Next Article in Journal
The Effect of Treadmill Training Pre-Exercise on Glutamate Receptor Expression in Rats after Cerebral Ischemia
Next Article in Special Issue
Recent Advances in Conjugated Polymers for Light Emitting Devices
Previous Article in Journal
Decreased Erythrocyte CCS Content is a Biomarker of Copper Overload in Rats
Previous Article in Special Issue
Electrochemical Analysis of Conducting Polymer Thin Films
Article Menu

Export Article

Open AccessReview
Int. J. Mol. Sci. 2010, 11(7), 2636-2657;

Conducting Polymer Nanostructures: Template Synthesis and Applications in Energy Storage

National Laboratory of Microstructures (Nanjing), Key Laboratory of Advanced Photonic and Electronic Materials of Jiangsu Province, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, Jiangsu Province, China
Department of Electronic Engineering, The Chinese University of Hongkong, Shatin, New Territories, Hong Kong, China
Author to whom correspondence should be addressed.
Received: 12 May 2010 / Revised: 29 May 2010 / Accepted: 17 June 2010 / Published: 2 July 2010
(This article belongs to the Special Issue Conjugated Polymers)
Full-Text   |   PDF [1828 KB, uploaded 19 June 2014]   |  


Conducting polymer nanostructures have received increasing attention in both fundamental research and various application fields in recent decades. Compared with bulk conducting polymers, conducting polymer nanostructures are expected to display improved performance in energy storage because of the unique properties arising from their nanoscaled size: high electrical conductivity, large surface area, short path lengths for the transport of ions, and high electrochemical activity. Template methods are emerging for a sort of facile, efficient, and highly controllable synthesis of conducting polymer nanostructures. This paper reviews template synthesis routes for conducting polymer nanostructures, including soft and hard template methods, as well as its mechanisms. The application of conducting polymer mesostructures in energy storage devices, such as supercapacitors and rechargeable batteries, are discussed. View Full-Text
Keywords: conducting polymers; nanowires; nanotubes; polyaniline; polypyrrole; template synthesis conducting polymers; nanowires; nanotubes; polyaniline; polypyrrole; template synthesis

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Share & Cite This Article

MDPI and ACS Style

Pan, L.; Qiu, H.; Dou, C.; Li, Y.; Pu, L.; Xu, J.; Shi, Y. Conducting Polymer Nanostructures: Template Synthesis and Applications in Energy Storage. Int. J. Mol. Sci. 2010, 11, 2636-2657.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Int. J. Mol. Sci. EISSN 1422-0067 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top