Biological Potential of Sixteen Legumes in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction
2.3. HPLC Analysis of Individual Phenolic Acids
2.4. Determination of Total Phenolic Content (TPC)
2.5. Antiradical Activity Against DPPH Ridical
2.6. Determination of α-Glucosidase Inhibition Activity
2.7. Evaluation of AGE Inhibition Activity
2.8. Measurement of Tyrosinase Inhibition Activity
2.9. Statistical Analysis
3. Results and Discussion
3.1. Individual Phenolic Acid, Total Phenolic Content (TPC) and Antioxidant Activity
3.2. α-Glucosidase Inhibition Activities
3.3. Advanced Glycation Endproducts Formation Inhibition Activities
3.4. Tyrosinase Inhibition Activities
4. Conclusion
Acknowledgements
References
- Yao, Y; Ren, G; Wang, JS; Chen, F; Wang, MF. Antidiatbetic of mung bean extracts in diabetic KK-Ay mice. J. Agric. Food Chem 2008, 56, 8869–8873. [Google Scholar]
- Fang, EF; Lin, P; Wong, JH; Tsao, SW; Ng, TB. A lectin with anti-HIV-1 reverse transcriptase, antitumor, and nitric oxide inducing activities from seeds of Phaseolus vulgaris cv. Extralong Autumn purple bean. J. Agric. Food Chem 2010, 58, 2221–2229. [Google Scholar]
- Li, GH; Wan, JZ; Le, GW; Shi, YH. Novel angiotensin I -converting enzyme inhibition peptides isolated from Alcalase hydrolysate of mung bean protein. J. Pept. Sci 2006, 12, 509–514. [Google Scholar]
- Gao, TH; Chen, BH. Functional components in soybean cake and their effects on antioxidant activity. J. Agric. Food Chem 2006, 54, 7544–7455. [Google Scholar]
- Bolivar, A; Luis, CZ. Impact of germination on phenolic content and antioxidant activity of 13 edible seed species. Food Chem 2010, 119, 1485–1490. [Google Scholar]
- Randhir, R; Shetty, K. Mung beans processed by solid-state bioconversion improves phenolic content and functionality relevant for diabetes and ulcer management. Innovat. Food Sci. Emerg. Tech 2007, 8, 197–204. [Google Scholar]
- Rice-Evans, CA; Miller, NJ; Bolwell, PG; Bramley, PM; Pridham, JB. The relative antioxidant activities of plantderived polyphenolic flavonoids. Free Radic. Res 1995, 22, 375–383. [Google Scholar]
- Luiz, M; Biasutti, A; Garcia, NA. Micellar effect on the scavenging of singlet molecular oxygen by hydroxybenzenes. Redox Rep 2002, 7, 23–28. [Google Scholar]
- Maritim, AC; Sanders, RA; Watkins, JB. Effect of alpha lipoic acid on biomarkers of oxidative stress in streptozotoc in-induced diabetic rats. J. Nutr. Biochem 2003, 14, 288–294. [Google Scholar]
- Jin, L; Xue, HY; Jin, LJ; Li, SY; Xu, YP. Antioxidant and pancreas-protective effect of aucubin on rats with streptozotocin-induced diabetes. Eur. J. Pharmacol 2008, 582, 162–167. [Google Scholar]
- Lebovitz, HE. Postprandial hyperglycemic state: Importance and consequences. Diabetes Res. Clin. Pract 1998, 40, S27–S28. [Google Scholar]
- Puls, W; Keup, U; Krause, HP; Thomas, G; Hofmeister, F. Glucosidase inhibition: A new approach to the treatment of diabetes, obesity, and hyperlipoproteinaemia. Naturwissenschaften 1977, 64, 536–537. [Google Scholar]
- Peng, XF; Zheng, ZP; Cheng, KW; Shan, F; Ren, GX; Chen, F; Wang, MF. Inhibition effect of mung bean extract and its constituents vitexin and isovitexin on the formation of advanced glycation endproducts. Food Chem 2008, 106, 475–481. [Google Scholar]
- Jimenez-Cervantes, C; Martnez-Esparza, M; Perez, C; Daum, N; Solano, F; Garca-Borron, JC. Inhibition of melanogenesis in response to oxidative stress: transient downregulation of melanocyte differentiation markers and possible involvement of microphthalmia transcription factor. J. Cell Sci 2001, 114, 2335–2344. [Google Scholar]
- Shiino, M; Watanabe, Y; Umezawa, K. Synthesis of N-substituted N-nitrosohydroxylamines as inhibitors of mushroom tyrosinase. Bioorg. Med. Chem 2001, 9, 1233–1240. [Google Scholar]
- Huang, ZL; Wang, BW; Eaves, DH; Shikany, JM; Pace, RD. Phenolic compound profile of selected vegetables frequently consumed by African Americans in the southeast United States. Food Chem 2007, 103, 1395–1402. [Google Scholar]
- Yen, GC; Chen, HY. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem 1995, 43, 27–32. [Google Scholar]
- Yao, Y; Ren, G. Effect of thermal treatment on phenolic composition and antioxidant activities of two celery cultivars. LWT-Food Sci. Technol 2011, 44, 181–185. [Google Scholar]
- Yao, Y; Sang, W; Zhou, M; Ren, G. Antioxidant and α-glucosidase inhibition activity of colored grains in China. J. Agric. Food Chem 2010, 58, 770–774. [Google Scholar]
- Yao, Y; Cheng, X; Wang, S; Wang, L; Ren, G. Influence of altitudinal variation on the antioxidant and antidiabetic potential of Azuki bean (Vigna angularis). Int J Food Sci Nutr 2011. In Press. [Google Scholar]
- Lim, TY; Lim, YY; Yule, CM. Evaluation of antioxidant, antibacterial and anti-tyrosinase activities of four Macaranga species. Food Chem 2009, 114, 594–599. [Google Scholar]
- Xu, BJ; Yuan, SH; Chang, SKC. Comparative analysis of phenolic composition, antioxidant capacity, and color of cool season legumes and other selected food legumes. J. Food Sci 2007, 72, S167–S177. [Google Scholar]
- Muhammad, Z; Shahid, I; Shakeel, Ahmad; Iqbal, BM; Wieslaw, W; Ryszard, A. Antioxidant potential of Desi chickpea varieties commonly consumed in Pakistan. J Food Lipids 2008, 15, 326–342. [Google Scholar]
- Amarowicz, R; Pegg, RB. Legumes as a source of natural antioxidants. Eur. J. Lipid Sci. Technol 2008, 110, 865–878. [Google Scholar]
- Yao, Y; Sang, W; Zhou, M; Ren, GX. Phenolic composition and antioxidant activities of eleven celery cultivars. J. Food Sci 2010, 75, C9–C13. [Google Scholar]
- Itoh, T; Kita, N; Kurokawa, Y; Kobayashi, M; Horio, F; Furuichi, Y. Suppressive effect of a hot water extract of adzuki beans (Vigna angularis) on hyperglycemia after sucrose loading in mice and diabetic rats. Biosci. Biotechnol. Biochem 2004, 68, 2416–2421. [Google Scholar]
- Mccue, P; Kwon, YI; Shetty, K. Anti-amylase, antiglucosidase and anti-angiotensin I-converting enzyme potential of selected foods. J. Food Biochem 2005, 29, 278–294. [Google Scholar]
- Lee, SH; Chun, HK; Park, HJ; Lee, YS. Supplementary effect of the high dietary fiber rice on blood glucose in diabetic KK-Ay mice. Korean J. Nutr 2004, 37, 75–80. [Google Scholar]
- Lin, PY; Lai, HM. Bioactive compounds in legumes and their germinated products. J. Agric. Food Chem 2006, 54, 3807–3814. [Google Scholar]
- Gomez-Cordoves, C; Bartolome, B; Vieira, W; Virador, VM. Effects of wine phenolics and sorghum tannins on tyrosinase activity and growth of melanoma cells. J. Agric. Food Chem 2001, 49, 1620–1634. [Google Scholar]
- Cals-Grierson, MM; Ormerod, AD. Nitric oxide function in the skin. Nitric Oxide 2004, 10, 179–193. [Google Scholar]
- Imokawa, G. Analysis of initial melanogenesis including tyrosinase transfer and melanosome differentiation through interrupted melanization by glu-tathione. J. Invest. Dermatol 1989, 93, 100–107. [Google Scholar]
- Abdillahi, HS; Finnie, JF; Staden, JV. Anti-inflammatory, antioxidant, anti-tyrosinase and phenolic contents of four Podocarpus species used in traditional medicine in South Africa. J. Ethnopharmacol 2011, 136, 496–503. [Google Scholar]
- Wu, S; Ng, C; Tzeng, W; Ho, K; Shyu, YT. Functional antioxidant and tyrosinase inhibitory properties of extracts of Taiwanese pummelo (Citrus grandis Osbeck). Afr. J. Biotechnol 2011, 10, 7668–7674. [Google Scholar]
Latin name | Cultivars | Place of production | |
---|---|---|---|
Lima bean | Phaseolus lunatus | Yu-Shan-Bai-Yu-Dou | Jiangxi |
Broad bean | Vicia faba | Feng-Dou No.1 | Yunnan |
Common bean | Phaseolus vulgaris | Long 2244 | Heilongjiang |
Pea | Pisum sativum | Ding-Wan No.1 | Gansu |
Jack bean | Canavalia ensiformis | Xian-Lv | Zhejiang |
Goa bean | Psophocarpus tetragonolobus | Gui-Feng No.1 | Guangxi |
Adzuki bean | Vigna angularis | Jing-Xiao No.38 | Beijing |
Hyacinth bean | Dolichos lablab | Gan-Bian No.5 | Gansu |
Chicking vetch | Lathyrus sativus | Lon-Xian | Heilongjiang |
Garbanzo bean | Cicer arietium | A-1 | Xinjiang |
Dral | Cajanus cajan | Gui-Mu No.2 | Guangxi |
Cow bean | Vigna unguiculata | Zao-Jiang No.1 | Jiangsu |
Rice bean | Vigna umbellata | Man-Dou | Sichuan |
Mung bean | Glycine max | Zhong-Lv No.5 | Shanxi |
Soybean | Phaseolus aureus | Hua-Dou No.20 | Henan |
Caffeic acid | Chlorogenic acid | p-Coumaric acid | Ferulic acid | Sinapic acid | Total | |
---|---|---|---|---|---|---|
Lima bean | nd | nd | 3.25 ± 0.68 f,g | 15.12 ± 2.15 f,g | 6.74 ± 0.15 c | 25.11 ± 1.07 d |
Broad bean | 0.78 ± 0.03 c | nd | 1.68 ± 0.07 i,j,k | 10.56 ± 1.58 j | 2.58 ± 0.23 i,h | 15.60 ± 1.33 g |
Common ean | nd | 0.18 ± 0.05 a | 11.10 ± 0.16 a | 26.06 ± 2.19 a | 9.55 ± 0.24 a | 45.89 ± 2.19 a |
Pea | 0.53 ± 0.01 e | nd | 6.12 ± 1.14 d | 11.66 ± 1.93 i | 3.92 ± 0.19 e,f | 22.23 ± 1.65 e |
Jack bean | nd | nd | 1.84 ± 0.31 j,i | 11.72 ± 2.10 h,i | 8.33 ± 0.61 a,b | 21.89 ± 1.60 e |
Goa bean | nd | nd | 1.08 ± 0.27 j,k | 10.39 ± 2.01 j | 6.74 ± 0.38 c | 18.21 ± 1.94 f |
Adzuki bean | 1.12 ± 0.15 a | 0.20 ± 0.07 a | 2.68 ± 0.51 g,h | 15.41 ± 1.36 f | 6.80 ± 0.26 c | 25.01 ± 0.76 d |
Hyacinth bean | 0.96 ± 0.10 b | nd | 4.63 ± 0.88 e | 19.05 ± 2.75 c,d | 3.25 ± 0.16 f,g,h | 28.25 ± 1.75 c |
Chicking vetch | nd | nd | 2.67 ± 0.19 g,h | 12.39 ± 1.63 h | 2.27 ± 0.30 l | 17.33 ± 1.99 g,f |
Garbanzo bean | nd | 0.13 ± 0.01 b | 4.50 ± 0.53 e | 9.10 ± 1.29 k | 4.47 ± 0.41 e | 18.20 ± 0.87 f |
Dral | nd | nd | 8.78 ± 0.67 b | 18.39 ± 2.01d,e | 7.85 ± 0.62 b | 35.02 ± 1.63 b |
Cow bean | nd | nd | 7.84 ± 0.25 c | 19.48 ± 2.30 b,c | 6.22 ± 0.51c | 33.54 ± 1.96 b |
Rice bean | 0.73 ± 0.02 c,d | 0.15 ± 0.02 b | 3.79 ± 0.16 f | 18.23 ± 1.49 e | 3.49 ± 0.33 f,g | 26.39 ± 1.20 c,d |
Mung bean | nd | nd | 5.76 ± 0.22 d | 19.86 ± 1.25 b | 7.85 ± 0.46 b | 33.47 ± 1.11 b |
soybean | 0.63 ± 0.01d,e | nd | 1.45 ± 0.10 j,k | 14.69 ± 1.81 g | 5.41 ± 0.60 d | 22.18 ± 0.69 e |
TPC | DPPH | α-Glucosidase inhibition(%) | BSA-Glucose (%) | BSA-MGO (%) | Tyrosinase inhibiton (%) | |
---|---|---|---|---|---|---|
Lima bean | 4.72 ± 0.23 c | 36.25 ± 1.02 f | 27.97 ± 1.07 g | 29.20 ± 0.41 l | 10.50 ± 0.78 h | 49.95 ± 1.32 e |
Broad bean | 6.43 ± 0.71 b | 37.15 ± 2.14 e | 19.09 ± 1.05 i | 39.06 ± 1.95 f,g | 22.60 ± 1.02 f | 67.73 ± 1.28 c |
Common bean | 8.59 ± 0.11 a | 46.83 ± 1.75 a | 51.74 ± 1.49 f | 86.67 ± 2.33 a | 74.06 ± 2.25 a | 75.89 ± 0.75 b |
Pea | 4.87 ± 0.14 c | 31.92 ± 2.46 h | 16.17 ± 2.00 j | 36.04 ± 1.75 g,h | 21.65 ± 1.36 f | 38.62 ± 0.67 g |
Jack bean | 3.77 ± 0.34 d,e | 37.81 ± 2.33 c,d | 32.53 ± 2.65 e,f | 55.66 ± 2.30 d | 16.92 ± 2.07 g | 48.11 ± 2.04 f |
Goa bean | 2.44 ± 0.20 f,g | 37.15 ± 2.01e | 60.42 ± 3.15 a | 40.18 ± 1.98 f,g | 3.74 ± 0.21 i | 23.05 ± 0.35 i |
Adzuki bean | 2.68 ± 0.19 e,f | 18.08 ± 1.94 j | 64.33 ± 2.98 b | 47.32 ± 2.15 e | 12.70 ± 1.05 h | 38.92 ± 1.83 g |
Hyacinth bean | 6.28 ± 0.23 b | 28.01 ± 1.17 i | 25.98 ± 3.01 h | 33.76 ± 2.69 h | 38.62 ± 2.46 d | 74.43 ± 1.25 b |
Chicking vetch | 1.58 ± 0.14 g,h | 15.39 ± 1.48 k | 18.42 ± 1.33 i | nd | nd | 31.93 ± 0.78 h |
Garbanzo bean | 1.04 ± 0.24 h | 1.28 ± 0.06 m | 15.90 ± 1.02 j | nd | nd | 21.35 ± 1.61 j |
Dral | 7.95 ± 0.29 a | 37.93 ± 1.32 c | 32.14 ± 2.05 f | 68.16 ± 3.46 c | 62.46 ± 3.12 b | 67.96 ± 2.91c |
Cow bean | 3.94 ± 0.05 c,d | 37.27 ± 2.48 d,e | 51.54 ± 3.98 d | 42.66 ± 2.89 f | 29.56 ± 1.84 e | 47.49 ± 1.44 f |
Rice bean | 4.88 ± 0.11 c | 35.36 ±1.99 g | 57.98 ± 4.47 c | 67.08 ± 3.75 c | 43.24 ± 1.36 c | 60.97 ± 0.19 d |
Mung bean | 8.14 ± 0.21 a | 45.36 ± 1.27 b | 18.62 ± 2.84 i | 74.84 ± 4.08 b | 72.67 ± 2.57 a | 81.24 ± 1.51 a |
Soybean | 6.10 ± 0.10 b | 15.17 ± 0.93 k | 12.06 ± 3.45 k | 58.50 ± 2.93 d | 17.44 ± 1.09 g | 39.02 ± 1.64 g |
TPC | DPPH | α-Glucosidase inhition | BSA-MGO | BSA-Glucose | Tyrosinase inhibition | |
---|---|---|---|---|---|---|
total phenolic acids | 0.671 a | 0.578 a | 0.322 | 0.676 a | 0.812 b | 0.639 a |
TPC | 0. 653 b | −0.123 | 0.609 a | 0.848 b | 0.883 b | |
DPPH | 0.306 | 0.377 | 0.564 a | 0.670 b | ||
α-Glucosidase inhibition | 0.148 | −0.072 | −0.018 | |||
BSA-MGO | 0.787 b | 0.494 | ||||
BSA-Glucose | 0.840 b |
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Yao, Y.; Cheng, X.; Wang, L.; Wang, S.; Ren, G. Biological Potential of Sixteen Legumes in China. Int. J. Mol. Sci. 2011, 12, 7048-7058. https://doi.org/10.3390/ijms12107048
Yao Y, Cheng X, Wang L, Wang S, Ren G. Biological Potential of Sixteen Legumes in China. International Journal of Molecular Sciences. 2011; 12(10):7048-7058. https://doi.org/10.3390/ijms12107048
Chicago/Turabian StyleYao, Yang, Xuzhen Cheng, Lixia Wang, Suhua Wang, and Guixing Ren. 2011. "Biological Potential of Sixteen Legumes in China" International Journal of Molecular Sciences 12, no. 10: 7048-7058. https://doi.org/10.3390/ijms12107048
APA StyleYao, Y., Cheng, X., Wang, L., Wang, S., & Ren, G. (2011). Biological Potential of Sixteen Legumes in China. International Journal of Molecular Sciences, 12(10), 7048-7058. https://doi.org/10.3390/ijms12107048