Substrate Temperature Dependent Surface Morphology and Photoluminescence of Germanium Quantum Dots Grown by Radio Frequency Magnetron Sputtering
Abstract
:1. Introduction
2. Results and Discussion
2.1. FESEM Results
2.2. XRD Spectra
2.3. AFM Analysis
2.3.1. Size Distribution
2.3.2. RMS Roughness
2.4. Photoluminescence Results
3. Experimental Section
4. Conclusions
Acknowledgments
References
- Gu, G.; Burghard, M.; Kim, G.T.; Dusberg, G.S.; Chiu, P.W.; Krstic, V.; Roth, S.; Han, W.Q. Growth and electrical transport of germanium nanowires. J. Appl. Phys 2001, 90, 5747–5751. [Google Scholar]
- Montalenti, F.; Raiteri, P.; Migas, D.; Kanel, H.V.; Rastelli, A.; Manzano, C.; Costantini, G.; Denker, U.; Schmidt, O.G.; Kern, K.; et al. Atomic-Scale Pathway of the Pyramid-to-Dome Transition during Ge Growth on Si(001). Phys. Rev. Lett 2004, 93, 216102–216105. [Google Scholar]
- Ray, S.K.; Das, S.; Singha, R.K.; Manna, S.; Dhar, A. Structural and optical properties of germanium nanostructures on Si(100) and embedded in high-k oxides. Nanoscale Res. Lett 2011, 6, 224–233. [Google Scholar]
- Warner, J.H.; Tilley, R.D. Synthesis of water-soluble photoluminescent germanium nanocrystals. Nanotechnology 2006, 17, 3745–3749. [Google Scholar]
- Chiu, H.W.; Kauzlarich, S.M. Investigation of reaction conditions for optimal germanium nanoparticle production by a simple reduction route. Chem. Mater 2006, 18, 1023–1028. [Google Scholar]
- Fok, E.; Shih, M.L.; Meldrum, A.; Veinot, J.G.C. Preparation of alkyl-surface functionalized germanium quantum dots via thermally initiated hydrogermylation. Chem. Comm 2004, 4, 386–387. [Google Scholar]
- Simonsen, A.C.; Schleberger, M.; Tougaard, S.; Hansen, J.L.; Larsen, A.N. Nanostructure of Ge deposited on Si(001): A study by XPS peak shape analysis and AFM. Thin Solid Films 1999, 338, 165–171. [Google Scholar]
- Khan, A.F.; Mehmood, M.; Rana, A.M.; Muhammad, T. Effect of annealing on structural, optical and electrical properties of nanostructured Ge thin films. Appl. Surf. Sci 2010, 256, 2031–2037. [Google Scholar]
- Mestanza, S.N.M.; Rodriguez, E.; Frateschi, N.C. The effect of Ge implantation dose on the optical properties of Ge nanocrystals in SiO2. Nanotechnology 2006, 17, 4548–4553. [Google Scholar]
- Sun, K.W.; Sue, S.H.; Liu, C.W. Visible photoluminescence from Ge quantum dots. Physica E 2005, 28, 525–528. [Google Scholar]
- Riabinina, D.; Durand, C.; Chaker, M. A novel approach to the synthesis of photoluminescent germanium nanoparticles by reactive laser ablation. Nanotechnology 2006, 17, 2152–2155. [Google Scholar]
- Oku, T.; Nakayama, T.; Kuno, M.; Nozue, Y.; Wallenberg, L.R.; Niihara, K.; Suganuma, K. Formation and photoluminescence of Ge and Si nanoparticles encapsulated in oxide layers. Mater. Sci. Eng. B 2000, 74, 242–247. [Google Scholar]
- Samavati, A.R.; Ghoshal, S.K.; Othaman, Z. Growth of Ge/Si(100) nanostructures by radio-frequency magnetron sputtering: the Role of annealing temperature. Chin. Phy. Lett 2012, 29, 048101–048104. [Google Scholar]
- Sorianello, V.; Colace, L.; Armani, N.; Rossi, F.; Ferrari, C.; Lazzarini, L.; Assanto, G. Low-temperature germanium thin films on silicon. Opt. Mater. Express 2011, 1, 856–865. [Google Scholar]
- Takagahara, T.; Takeda, K. Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. Phys. Rev. B 1992, 46, 15578–15581. [Google Scholar]
- Dashiell, M.W.; Denker, U.; Müller, C.; Costantini, G.; Manzano, C.; Kern, K.; Schmidt, O.G. Photoluminescence of ultrasmall Ge quantum dots grown by molecular-beam epitaxy at low temperatures. Appl. Phys. Lett 2002, 80, 1279–1281. [Google Scholar]
© 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Samavati, A.; Othaman, Z.; Ghoshal, S.K.; Dousti, M.R.; Kadir, M.R.A. Substrate Temperature Dependent Surface Morphology and Photoluminescence of Germanium Quantum Dots Grown by Radio Frequency Magnetron Sputtering. Int. J. Mol. Sci. 2012, 13, 12880-12889. https://doi.org/10.3390/ijms131012880
Samavati A, Othaman Z, Ghoshal SK, Dousti MR, Kadir MRA. Substrate Temperature Dependent Surface Morphology and Photoluminescence of Germanium Quantum Dots Grown by Radio Frequency Magnetron Sputtering. International Journal of Molecular Sciences. 2012; 13(10):12880-12889. https://doi.org/10.3390/ijms131012880
Chicago/Turabian StyleSamavati, Alireza, Zulkafli Othaman, Sib Krishna Ghoshal, Mohammad Reza Dousti, and Mohammed Rafiq Abdul Kadir. 2012. "Substrate Temperature Dependent Surface Morphology and Photoluminescence of Germanium Quantum Dots Grown by Radio Frequency Magnetron Sputtering" International Journal of Molecular Sciences 13, no. 10: 12880-12889. https://doi.org/10.3390/ijms131012880
APA StyleSamavati, A., Othaman, Z., Ghoshal, S. K., Dousti, M. R., & Kadir, M. R. A. (2012). Substrate Temperature Dependent Surface Morphology and Photoluminescence of Germanium Quantum Dots Grown by Radio Frequency Magnetron Sputtering. International Journal of Molecular Sciences, 13(10), 12880-12889. https://doi.org/10.3390/ijms131012880