585. [Google Scholar]
- Kikuchi, K.; Kawahara, K.; Tancharoen, S.; Matsuda, F.; Morimoto, Y.; Ito, T.; Biswas, K.K.; Takenouchi, K.; Miura, N.; Oyama, Y.; et al. The free radical scavenger edaravone rescues rats from cerebral infarction by attenuating the release of high-mobility group box-1 in neuronal cells. J. Pharmacol. Exp. Ther 2009, 329, 865–874. [Google Scholar]
- Kikuchi, K.; Miura, N.; Kawahara, K.; Murai, Y.; Morioka, M.; Lapchak, P.; Tanaka, E. Edaravone (radicut), a free radical scavenger, is a potentially useful addition to thrombolytic therapy in patients with acute ischemic stroke (review). Biomed. Rep 2013, 1, 7–12. [Google Scholar]
- Kikuchi, K.; Tancharoen, S.; Matsuda, F.; Biswas, K.K.; Ito, T.; Morimoto, Y.; Oyama, Y.; Takenouchi, K.; Miura, N.; Arimura, N.; et al. Edaravone attenuates cerebral ischemic injury by suppressing aquaporin-4. Biochem. Biophys. Res. Commun 2009, 390, 1121–1125. [Google Scholar]
- Tanaka, E.; Niiyama, S.; Sato, S.; Yamada, A.; Higashi, H. Arachidonic acid metabolites contribute to the irreversible depolarization induced by in vitro ischemia. J. Neurophysiol 2003, 90, 3213–3223. [Google Scholar]
- Kikuchi, K.; Kawahara, K.; Uchikado, H.; Miyagi, N.; Kuramoto, T.; Miyagi, T.; Morimoto, Y.; Ito, T.; Tancharoen, S.; Miura, N.; et al. Potential of edaravone for neuroprotection in neurologic diseases that do not involve cerebral infarction. Exp. Ther. Med 2011, 2, 771–775. [Google Scholar]
- Kikuchi, K.; Miura, N.; Morimoto, Y.; Ito, T.; Tancharoen, S.; Miyata, K.; Kikuchi, C.; Iida, N.; Takeshige, N.; Uchikado, H.; et al. Beneficial effects of the free radical scavenger edaravone (radicut) in neurologic diseases. J. Neurol. Neurophysiol 2011, 1, 1–5. [Google Scholar]
- Kikuchi, K.; Takeshige, N.; Miura, N.; Morimoto, Y.; Ito, T.; Tancharoen, S.; Miyata, K.; Kikuchi, C.; Iida, N.; Uchikado, H.; et al. Beyond free radical scavenging: Beneficial effects of edaravone (radicut) in various diseases (review). Exp. Ther. Med 2012, 3, 3–8. [Google Scholar]
- Kikuchi, K.; Uchikado, H.; Miyagi, N.; Morimoto, Y.; Ito, T.; Tancharoen, S.; Miura, N.; Miyata, K.; Sakamoto, R.; Kikuchi, C.; et al. Beyond neurological disease: New targets for edaravone (review). Int. J. Mol. Med 2011, 28, 899–906. [Google Scholar]
- Tsujita, K.; Shimomura, H.; Kawano, H.; Hokamaki, J.; Fukuda, M.; Yamashita, T.; Hida, S.; Nakamura, Y.; Nagayoshi, Y.; Sakamoto, T.; et al. Effects of edaravone on reperfusion injury in patients with acute myocardial infarction. Am. J. Cardiol 2004, 94, 481–484. [Google Scholar]
- Watanabe, T.; Yuki, S.; Egawa, M.; Nishi, H. Protective effects of MCI-186 on cerebral ischemia: Possible involvement of free radical scavenging and antioxidant actions. J. Pharmacol. Exp. Ther 1994, 268, 1597–1604. [Google Scholar]
- Yamamoto, T.; Yuki, S.; Watanabe, T.; Mitsuka, M.; Saito, K.I.; Kogure, K. Delayed neuronal death prevented by inhibition of increased hydroxyl radical formation in a transient cerebral Ischemia. Brain Res 1997, 762, 240–242. [Google Scholar]
- Inokuchi, Y.; Imai, S.; Nakajima, Y.; Shimazawa, M.; Aihara, M.; Araie, M.; Hara, H. Edaravone, a free radical scavenger, protects against retinal damage in vitro and in vivo. J. Pharmacol. Exp. Ther 2009, 329, 687–698. [Google Scholar]
- Sommani, P.; Arai, T.; Yamashita, K.; Miyoshi, T.; Mori, H.; Sasada, M.; Makino, K. Effects of edaravone on singlet oxygen released from activated human neutrophils. J. Pharmacol. Sci 2007, 103, 117–120. [Google Scholar]
- Higashi, Y.; Jitsuiki, D.; Chayama, K.; Yoshizumi, M. Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one), a novel free radical scavenger, for treatment of cardiovascular diseases. Recent Pat. Cardiovasc. Drug Discov 2006, 1, 85–93. [Google Scholar]
- Yamamoto, Y.; Kuwahara, T.; Watanabe, K.; Watanabe, K. Antioxidant activity of 3-methyl-1-phenyl-2-pyrazolin-5-one. Redox Rep 1996, 2, 333–338. [Google Scholar]
- Yoshida, H.; Sasaki, K.; Namiki, Y.; Sato, N.; Tada, N. Edaravone, a novel radical scavenger, inhibits oxidative modification of low-density lipoprotein (LDL) and reverses oxidized LDL-mediated reduction in the expression of endothelial nitric oxide synthase. Atherosclerosis 2005, 179, 97–102. [Google Scholar]
- Tosaka, M.; Hashiba, Y.; Saito, N.; Imai, H.; Shimizu, T.; Sasaki, T. Contractile responses to reactive oxygen species in the canine basilar artery in vitro: Selective inhibitory effect of MCI-186, a new hydroxyl radical scavenger. Acta Neurochir 2002, 144, 1305–1310. [Google Scholar]
- Takayasu, Y.; Nakaki, J.; Kawasaki, T.; Koda, K.; Ago, Y.; Baba, A.; Matsuda, T. Edaravone, a Radical scavenger, inhibits mitochondrial permeability transition pore in rat brain. J. Pharmacol. Sci 2007, 103, 434–437. [Google Scholar]
- Kawai, H.; Nakai, H.; Suga, M.; Yuki, S.; Watanabe, T.; Saito, K.I. Effects of a novel free radical scavenger, MCl-186, on ischemic brain damage in the rat distal middle cerebral artery occlusion model. J. Pharmacol. Exp. Ther 1997, 281, 921–927. [Google Scholar]
- Zhang, N.; Komine-Kobayashi, M.; Tanaka, R.; Liu, M.; Mizuno, Y.; Urabe, T. Edaravone reduces early accumulation of oxidative products and sequential inflammatory responses after transient focal ischemia in mice brain. Stroke 2005, 36, 2220–2225. [Google Scholar]
- Xiao, B.; Bi, F.F.; Hu, Y.Q.; Tian, F.F.; Wu, Z.G.; Mujlli, H.M.; Ding, L.; Zhou, X.F. Edaravone neuroprotection effected by suppressing the gene expression of the fas signal pathway following transient focal ischemia in rats. Neurotox. Res 2007, 12, 155–162. [Google Scholar]
- Amemiya, S.; Kamiya, T.; Nito, C.; Inaba, T.; Kato, K.; Ueda, M.; Shimazaki, K.; Katayama, Y. Anti-apoptotic and neuroprotective effects of edaravone following transient focal ischemia in rats. Eur. J. Pharmacol 2005, 516, 125–130. [Google Scholar]
- Qi, X.; Okuma, Y.; Hosoi, T.; Nomura, Y. Edaravone protects against hypoxia/ischemia- induced endoplasmic reticulum dysfunction. J. Pharmacol. Exp. Ther 2004, 311, 388–393. [Google Scholar]
- Yung, H.W.; Korolchuk, S.; Tolkovsky, A.M.; Charnock-Jones, D.S.; Burton, G.J. Endoplasmic reticulum stress exacerbates ischemia-reperfusion-induced apoptosis through attenuation of akt protein synthesis in human choriocarcinoma cells. FASEB J 2007, 21, 872–884. [Google Scholar]
- Jin, Y.J.; Mima, T.; Raicu, V.; Park, K.C.; Shimizu, K. Combined argatroban and edaravone caused additive neuroprotection against 15 min of forebrain ischemia in gerbils. Neurosci. Res 2002, 43, 75–79. [Google Scholar]
- Ishikawa, A.; Yoshida, H.; Metoki, N.; Toki, T.; Imaizumi, T.; Matsumiya, T.; Yamashita, K.; Taima, K.; Satoh, K. Edaravone inhibits the expression of vascular endothelial growth factor in human astrocytes exposed to hypoxia. Neurosci. Res 2007, 59, 406–412. [Google Scholar]
- Barone, F.C.; Feuerstein, G.Z. Inflammatory mediators and stroke: New opportunities for novel therapeutics. J. Cereb. Blood Flow MeTable 1999, 19, 819–834. [Google Scholar]
- Baird, A.E.; Benfield, A.; Schlaug, G.; Siewert, B.; Lovblad, K.O.; Edelman, R.R.; Warach, S. Enlargement of human cerebral ischemic lesion volumes measured by diffusion-weighted magnetic resonance imaging. Ann. Neurol 1997, 41, 581–589. [Google Scholar]
- Bemeur, C.; Ste-Marie, L.; Desjardins, P.; Vachon, L.; Butterworth, R.F.; Hazell, A.S.; Montgomery, J. Dehydroascorbic acid normalizes several markers of oxidative stress and inflammation in acute hyperglycemic focal cerebral ischemia in the rat. Neurochem. Int 2005, 46, 399–407. [Google Scholar]
- Block, F.; Dihne, M.; Loos, M. Inflammation in areas of remote changes following focal brain lesion. Prog. Neurobiol 2005, 75, 342–365. [Google Scholar]
- Bramlett, H.M.; Dietrich, W.D. Pathophysiology of cerebral ischemia and brain trauma: Similarities and DIFFERENCES. J. Cereb. Blood Flow MeTable 2004, 24, 133–150. [Google Scholar]
- Khan, M.; Sekhon, B.; Jatana, M.; Giri, S.; Gilg, A.G.; Sekhon, C.; Singh, I.; Singh, A.K. Administration of n-acetylcysteine after focal cerebral ischemia protects brain and reduces inflammation in a rat model of experimental stroke. J. Neurosci. Res 2004, 76, 519–527. [Google Scholar]
- Kim, J.B.; Yu, Y.M.; Kim, S.W.; Lee, J.K. Anti-inflammatory mechanism is involved in ethyl pyruvate-mediated efficacious neuroprotection in the postischemic brain. Brain Res 2005, 1060, 188–192. [Google Scholar]
- Matsui, T.; Mori, T.; Tateishi, N.; Kagamiishi, Y.; Satoh, S.; Katsube, N.; Morikawa, E.; Morimoto, T.; Ikuta, F.; Asano, T. Astrocytic activation and delayed infarct expansion after permanent focal ischemia in rats. Part I: Enhanced astrocytic synthesis of s-100beta in the periinfarct area precedes delayed infarct expansion. J. Cereb. Blood Flow MeTable 2002, 22, 711–722. [Google Scholar]
- Wen, Y.; Yang, S.; Liu, R.; Perez, E.; Yi, K.D.; Koulen, P.; Simpkins, J.W. Estrogen attenuates nuclear factor-kappa B activation induced by transient cerebral ischemia. Brain Res 2004, 1008, 147–154. [Google Scholar]
- Suzuki, Y.J.; Forman, H.J.; Sevanian, A. Oxidants as stimulators of signal transduction. Free Radic. Biol. Med 1997, 22, 269–285. [Google Scholar]
- Goldstein, R.S.; Gallowitsch-Puerta, M.; Yang, L.; Rosas-Ballina, M.; Huston, J.M.; Czura, C.J.; Lee, D.C.; Ward, M.F.; Bruchfeld, A.N.; Wang, H.; et al. Elevated high-mobility group box 1 levels in patients with cerebral and myocardial ischemia. Shock 2006, 25, 571–574. [Google Scholar]
- Huang, J.M.; Hu, J.; Chen, N.; Hu, M.L. Relationship between plasma high-mobility group box-1 levels and clinical outcomes of ischemic stroke. J. Crit. Care 2012, in press. [Google Scholar]
- Schulze, J.; Zierath, D.; Tanzi, P.; Cain, K.; Shibata, D.; Dressel, A.; Becker, K. Severe stroke induces long-lasting alterations of high-mobility group box 1. Stroke 2013, 44, 246–248. [Google Scholar]
- Yagi, K.; Kitazato, K.T.; Uno, M.; Tada, Y.; Kinouchi, T.; Shimada, K.; Nagahiro, S. Edaravone, a free radical scavenger, inhibits mmp-9-related brain hemorrhage in rats treated with tissue plasminogen activator. Stroke 2009, 40, 626–631. [Google Scholar]
- Yamashita, T.; Kamiya, T.; Deguchi, K.; Inaba, T.; Zhang, H.; Shang, J.; Miyazaki, K.; Ohtsuka, A.; Katayama, Y.; Abe, K. dissociation and protection of the neurovascular unit after thrombolysis and reperfusion in ischemic rat brain. J. Cereb. Blood Flow MeTable 2009, 29, 715–725. [Google Scholar]
- Wang, C.X.; Shuaib, A. Neuroprotective effects of free radical scavengers in stroke. Drugs Aging 2007, 24, 537–546. [Google Scholar]
- Adams, H.P., Jr; del Zoppo, G.; Alberts, M.J.; Bhatt, D.L.; Brass, L.; Furlan, A.; Grubb, R.L.; Higashida, R.T.; Jauch, E.C.; Kidwell, C. Guidelines for the early management of adults with ischemic stroke: A guideline from the American Heart Association/American Stroke Association Stroke Council, Clinical Cardiology Council, Cardiovascular Radiology and Intervention Council, and the atherosclerotic peripheral vascular disease and quality of care outcomes in research interdisciplinary working groups: The American Academy of Neurology affirms the value of this guideline as an educational tool for neurologists. Circulation 2007, 115, e478–e534. [Google Scholar]
- Edaravone Acute Infarction Study Group. Effect of a novel free radical scavenger, edaravone (MCI-186), on acute brain infarction. Randomized, Placebo-controlled, double-blind study at multicenters. Cerebrovasc. Dis. 2003, 15, 222–229.
- Naritomi, H.; Moriwaki, H.; Metoki, N.; Nishimura, H.; Higashi, Y.; Yamamoto, Y.; Yuasa, H.; Oe, H.; Tanaka, K.; Saito, K.; et al. Effects of edaravone on muscle atrophy and locomotor function in patients with ischemic stroke: A randomized controlled pilot study. Drugs R D 2010, 10, 155–163. [Google Scholar]
- Shinohara, Y.; Saito, I.; Kobayashi, S.; Uchiyama, S. Edaravone (radical scavenger) versus sodium ozagrel (antiplatelet agent) in acute noncardioembolic ischemic stroke (EDO trial). Cerebrovasc. Dis 2009, 27, 485–492. [Google Scholar]
- Unno, Y.; Katayama, M.; Shimizu, H. Does functional outcome in acute ischaemic stroke patients correlate with the amount of free-radical scavenger treatment? A retrospective study of edaravone therapy. Clin. Drug Investig 2010, 30, 143–155. [Google Scholar]
- Kimura, K.; Aoki, J.; Sakamoto, Y.; Kobayashi, K.; Sakai, K.; Inoue, T.; Iguchi, Y.; Shibazaki, K. Administration of edaravone, a free radical scavenger, during t-pa infusion can enhance early recanalization in acute stroke patients—A preliminary study. J. Neurol. Sci 2012, 313, 132–136. [Google Scholar]
- Keller, H.; Dreyer, C.; Medin, J.; Mahfoudi, A.; Ozato, K.; Wahli, W. Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoid X receptor heterodimers. Proc. Natl. Acad. Sci. USA 1993, 90, 2160–2164. [Google Scholar]
- Elahi, M.; Matata, B. Blood-dependent redox activity during extracorporeal circulation in health and disease. Cardiology 2005, 1, 156–157. [Google Scholar]
- Wilson, S.H.; Best, P.J.; Edwards, W.D.; Holmes, D.R., Jr; Carlson, P.J.; Celermajer, D.S.; Lerman, A. Nuclear factor-kappaB immunoreactivity is present in human coronary plaque and enhanced in patients with unstable angina pectoris. Atherosclerosis 2002, 160, 147–153. [Google Scholar]
- Madamanchi, N.R.; Vendrov, A.; Runge, M.S. Oxidative stress and vascular disease. Arterioscler. Thromb. Vasc. Biol 2005, 25, 29–38. [Google Scholar]
- Elahi, M.M.; Kong, Y.X.; Matata, B.M. Oxidative stress as a mediator of cardiovascular disease. Oxid. Med. Cell. Longev 2009, 2, 259–269. [Google Scholar]
- Harrison, D.G. Endothelial function and oxidant stress. Clin. Cardiol. 1997, 20, II-11–II-17. [Google Scholar]
- Moroi, M.; Zhang, L.; Yasuda, T.; Virmani, R.; Gold, H.K.; Fishman, M.C.; Huang, P.L. Interaction of genetic deficiency of endothelial nitric oxide, gender, and pregnancy in vascular response to injury in mice. J. Clin. Invest 1998, 101, 1225–1232. [Google Scholar]
- Antoniades, C.; Shirodaria, C.; Warrick, N.; Cai, S.; de Bono, J.; Lee, J.; Leeson, P.; Neubauer, S.; Ratnatunga, C.; Pillai, R.; et al. 5-methyltetrahydrofolate rapidly improves endothelial function and decreases superoxide production in human vessels: Effects on vascular tetrahydrobiopterin availability and endothelial nitric oxide synthase coupling. Circulation 2006, 114, 1193–1201. [Google Scholar]
- Brandes, R.P.; Barton, M.; Philippens, K.M.; Schweitzer, G.; Mugge, A. Endothelial-derived superoxide anions in pig coronary arteries: Evidence from lucigenin chemiluminescence and histochemical techniques. J. Physiol 1997, 500, 331–342. [Google Scholar]
- Lerman, A.; Burnett, J.C., Jr; Higano, S.T.; McKinley, L.J.; Holmes, D.R., Jr. Long-term l-arginine supplementation improves small-vessel coronary endothelial function in humans. Circulation 1998, 97, 2123–2128. [Google Scholar]
- Nisoli, E.; Tonello, C.; Cardile, A.; Cozzi, V.; Bracale, R.; Tedesco, L.; Falcone, S.; Valerio, A.; Cantoni, O.; Clementi, E.; et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 2005, 310, 314–317. [Google Scholar]
- Radhakrishnan, G.; Suzuki, R.; Maeda, H.; Yamamoto, M.; Hirose, N.; Gopalrao, R.K.; Lee, G.H.; Hayashi, Y.; Rao, P.; Sasaguri, S. Inhibition of neointimal hyperplasia development by MCI-186 is correlated with downregulation of nuclear factor-kappaB pathway. Circ. J 2008, 72, 800–806. [Google Scholar]
- Okabe, T.A.; Kishimoto, C.; Shimada, K.; Murayama, T.; Yokode, M.; Kita, T. Effects of MCI-186 (edaravone), a novel free radical scavenger, upon experimental atherosclerosis in apolipoprotein E-deficient mice. Circ. J 2006, 70, 1216–1219. [Google Scholar]
- Xi, H.; Akishita, M.; Nagai, K.; Yu, W.; Hasegawa, H.; Eto, M.; Kozaki, K.; Toba, K. Potent free radical scavenger, edaravone, suppresses oxidative stress-induced endothelial damage and early atherosclerosis. Atherosclerosis 2007, 191, 281–289. [Google Scholar]
- Yamaguchi, T.; Oishi, K.; Uchida, M.; Echizen, H. Edaravone, a radical scavenger, may enhance or produce antiproliferative effects of fluvastatin, amlodipine, ozagrel, GF109203X and Y27632 on cultured basilar artery smooth muscle cells. Biol. Pharm. Bull 2003, 26, 1706–1710. [Google Scholar]
- Oyama, J.; Satoh, S.; Suematsu, N.; Kadokami, T.; Maeda, T.; Sugano, M.; Makino, N. Scavenging free radicals improves endothelial dysfunction in human coronary arteries in vivo. Heart Vessels 2010, 25, 379–385. [Google Scholar]
- Berry, J.D.; Dyer, A.; Cai, X.; Garside, D.B.; Ning, H.; Thomas, A.; Greenland, P.; van Horn, L.; Tracy, R.P.; Lloyd-Jones, D.M. Lifetime risks of cardiovascular disease. N. Engl. J. Med 2012, 366, 321–329. [Google Scholar]
- Abou-Seif, M.A.; Youssef, A.A. Oxidative stress and male IGF-1, gonadotropin and related hormones in diabetic patients. Clin. Chem. Lab. Med 2001, 39, 618–623. [Google Scholar]
- Ruiz, C.; Alegria, A.; Barbera, R.; Farre, R.; Lagarda, M.J. Lipid peroxidation and antioxidant enzyme activities in patients with type 1 diabetes mellitus. Scand. J. Clin. Lab. Invest 1999, 59, 99–105. [Google Scholar]
- Christ, M.; Bauersachs, J.; Liebetrau, C.; Heck, M.; Gunther, A.; Wehling, M. Glucose increases endothelial-dependent superoxide formation in coronary arteries by NAD(P)H oxidase activation: Attenuation by the 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor atorvastatin. Diabetes 2002, 51, 2648–2652. [Google Scholar]
- Guzik, T.J.; West, N.E.; Black, E.; McDonald, D.; Ratnatunga, C.; Pillai, R.; Channon, K.M. Vascular superoxide production by NAD(P)H oxidase: Association with endothelial dysfunction and clinical risk factors. Circ. Res 2000, 86, E85–E90. [Google Scholar]
- Hink, U.; Tsilimingas, N.; Wendt, M.; Munzel, T. Mechanisms underlying endothelial dysfunction in diabetes mellitus: Therapeutic implications. Treat. Endocrinol 2003, 2, 293–304. [Google Scholar]
- Kim, Y.K.; Lee, M.S.; Son, S.M.; Kim, I.J.; Lee, W.S.; Rhim, B.Y.; Hong, K.W.; Kim, C.D. Vascular NADH oxidase is involved in impaired endothelium-dependent vasodilation in OLETF rats, a model of type 2 diabetes. Diabetes 2002, 51, 522–527. [Google Scholar]
- Kashiwagi, A.; Shinozaki, K.; Nishio, Y.; Maegawa, H.; Maeno, Y.; Kanazawa, A.; Kojima, H.; Haneda, M.; Hidaka, H.; Yasuda, H.; et al. Endothelium-specific activation of NAD(P)H oxidase in aortas of exogenously hyperinsulinemic rats. Am. J. Physiol 1999, 277, E976–E983. [Google Scholar]
- Kakkar, R.; Mantha, S.V.; Kalra, J.; Prasad, K. Time course study of oxidative stress in aorta and heart of diabetic rat. Clin. Sci 1996, 91, 441–448. [Google Scholar]
- Marra, G.; Cotroneo, P.; Pitocco, D.; Manto, A.; di Leo, M.A.; Ruotolo, V.; Caputo, S.; Giardina, B.; Ghirlanda, G.; Santini, S.A. Early increase of oxidative stress and reduced antioxidant defenses in patients with uncomplicated type 1 diabetes: A case for gender difference. Diabetes Care 2002, 25, 370–375. [Google Scholar]
- Saini, A.K.; Patel, R.J.; Sharma, S.S.; Hsarunk, A.K. Edaravone attenuates hydroxyl radical stress and augmented angiotensin ii response in diabetic rats. Pharmacol. Res 2006, 54, 6–10. [Google Scholar]
- Inagi, R. Oxidative stress in cardiovascular disease: A new avenue toward future therapeutic approaches. Recent Pat. Cardiovasc. Drug Discov 2006, 1, 151–159. [Google Scholar]
- Vaziri, N.D.; Wang, X.Q.; Oveisi, F.; Rad, B. Induction of oxidative stress by glutathione depletion causes severe hypertension in normal rats. Hypertension 2000, 36, 142–146. [Google Scholar]
- Hamilton, C.A.; Brosnan, M.J.; McIntyre, M.; Graham, D.; Dominiczak, A.F. Superoxide excess in hypertension and aging: A common cause of endothelial dysfunction. Hypertension 2001, 37, 529–534. [Google Scholar]
- Kerr, S.; Brosnan, M.J.; McIntyre, M.; Reid, J.L.; Dominiczak, A.F.; Hamilton, C.A. Superoxide anion production is increased in a model of genetic hypertension: Role of the endothelium. Hypertension 1999, 33, 1353–1358. [Google Scholar]
- Zalba, G.; San Jose, G.; Moreno, M.U.; Fortuno, M.A.; Fortuno, A.; Beaumont, F.J.; Diez, J. Oxidative stress in arterial hypertension: Role of NAD(P)H oxidase. Hypertension 2001, 38, 1395–1399. [Google Scholar]
- Koska, J.; Syrova, D.; Blazicek, P.; Marko, M.; Grna, J.D.; Kvetnansky, R.; Vigas, M. Malondialdehyde, lipofuscin and activity of antioxidant enzymes during physical exercise in patients with essential hypertension. J. Hypertens 1999, 17, 529–535. [Google Scholar]
- Orie, N.N.; Zidek, W.; Tepel, M. Reactive Oxygen species in essential hypertension and non-insulin-dependent diabetes mellitus. Am. J. Hypertens 1999, 12, 1169–1174. [Google Scholar]
- Redon, J.; Oliva, M.R.; Tormos, C.; Giner, V.; Chaves, J.; Iradi, A.; Saez, G.T. Antioxidant activities and oxidative stress byproducts in human hypertension. Hypertension 2003, 41, 1096–1101. [Google Scholar]
- Yasunari, K.; Maeda, K.; Nakamura, M.; Yoshikawa, J. Oxidative stress in leukocytes is a possible link between blood pressure, blood glucose, and C-reacting protein. Hypertension 2002, 39, 777–780. [Google Scholar]
- Deshmukh, A.B.; Patel, N.J.; Patel, R.J. Hydroxyl radical mediates the augmented angiotensin II responses in thoracic aorta of spontaneously hypertensive rats. Pharmacology 2007, 79, 122–128. [Google Scholar]
- Tsujimoto, I.; Hikoso, S.; Yamaguchi, O.; Kashiwase, K.; Nakai, A.; Takeda, T.; Watanabe, T.; Taniike, M.; Matsumura, Y.; Nishida, K.; et al. The antioxidant edaravone attenuates pressure overload-induced left ventricular hypertrophy. Hypertension 2005, 45, 921–926. [Google Scholar]
- Ross, R. Atherosclerosis—An inflammatory disease. N. Engl. J. Med 1999, 340, 115–126. [Google Scholar]
- Elkind, M.S. Inflammation, atherosclerosis, and stroke. Neurologist 2006, 12, 140–148. [Google Scholar]
- Xu, Q.; Konta, T.; Nakayama, K.; Furusu, A.; Moreno-Manzano, V.; Lucio-Cazana, J.; Ishikawa, Y.; Fine, L.G.; Yao, J.; Kitamura, M. Cellular defense against H2O2-induced apoptosis via MAP Kinase-MKP-1 pathway. Free Radic. Biol. Med 2004, 36, 985–993. [Google Scholar]
- Winyard, P.G.; Blake, D.R. Antioxidants, redox-regulated transcription factors, and inflammation. Adv. Pharmacol 1997, 38, 403–421. [Google Scholar]
- Bonomini, F.; Tengattini, S.; Fabiano, A.; Bianchi, R.; Rezzani, R. Atherosclerosis and oxidative stress. Histol. Histopathol 2008, 23, 381–390. [Google Scholar]
- Harrison, D.; Griendling, K.K.; Landmesser, U.; Hornig, B.; Drexler, H. Role of oxidative stress in stherosclerosis. Am. J. Cardiol 2003, 91, 7A–11A. [Google Scholar]
- Suzuki, Y.J.; Ford, G.D. Redox regulation of signal transduction in cardiac and smooth muscle. J. Mol. Cell. Cardiol. 1999, 31, 345–353. [Google Scholar]
- Aviram, M.; Rosenblat, M.; Etzioni, A.; Levy, R. Activation of NADPH oxidase required for macrophage-mediated oxidation of low-density lipoprotein. Metabolism 1996, 45, 1069–1079. [Google Scholar]
- Chen, X.L.; Tummala, P.E.; Olbrych, M.T.; Alexander, R.W.; Medford, R.M. Angiotensin II induces monocyte chemoattractant protein-1 gene expression in rat vascular smooth muscle cells. Circ. Res 1998, 83, 952–959. [Google Scholar]
- Griendling, K.K.; Sorescu, D.; Ushio-Fukai, M. NAD(P)H oxidase: Role in cardiovascular biology and disease. Circ. Res 2000, 86, 494–501. [Google Scholar]
- Cappola, T.P.; Kass, D.A.; Nelson, G.S.; Berger, R.D.; Rosas, G.O.; Kobeissi, Z.A.; Marban, E.; Hare, J.M. Allopurinol improves myocardial efficiency in patients with idiopathic dilated cardiomyopathy. Circulation 2001, 104, 2407–2411. [Google Scholar]
- Heymes, C.; Bendall, J.K.; Ratajczak, P.; Cave, A.C.; Samuel, J.L.; Hasenfuss, G.; Shah, A.M. Increased myocardial NADPH oxidase activity in human heart failure. J. Am. Coll. Cardiol 2003, 41, 2164–2171. [Google Scholar]
- Ghafourifar, P.; Asbury, M.L.; Joshi, S.S.; Kincaid, E.D. Determination of mitochondrial nitric oxide synthase activity. Methods Enzymol 2005, 396, 424–444. [Google Scholar]
- Maytin, M.; Siwik, D.A.; Ito, M.; Xiao, L.; Sawyer, D.B.; Liao, R.; Colucci, W.S. Pressure overload-induced myocardial hypertrophy in mice does not require gp91phox. Circulation 2004, 109, 1168–1171. [Google Scholar]
- Jolly, S.R.; Kane, W.J.; Bailie, M.B.; Abrams, G.D.; Lucchesi, B.R. Canine myocardial reperfusion injury. Its reduction by the combined administration of superoxide dismutase and catalase. Circ. Res 1984, 54, 277–285. [Google Scholar]
- Onogi, H.; Minatoguchi, S.; Chen, X.H.; Bao, N.; Kobayashi, H.; Misao, Y.; Yasuda, S.; Yamaki, T.; Maruyama, R.; Uno, Y.; et al. Edaravone reduces myocardial infarct size and improves cardiac function and remodelling in rabbits. Clin. Exp. Pharmacol. Physiol 2006, 33, 1035–1041. [Google Scholar]
- Nakamura, Y.; Yamada, Y.; Shimomura, H.; Nagayoshi, Y.; Tsujita, K.; Yamashita, T.; Fukuda, M.; Ohba, K.; Nako, H.; Ogura, Y.; et al. Effect of edaravone on plasma monocyte chemoattractant protein-1 levels in patients with acute myocardial infarction. J. Cardiol 2009, 54, 416–424. [Google Scholar]
- Tsujita, K.; Shimomura, H.; Kaikita, K.; Kawano, H.; Hokamaki, J.; Nagayoshi, Y.; Yamashita, T.; Fukuda, M.; Nakamura, Y.; Sakamoto, T.; et al. Long-term efficacy of edaravone in patients with acute myocardial infarction. Circ. J 2006, 70, 832–837. [Google Scholar]
- Jurewicz, M.; Ueno, T.; Azzi, J.; Tanaka, K.; Murayama, T.; Yang, S.; Sayegh, M.H.; Niimi, M.; Abdi, R. Donor antioxidant strategy prolongs cardiac allograft survival by attenuating tissue dendritic cell immunogenicity. Am. J. Transplant 2011, 11, 348–355. [Google Scholar]
- Kotani, Y.; Ishino, K.; Osaki, S.; Honjo, O.; Suezawa, T.; Kanki, K.; Yutani, C.; Sano, S. Efficacy of MCI-186, a free-radical scavenger and antioxidant, for resuscitation of nonbeating donor hearts. J. Thorac. Cardiovasc. Surg 2007, 133, 1626–1632. [Google Scholar]
- Yamazaki, K.; Miwa, S.; Toyokuni, S.; Nemoto, S.; Oriyanhan, W.; Takaba, K.; Saji, Y.; Marui, A.; Nishina, T.; Ikeda, T.; et al. Effect of edaravone, a novel free radical scavenger, supplemented to cardioplegia on myocardial function after cardioplegic arrest: In vitro study of isolated rat heart. Heart Vessels 2009, 24, 228–235. [Google Scholar]
- Minhaz, U.; Tanaka, M.; Tsukamoto, H.; Watanabe, K.; Koide, S.; Shohtsu, A.; Nakazawa, H. Effect of MCI-186 on postischemic reperfusion injury in isolated rat heart. Free Radic. Res 1996, 24, 361–367. [Google Scholar]
- Wu, T.W.; Zeng, L.H.; Wu, J.; Fung, K.P. Myocardial protection of MCI-186 in rabbit ischemia-reperfusion. Life Sci 2002, 71, 2249–2255. [Google Scholar]
- Yagi, H.; Horinaka, S.; Matsuoka, H. Edaravone prevented deteriorated cardiac function after myocardial ischemia-reperfusion via inhibiting lipid peroxidation in rat. J. Cardiovasc. Pharmacol 2005, 46, 46–51. [Google Scholar]
- Rajesh, K.G.; Sasaguri, S.; Suzuki, R.; Maeda, H. Antioxidant MCI-186 inhibits mitochondrial permeability transition pore and upregulates bcl-2 expression. Am. J. Physiol. Heart Circ. Physiol 2003, 285, H2171, –2178.121.. [Google Scholar]
- Onimaru, S.; Nakamura, K.; Kariyazono, H.; Ikeda, R.; Ueno, T.; Fukumoto, Y.; Yabuki, A.; Sakata, R.; Yamada, K. Inhibitory effects of edaravone on the production of tumor necrosis factor-alpha in the isolated heart undergoing ischemia and reperfusion. Heart Vessels 2006, 21, 108–115. [Google Scholar]
- Pei, H.; Jia, M.; Sun, L.; Zheng, X.; Zhou, H. A hypothesis: Edaravone exert cardioprotection partly via modulation of adiponectin. Med. Hypotheses 2012, 79, 141–142. [Google Scholar]
- Sukmawan, R.; Yada, T.; Toyota, E.; Neishi, Y.; Kume, T.; Shinozaki, Y.; Mori, H.; Ogasawara, Y.; Kajiya, F.; Yoshida, K. Edaravone preserves coronary microvascular endothelial function after ischemia/reperfusion on the beating canine heart in vivo. J. Pharmacol. Sci 2007, 104, 341–348. [Google Scholar]
- Miyazaki, Y.; Kaikita, K.; Endo, M.; Horio, E.; Miura, M.; Tsujita, K.; Hokimoto, S.; Yamamuro, M.; Iwawaki, T.; Gotoh, T.; et al. C/EBP homologous protein deficiency attenuates myocardial reperfusion injury by inhibiting myocardial apoptosis and inflammation. Arterioscler. Thromb. Vasc. Biol 2011, 31, 1124–1132. [Google Scholar]
- Fukuda, A.; Okubo, S.; Tanabe, Y.; Hoshiba, Y.; Shiobara, H.; Harafuji, K.; Kobori, Y.; Fujinawa, M.; Okubo, T.; Yamashina, A. Cardioprotective effect of edaravone against ischaemia-reperfusion injury in the rabbit heart before, during and after reperfusion treatment. J. Int. Med. Res 2006, 34, 475–484. [Google Scholar]
- Walker, J.R.; Fairfull-Smith, K.E.; Anzai, K.; Lau, S.; White, P.J.; Scammells, P.J.; Bottle, S.E. Edaravone containing isoindoline nitroxides for the potential treatment of cardiovascular ischaemia. Med. Chem. Commun 2011, 2, 436–441. [Google Scholar]
- Sorescu, D.; Griendling, K.K. Reactive oxygen species, mitochondria, and NAD(P)H oxidases in the development and progression of heart failure. Congest. Heart Fail 2002, 8, 132–140. [Google Scholar]
- Nakamura, K.; Fushimi, K.; Kouchi, H.; Mihara, K.; Miyazaki, M.; Ohe, T.; Namba, M. Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-alpha and angiotensin II. Circulation 1998, 98, 794–799. [Google Scholar]
- Zafari, A.M.; Ushio-Fukai, M.; Akers, M.; Yin, Q.; Shah, A.; Harrison, D.G.; Taylor, W.R.; Griendling, K.K. Role of NADH/NADPH oxidase-derived H2O2 in angiotensin II-induced vascular hypertrophy. Hypertension 1998, 32, 488–495. [Google Scholar]
- Li, J.M.; Gall, N.P.; Grieve, D.J.; Chen, M.; Shah, A.M. Activation of NADPH oxidase during progression of cardiac hypertrophy to failure. Hypertension 2002, 40, 477–484. [Google Scholar]
- Ekelund, U.E.; Harrison, R.W.; Shokek, O.; Thakkar, R.N.; Tunin, R.S.; Senzaki, H.; Kass, D.A.; Marban, E.; Hare, J.M. Intravenous allopurinol decreases myocardial oxygen consumption and increases mechanical efficiency in dogs with pacing-induced heart failure. Circ. Res 1999, 85, 437–445. [Google Scholar]
- Ide, T.; Tsutsui, H.; Kinugawa, S.; Utsumi, H.; Kang, D.; Hattori, N.; Uchida, K.; Arimura, K.; Egashira, K.; Takeshita, A. Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circ. Res 1999, 85, 357–363. [Google Scholar]
- Grocott-Mason, R.; Anning, P.; Evans, H.; Lewis, M.J.; Shah, A.M. Modulation of left ventricular relaxation in isolated ejecting heart by endogenous nitric oxide. Am. J. Physiol 1994, 267, H1804–H1813. [Google Scholar]
- Ferdinandy, P.; Danial, H.; Ambrus, I.; Rothery, R.A.; Schulz, R. Peroxynitrite is a major contributor to cytokine-induced myocardial contractile failure. Circ. Res 2000, 87, 241–247. [Google Scholar]
- Klebl, B.M.; Ayoub, A.T.; Pette, D. Protein oxidation, tyrosine nitration, and inactivation of sarcoplasmic reticulum Ca2+-ATPase in low-frequency stimulated rabbit muscle. FEBS Lett 1998, 422, 381–384. [Google Scholar]
- Maack, C.; Kartes, T.; Kilter, H.; Schafers, H.J.; Nickenig, G.; Bohm, M.; Laufs, U. Oxygen free radical release in human failing myocardium is associated with increased activity of rac1-gtpase and represents a target for statin treatment. Circulation 2003, 108, 1567–1574. [Google Scholar]
- De Biase, L.; Pignatelli, P.; Lenti, L.; Tocci, G.; Piccioni, F.; Riondino, S.; Pulcinelli, F.M.; Rubattu, S.; Volpe, M.; Violi, F. Enhanced TNF alpha and oxidative stress in patients with heart failure: effect of tnf alpha on platelet O2-production. Thromb. Haemost 2003, 90, 317–325. [Google Scholar]
- Belch, J.J.; Bridges, A.B.; Scott, N.; Chopra, M. Oxygen free radicals and congestive heart failure. Br. Heart J 1991, 65, 245–248. [Google Scholar]
- Yano, M.; Okuda, S.; Oda, T.; Tokuhisa, T.; Tateishi, H.; Mochizuki, M.; Noma, T.; Doi, M.; Kobayashi, S.; Yamamoto, T.; et al. Correction of defective interdomain interaction within ryanodine receptor by antioxidant is a new therapeutic strategy against heart failure. Circulation 2005, 112, 3633–3643. [Google Scholar]
- Xin, Y.; Zhang, S.; Gu, L.; Liu, S.; Gao, H.; You, Z.; Zhou, G.; Wen, L.; Yu, J.; Xuan, Y. Electrocardiographic and biochemical evidence for the cardioprotective effect of antioxidants in acute doxorubicin-induced cardiotoxicity in the beagle dogs. Biol. Pharm. Bull 2011, 34, 1523–1526. [Google Scholar]
- Arumugam, S.; Thandavarayan, R.A.; Veeraveedu, P.T.; Nakamura, T.; Arozal, W.; Sari, F.R.; Giridharan, V.V.; Soetikno, V.; Palaniyandi, S.S.; Harima, M.; et al. Beneficial effects of edaravone, a novel antioxidant, in rats with dilated cardiomyopathy. J. Cell. Mol. Med 2012, 16, 2176–2185. [Google Scholar]
- Watanabe, K.; Sukumaran, V.; Veeraveedu, P.T.; Thandavarayan, R.A.; Gurusamy, N.; Ma, M.; Arozal, W.; Sari, F.R.; Lakshmanan, A.P.; Arumugam, S.; et al. Regulation of inflammation and myocardial fibrosis in experimental autoimmune myocarditis. Inflam. Allergy Drug Targets 2011, 10, 218–225. [Google Scholar]
- Okabe, T.A.; Kishimoto, C.; Hattori, M.; Nimata, M.; Shioji, K.; Kita, T. Cardioprotective effects of 3-methyl-1-phenyl-2-pyrazolin-5-one (MCI-186), a novel free radical scavenger, on acute autoimmune myocarditis in rats. Exp. Clin. Cardiol 2004, 9, 177–180. [Google Scholar]
- Pryor, W.A. The antioxidant nutrients and disease prevention—What do we know and what do we need to find out? Am. J. Clin. Nutr 1991, 53, 391S–393S. [Google Scholar]
- Nimata, M.; Okabe, T.A.; Hattori, M.; Yuan, Z.; Shioji, K.; Kishimoto, C. MCI-186 (edaravone), a novel free radical scavenger, protects against acute autoimmune myocarditis in rats. Am. J. Physiol. Heart Circ. Physiol 2005, 289, H2514–H2518. [Google Scholar]
- Shimazaki, H.; Watanabe, K.; Veeraveedu, P.T.; Harima, M.; Thandavarayan, R.A.; Arozal, W.; Tachikawa, H.; Kodama, M.; Aizawa, Y. The antioxidant edaravone attenuates er-stress-mediated cardiac apoptosis and dysfunction in rats with autoimmune myocarditis. Free Radic. Res 2010, 44, 1082–1090. [Google Scholar]
- Arumugam, S.; Thandavarayan, R.A.; Veeraveedu, P.T.; Giridharan, V.V.; Soetikno, V.; Harima, M.; Suzuki, K.; Nagata, M.; Tagaki, R.; Kodama, M.; et al. Involvement of AMPK and MAPK signaling during the progression of experimental autoimmune myocarditis in rats and its blockade using a novel antioxidant. Exp. Mol. Pathol 2012, 93, 183–189. [Google Scholar]
- Yamawaki, M.; Sasaki, N.; Shimoyama, M.; Miake, J.; Ogino, K.; Igawa, O.; Tajima, F.; Shigemasa, C.; Hisatome, I. Protective effect of edaravone against hypoxia-reoxygenation injury in rabbit cardiomyocytes. Br. J. Pharmacol 2004, 142, 618–626. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Kikuchi, K.; Tancharoen, S.; Takeshige, N.; Yoshitomi, M.; Morioka, M.; Murai, Y.; Tanaka, E. The Efficacy of Edaravone (Radicut), a Free Radical Scavenger, for Cardiovascular Disease. Int. J. Mol. Sci. 2013, 14, 13909-13930. https://doi.org/10.3390/ijms140713909
Kikuchi K, Tancharoen S, Takeshige N, Yoshitomi M, Morioka M, Murai Y, Tanaka E. The Efficacy of Edaravone (Radicut), a Free Radical Scavenger, for Cardiovascular Disease. International Journal of Molecular Sciences. 2013; 14(7):13909-13930. https://doi.org/10.3390/ijms140713909
Chicago/Turabian StyleKikuchi, Kiyoshi, Salunya Tancharoen, Nobuyuki Takeshige, Munetake Yoshitomi, Motohiro Morioka, Yoshinaka Murai, and Eiichiro Tanaka. 2013. "The Efficacy of Edaravone (Radicut), a Free Radical Scavenger, for Cardiovascular Disease" International Journal of Molecular Sciences 14, no. 7: 13909-13930. https://doi.org/10.3390/ijms140713909
APA StyleKikuchi, K., Tancharoen, S., Takeshige, N., Yoshitomi, M., Morioka, M., Murai, Y., & Tanaka, E. (2013). The Efficacy of Edaravone (Radicut), a Free Radical Scavenger, for Cardiovascular Disease. International Journal of Molecular Sciences, 14(7), 13909-13930. https://doi.org/10.3390/ijms140713909