Recent Advances in Conjugated Polymers for Light Emitting Devices
Abstract
:1. Introduction
1.1. At a Glance: Scientific Interest in Conjugated Polymers
- 1950s—steady work on crystalline organic states.
- 1970s—organic photoconductors (Xerography).
- 1980s—organic non-linear optical materials.
- 1987—Kodak first published the efficient organic light-emitting devices (OLED). 1988—Polymer field-effect transistor demonstrated.
- 1990—Cambridge groups publish the first polymer light-emitting diodes (PLED). 1995—Efficient polymer photovoltaic diodes demonstrated.
- 2000—World’s first full color ink-jet printed PLED display.
- 2009—Google, Nokia, Samsung selling millions of phones with touch OLED screen, first OLED lighting panel.
- 2010—Osram Opto Semiconductors has introduced Orbeos, its first OLED light source.
2. Recent Literature Survey
3. Overview on Organic Solid State Lighting Technology
3.1. OLED Lighting
3.2. OLEDs’ Lighting Benefits
- OLEDs have a significantly lower price than LCDs or plasma displays due to the fact that they can be printed onto any suitable substrate using an inkjet printer or even screen printing technologies.
- The ability of OLEDs to be printed onto flexible substrates has opened the gate to several new applications, like roll-up displays and displays embedded in fabrics.
- OLED pixels directly emit light, thus provides a greater range of colors, brightness, and viewing angle than LCDs.
- One remarkable advantage of OLEDs is the ability of color tuning.
- Energy saving potential.
- Mercury-free.
- New freedom in design.
- OLED substrates can be plastic rather than the glass used for LEDs and LCDs.
- High luminous efficacy.
3.3. Laser Lighting
- Reducing threshold.
- Simple fabrication of microstructure.
- Semiconducting polymers and ultrafast photonics.
- Toward electrical pumping of polymer lasers.
- Low cost.
4. Summary and Future Prospects
References
- May, P. Polymer electronics. Phys. World 1995, 8, 52–57. [Google Scholar]
- Nakada, H; Tohma, T. Inorganic and Organic Electroluminescence; Wissenschaft-und-Technik: Berlin, Germany, 1996; pp. 385–390. [Google Scholar]
- Patil, AO; Heeger, AJ; Wudl, F. Optical properties. Chem. Rev 1988, 88, 183–200. [Google Scholar]
- Burroughes, JH; Bradley, DDC; Brown, AR; Marks, RN; Mackay, K; Friend, RH; Burns, PL; Holmes, AB. Light-emitting-diodes based on conjugated polymers. Nature 1990, 347, 539–541. [Google Scholar]
- Bradley, D. Electroluminescent polymers. Curr. Opin. Solid State. Mater. Sci 1996, 1, 789–797. [Google Scholar]
- Show, AC; Tzu, HJ; Hsin, HL. A review on the emitting species in conjugated polymers for photo- and electro-luminescence. J. Chin. Chem. Soc 2010, 57, 439–458. [Google Scholar]
- Fox, KC. Light-emitting plastics. New Sci 1994, 141, 3–37. [Google Scholar]
- Baigent, DR; Greenham, NC; Grüner, J; Marks, RN; Friend, RH; Moratti, SC; Holmes, AB. Conjugated polymer EL. Synth. Met 1994, 67, 3–10. [Google Scholar]
- Yam, P. Polymer electronics. Sci. Am 1995, 273, 74–79. [Google Scholar]
- Greenham, NC; Friend, RH. Physics of conjugated polymers. Solid State Phys 1995, 49, 1–149. [Google Scholar]
- Gymer, RW. Organic EL displays. Endeavour 1996, 20, 115–120. [Google Scholar]
- Rothberg, LJ; Lovinger, AJ. Organic EL. Mater. Res 1996, 11, 3174–3187. [Google Scholar]
- Salbeck, J; Bunsenges, B. EL with organic compounds. Phys. Chem 1996, 100, 1666–1677. [Google Scholar]
- Salaneck, WR; Stafström, S; BreÂdas, J-L. Conjugated polymer interfaces. In Conjugated Polymer Surfaces and Interfaces; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Sheats, JR; Antoniadis, H; Hueschen, M; Leonard, W; Miller, J; Moon, R; Roitman, D; Stocking, A. Organic EL devices. Science 1996, 273, 884–888. [Google Scholar]
- Lovinger, AJ; Rothberg, LJ. Organic transistors. Mater. Res 1996, 11, 1581–1592. [Google Scholar]
- Feast, WJ; Tsibouklis, J; Pouwer, KL; Groenendaal, L; Meijer, EW. Synthesis of conjugated polymers. Polymer 1996, 37, 5017–5047. [Google Scholar]
- Yang, Y. Polymer EL and LECs. MRS Bull 1997, 22, 31–38. [Google Scholar]
- Friend, RH; Denton, GJ; Halls, JJM; Harrison, NT; Holmes, AB; Köhler, A; Lux, AA; Moratti, SC; Pichler, K; Tessler, N; Towns, C. Polymer device structures. Synth. Met 1997, 84, 463–470. [Google Scholar]
- Díaz-García, MA; Hide, F; Schwartz, BJ; Andersson, MR; Pei, Q; Heeger, AJ. García plastic lasers. Synth. Met 1997, 84, 455–462. [Google Scholar]
- Deuûen, M; Bässler, H. Organic LEDs. Chem. Unserer Zeit 1997, 31, 76–86. [Google Scholar]
- Hide, F; Díaz-García, MA; Schwartz, BJ; Heeger, AJ. New developments in the photonic applications of conjugated polymers. Acc. Chem. Res 1997, 30, 430–436. [Google Scholar]
- Isabelle, LR; Ananth, D; Paul, B. Novel organic materials and technological advances for photonics. Synth. Met 2002, 127, 1–2. [Google Scholar]
- Adam, P; Patrice, R. Processible conjugated polymers: From organic semiconductors to organic metals and superconductors. Prog. Polym. Sci 2002, 27, 135–190. [Google Scholar]
- Brédas, JL; Dory, M; Thémans, B; Delhalle, J; André, JM. Electronic structure and nonlinear optical properties of aromatic polymers and their derivatives. Synthe. Met 1989, 28, 533–542. [Google Scholar]
- Gerwin, HG; John, MW; Marcus, R; Dieter, N. Narrow-band emissions from conjugated-polymer films. Chem. Phys. Lett 1997, 265, 320–326. [Google Scholar]
- Olle, I; Fengling, Z. Polymer optoelectronics-towards nanometer dimensions. Nanotechnol. Nano-Interface Controll. Electr. Dev 2003, 1, 65–81. [Google Scholar]
- Östergård, T; Kvarnström, C; Stubb, H; Ivaska, A. Electrochemically prepared light-emitting diodes of poly(para-phenylene). Thin Solid Films 1997, 311, 58–61. [Google Scholar]
- Anto, RI; Hsiang, CC; Wunshain, F; Ying, SH; Jeng, US; Hsud, CH; Kang, YP; Show, AC. Structure and charge transport properties in MEH-PPV. Synth. Met 2003, 139, 581–584. [Google Scholar]
- Salt, MG; Barnesw, L; Samuel, DW. Photonic band structure and emissive characteristics of MEH-PPV textured microcavities. J. Mod. Opt 2001, 48, 1085–1098. [Google Scholar]
- Veronica, S; Enrique, JLC; Sue, AC. Photoluminescence enhancement in MEH-PPV polymer thin films by surfactant addition. Macromolecules 2006, 39, 5830–5835. [Google Scholar]
- Santos, DA; Quattrocchi, C; Brédas, JL. Electronic structure of polyparaphenylene vinylene copolymers and derivatives: Aspects related to electrolurninescence characteristics. Br. J. Phys 1994, 24, 755–763. [Google Scholar]
- Bathelt, R; Buchhauser, D; Gärditz, C; Paetzold, R; Wellmann, P. Light extraction from OLEDs for lighting applications through light scattering. Org. Electr 2007, 8, 293–299. [Google Scholar]
- Alan, M. Solid state lighting—A world of expanding opportunities at LED. III–Vs Rev 2002, 16, 30–33. [Google Scholar]
- Ullrich, S. Lighting up materials. Mater. Today 2007, 10, 59–59. [Google Scholar]
- Shinar, J; Shinar, R. An overview of organic light-emitting diodes and their applications. In Comprehensive Nanoscience and Technology; Chapter 104; Elsevier: Amsterdam, The Netherland, 2011; pp. 73–107. [Google Scholar]
- Donal, B. Electroluminescent polymers: Materials, physics and device engineering. Curr. Opin. Solid State. Mater. Sci 1996, 1, 789–797. [Google Scholar]
- Myeon, CC; Youngkyoo, K; Chang, SH. Polymers for flexible displays: From material selection to device applications. Prog. Polym. Sci 2008, 33, 581–630. [Google Scholar]
- Fletcher, RB; Lidzey, DG; Bradley, DDC; Walker, S; Inbasekaran, M; Woo, EP. High brightness conjugated polymer LEDs. Synth Met 2000, 111–112, 151–153. [Google Scholar]
- Carpi, F; Rossi, DD. Colours from electroactive polymers: Electrochromic, electroluminescent and laser devices based on organic materials. Optic. Laser Tech 2006, 38, 292–305. [Google Scholar]
- Towns, CR; Grizzi, I; Roberts, M; Wehrum, A. Conjugated polymer—Based light emitting diodes. J Luminesc 2007, 122–123, 976–979. [Google Scholar]
- Roger, JM; Aubrey, LD; John, RR. Electrochromic organic and polymeric materials for display applications. Displays 2006, 27, 2–18. [Google Scholar]
- Adam, P; Patrice, R. Processible conjugated polymer: From organic semiconductors to organic metals and superconductors. Prog. polym. Sci 2002, 27, 135–190. [Google Scholar]
- Ley, KD; Schanze, KS. Photophysics of metal-organic π-conjugated polymer. Coord. Chem. Rev 1998, 171, 287–307. [Google Scholar]
- Palaciosa, RE; Leea, K-J; Rivala, A; Adachia, T; Bolingera, JC; Fradkina, L; Barbara, PF. Single conjugated polymer nanoparticle capacitors. Chem. Phys 2009, 357, 21–27. [Google Scholar]
- Naegele, D; Bittihn, R. Electrically conductive polymers as rechargeable battery electrodes. Solid State Ion 1988, 28–30, 983–989. [Google Scholar]
- Himadri, SM; Chiara, B; Alberto, B; Amlan, JP. Memory applications of a thiophene-based conjugated polymer by photoluminescence measurements. Synthe. Met 2005, 148, 175–178. [Google Scholar]
- Takakazu, Y; Naoki, H. π-Conjugated polymer bearing electronic and optical functionalities. Preparation, properties and their applications. React. Funct. Polym 1998, 37, 1–17. [Google Scholar]
- Andreas, G; Heidi, M; Anne, N; Norbert, S; Walter, H. Aspects of synthesis, analysis and application of aromatic conjugated polymer. Polymer 1991, 32, 1857–1861. [Google Scholar]
- Altamura, P; Bearzotti, A; D’Amico, A; Foglietti, V; Fratoddi, I; Furlani, A; Padeletti, G; Russo, MV; Scavia, G. Electrical and morphological characterisation of new π-conjugated polymer films as gas sensors. Mater. Sci. Eng. C 1998, 5, 217–222. [Google Scholar]
- Pawel, W; Pierre-Henri, A; Laurence, L; Dirk, V. Conjugated polymer based on new thienylene—PPV derivatives for solar cell applications. Electrochem. Commun 2002, 4, 912–916. [Google Scholar]
- Holdcroft, S. Patterning π-conjugated polymers. Adv. Mater 2001, 13, 1753–1765. [Google Scholar]
- Dai, L; Winkler, B; Dong, L; Tong, L; Mau, AWH. Conjugated polymers for light-emitting applications. Adv. Mater 2001, 13, 915–925. [Google Scholar]
- McGehee, MD; Heeger, AJ. Semiconducting (conjugated) polymers as materials for solid-state lasers. Adv. Mater 2000, 12, 1655–1668. [Google Scholar]
- Gierschner, J; Cornil, J; Egelhaaf, HJ. Optical bandgaps of π-conjugated organic materials at the polymer limit: Experiment and theory. Adv. Mater 2007, 19, 173–191. [Google Scholar]
- Zoltán, GS; Douglas, SG; Shahab, E. Fluorescence and excited-state structure of conjugated polymers. Adv. Mater 1994, 6, 280–287. [Google Scholar]
- Leger, JM. Organic electronics: The ions have it. Adv. Mater 2008, 20, 837–841. [Google Scholar]
- Mary, ON; Stephen, MK. Ordered materials for organic electronics and photonics. Adv. Mater 2011, 23, 566–584. [Google Scholar]
- Luping, Y; Zhenan, B. Conjugated polymers exhibiting liquid crystallinity. Adv. Mater 1994, 6, 156–159. [Google Scholar]
- Bernius, MT; Inbasekaran, M; O’Brien, J; Wu, W. Progress with light-emitting polymers. Adv. Mater 2000, 12, 1737–1750. [Google Scholar]
- Optoelectronics Group. Cavendish Laboratory, Univerisy of Cambridge: Cambridge, UK, 2010. Available online: http://www.oe.phy.cam.ac.uk (accessed on 7 March 2011).
- Kallinger, C; Hilmer, M; Haugeneder, A; Perner, M; Spirkl, W; Lemmer, U; Feldmann, J; Scherf, U; Müllen, K; Gombert, A; Wittwer, V. A flexible conjugated polymer laser. Adv. Mater 1998, 10, 920–923. [Google Scholar]
- Donal, DCB. Elctroluminescence: A bright future for conjugated polymers? Adv. Mater 1992, 4, 756–758. [Google Scholar]
- Holmes, AB; Bradley, DDC; Brown, AR; Burn, PL; Burroughes, JH; Friend, RH; Greenham, NC; Gymer, RW; Angew, DA. EL in conjugated polymers. Chem. Int. Ed 1998, 37, 402–428. [Google Scholar]
- Friend, RH; Bradley, DDC; Holmes, AB. Polymer LEDs. Phys. World 1992, 5, 42–46. [Google Scholar]
- Bäuerle, D. Laser processing and chemistry: Recent developments. Appl. Sur. Sci 2002, 186, 1–6. [Google Scholar]
- Akcelrud, L. Electroluminescent polymers. Prog. Polym. Sci 2003, 28, 875–962. [Google Scholar]
- Tarver, J; Yoo, JE; Loo, Y-L. Organic Electronic Devices with Water-Dispersible Conducting Polymers. In Comprehensive Nanoscience and Technology; Elsevier: Amsterdam, The Netherland, 2011; pp. 413–446. [Google Scholar]
- Antonio, F. π-Conjugated polymers for organic electronics and photovoltaic cell applications. Chem. Mater 2011, 23, 733–758. [Google Scholar]
- Schumacher, S; Galbraith, I; Ruseckas, A; Turnbull, GA; Samuel, IDW. Dynamics of photoexcitation and stimulated optical emission in conjugated polymers: A multiscale quantum-chemistry and Maxwell-Bloch-equations approach. Phys. Rev. B 2010, 81, 245407–245411. [Google Scholar]
- Ebinazar, BN; Ifor, DWS; Deepak, S; Dianne, MM; Yanming, S; Ben, BYH; Daniel, M; Alan, JH. Organic light emitting complementary inverters. Appl Phys Lett 2010, 96, 043304:1–043304:3. [Google Scholar]
- Carlos, S. Organic semiconductors: A little energy goes a long way. Nature Mater 2010, 9, 884–885. [Google Scholar]
- Li, C; Zhishan, B. Three-dimensional conjugated macromolecules as light-emitting materials. Polymer 2010, 51, 4273–4294. [Google Scholar]
- Adam, JM. Power from plastic. Curr. Opin. Solid State Mater. Sci 2010, 14, 123–130. [Google Scholar]
- Shufen, C; Lingling, D; Jun, X; Ling, P; Linghai, X; Quli, F; Wei, H. Recent developments in top-emitting organic light-emitting diodes. Adv. Mater 2010, 22, 5227–5239. [Google Scholar]
- Taeshik, E; Eilaf, A; Samson, AJ. Solution-processed highly efficient blue phosphorescent polymer light-emitting diodes enabled by a new electron transport material. Adv. Mater 2010, 22, 4744–4748. [Google Scholar]
- Tao, R; Qiao, J; Duan, L; Qiu, Y. Blue phosphorescence materials for organic light-emitting diodes. Prog. Chem 2010, 22, 2215–2227. [Google Scholar]
- Jenny, C; Guglielmo, L. Organic photonics for communications. Nature Phot 2010, 4, 438–446. [Google Scholar]
- Neil, W. Conjugated polymers: Phases go their separate ways. Nature Chem 2010, 1, 748–748. [Google Scholar]
- Shahul, H; Predeep, P; Baiju, MR. Polymer light emitting diodes—A review on Materials and techniques. Rev. Adv. Mater. Sci 2010, 26, 30–42. [Google Scholar]
- Stefano, T. Lighting technology: Time to change the bulb. Nature 2009, 459, 312–314. [Google Scholar]
- Ebinazar, BN; Minghong, T; Peter, L; Sarah, RM; Jonathan, DY; Daniel, M; Alan, JH. Low threshold in polymer lasers on conductive substrates by distributed feedback nanoimprinting: Progress toward electrically pumped plastic lasers. Adv. Mater 2009, 21, 799–802. [Google Scholar]
- Jiang, H; Taranekar, P; Reynolds, JR; Schanze, KS. Conjugated polyelectrolytes: Synthesis, photophysics, and applications. Angew. Chem. Int. Ed 2009, 48, 4300–4316. [Google Scholar]
- Rachel, AS; Bryan, M; Saar, K; Jeffrey, JU. Block copolymers for organic optoelectronics. Macromolecules 2009, 42, 9205–9216. [Google Scholar]
- Daniele, B; Gilles, H. High-performance organic field-effect transistors. Adv. Mater 2008, 21, 1473–1486. [Google Scholar]
- Ling, Q; Liaw, D; Zhu, C; Chan, D; Kang, E; Neoh, K. Polymer electronic memories: Materials, devices and mechanisms. Prog. Polym. Sci 2008, 33, 917–978. [Google Scholar]
- Kalinowski, J. Optical materials for organic light-emitting devices. Opt. Mater 2008, 30, 792–799. [Google Scholar]
- Johannes, KF. Poly (arylene vinylene)s. High Perform. Polym 2008, 1, 89–137. [Google Scholar]
- Inamul, HR; Jae, YL; In, TK; So, HL. Recent progress in the development of polymers for white light-emitting polymer devices. Monatsh. Chem 2008, 139, 725–737. [Google Scholar]
- Abouelaoualim, D; Assouag, M; Elmidaoui, A. Numerical study of electrical characteristics of conjugated polymer light-emitting diodes. Semiconduct. Phys. Quantum Electron. Optoelectr 2008, 11, 151–153. [Google Scholar]
- Yang, X; Lee, C-L; Westenhoff, S; Zhang, X; Greenham, NC. Saturation, relaxation, and dissociation of excited triplet excitons in conjugated polymers. Adv. Mater 2008, 20, 1–4. [Google Scholar]
- Sven, M; Physics, GL; Novaled, A. Highly efficient white PIN OLEDs for lighting applications. LED J 2008, 1, 40–41. [Google Scholar]
- Sony XEL-1: The world’s first OLED TV; Sony, a.b.: Tokyo, Japan, 2008; Available online: www.OLED-Info.com (accessed on 21 March 2011).
- Samuel, IDW. Organic semiconductor lasers. Chem. Rev 2007, 107, 1272–1295. [Google Scholar]
- Friend, R. Polymers show they’re metal. Nature 2006, 441, 1. [Google Scholar]
- Amarasinghe, D; Ruseckas, A; Vasdekis, AE; Goossens, M; Turnbull, GA; Samuel, IDW. Broadband solid state optical amplifier based on a semi conducting polymer. Appl. Phys. Lett 2006, 89, 2011–2019. [Google Scholar]
- Roger, JM; Aubrey, LD; John, RR. Electrochromic organic and polymeric materials for display applications. Displays 2006, 27, 2–18. [Google Scholar]
- Danilo, D. Electrochemiluminescence from organic emitters. Chem. Mater 2005, 17, 1933–1945. [Google Scholar]
- Service, RF. Organic LEDs look forward to a bright, white future. Science 2005, 310, 1762–1763. [Google Scholar]
- Lidzeya, DG; Voigta, M; Giebelerb, C; Buckleyb, A; Wrightb, J; Böhlenc, K; Fieretc, J; Allottc, R. Laser-assisted patterning of conjugated polymer light emitting diodes. Org. Electr 2005, 6, 221–228. [Google Scholar]
- Stuart, S; David, P; Tim, M. Case Study: Cambridge Display Technology Ltd, 20th Version ed; University of Cambridge Centre for Technology Management: Cambridge, UK, 2005; pp. 1–19. [Google Scholar]
- D’Andrade, BW; Forrest, SR. White organic light emitting devices for solid state lighting. Adv. Mater 2004, 16, l585–l595. [Google Scholar]
- Abhishek, PK; Christopher, JT; Amit, B; Samson, AJ. Electron transport materials for organic light-emitting diodes. Chem. Mater 2004, 16, 4556–4573. [Google Scholar]
- Forrest, SR. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 2004, 428, 911–918. [Google Scholar]
- Josemon, J; Luke, O; Jingying, Z; Martin, G; Emil, JWL; Andrew, CG; Klaus, M. Progress towards stable blue light-emitting polymer. Curr. Appl. Phys 2004, 4, 339–342. [Google Scholar]
- Ifor, DWS. Laser physics: Fantastic plastic. Nature 2004, 429, 709–711. [Google Scholar]
- Ifor, DWS. Towards polymer lasers and amplifiers ultrafast photonics. Ultrafast Phot 2004, 1, 291–304. [Google Scholar]
- Hiroyuki, S. Organic light-emitting materials and devices for optical communication technology. J. Photochem. Photobiol 2004, 166, 155–161. [Google Scholar]
- John, KB. Developments in organic displays. Mater. Today 2004, 7, 42–46. [Google Scholar]
- Asawapirom, U; Gadermaier, S; Gamerith, R; Güntner, T; Kietzke, S; Patil, T; Piok, R; Montenegro, B; Stiller, B; Tiersch, K; Landfester, E; Scherf, U. Materials for polymer electronics applications—Semiconducting polymer thin films and nanoparticles. Macromol. Symp 2004, 212, 83–91. [Google Scholar]
- Hong-Ku, S; Jung-Il, J. Light-emitting characteristics of conjugated polymers. Adv. Polym. Sci 2002, 158, 193–243. [Google Scholar]
- David, B. Semiconducting polymer LEDs. Mater. Today 2002, 5, 3032–3039. [Google Scholar]
- Hung, LS; Chen, CH. Recent progress of molecular organic electroluminescent materials and devices. Mater. Sci. Eng. Reas 2002, 39, 143–222. [Google Scholar]
- Köhler, A; Wilson, JS; Friend, RH. Fluorescence and phosphorescence in organic materials. Adv. Eng. Mater 2002, 4, 453–459. [Google Scholar]
- Brabec, CJ; Winder, C; Sariciftci, NS; Hummelen, JC; Dhanabalan, A; van Hal, PA; Janssen, RAJ. A low-bandgap semiconducting polymer for photovoltaic devices and infrared emitting devices. Adv. Funct. Mater 2002, 12, 709–712. [Google Scholar]
- Vander Horst, J-W; Bobbert, PA; Michels, MAJ. Electronic and optical excitations in crystalline conjugated polymers. Phys Rev 2002, B 66, 035206:1–035206:7. [Google Scholar]
- Heeger, AJ. Nobel Lecture—Semiconducting and metallic polymers—The fourth generation of polymeric materials. Rev. Modern Phys 2001, 73, 681–700. [Google Scholar]
- McDiarmid, AG. Nobel lecture—“Synthetic metals”—A novel role for organic polymers. Rev. Modern Phys 2001, 73, 701–712. [Google Scholar]
- Shirakawa, H. Nobel lecture: The discovery of polyacetylene film—The dawning of an era of conducting polymers. Rev. Modern Phys 2001, 73, 713–718. [Google Scholar]
- Philip, B. A happier marriage. Nature News 2001, 1, 010201–010203. [Google Scholar]
- Scherf, U; Riechel, S; Lemmer, U; Mahrt, RF. Conjugated polymers: Lasing and stimulated emission. Curr. Opin. Solid State Mater. Sci 2001, 5, 143–154. [Google Scholar]
- Friend, RH. Conjugated polymers. New materials for optoelectronic devices. Pure Appl. Chem 2001, 73, 425–430. [Google Scholar]
- Lee, CH; Kang, GW; Jeon, JW; Song, WJ; Kim, SY; Seoul, C. Photoluminescence and electroluminescence of vacuum-deposited poly (p-phenylene) thin film. Synth. Met 2001, 117, 75–79. [Google Scholar]
- Ding, L; Karasz, FE; Lin, Z; Zheng, M. Effect of forster energy transfer and hole transport layer on performance of polymer light-emitting diodes. Macromolecules 2001, 34, 9183–9188. [Google Scholar]
- Ball, P. Let there be more light. Nature News 2000, 1, 000217–11. [Google Scholar]
- Kranzelbinder, G; Leising, G. Organic solid-state lasers. Rep. Prog. Phys 2000, 63, 729–762. [Google Scholar]
- Mitschke, U; Bäuerle, P. The electroluminescence of organic materials. J. Mater. Chem 2000, 10, 1471–1507. [Google Scholar]
- Luh, T-Y; Basu, S; Chen, R-M. Electroluminescent polymeric materials. Curr. Sci 2000, 78, 1352–1357. [Google Scholar]
- Marai, F. Photoluminescence and electroluminescence investigations in PEPPV and its derivatives. Synth. Met 2000, 114, 255–259. [Google Scholar]
- Gross, M; Müller, DC; Nothofer, H-G; Scherf, U; Neher, D; Bräuchle, C; Meerholz, K. Improving the performance of doped π-conjugated polymers for use in organic light-emitting diodes. Nature 2000, 405, 661–665. [Google Scholar]
- Sun, RG; Wang, YZ; Wang, DK; Zheng, QB; Kyllo, EM; Gustafson, TL; Fosong, W; Epstein, AJ. High PL quantum efficiency of poly (phenylene vinylene) systems through exciton confinement. Synth. Met 2000, 111, 595–602. [Google Scholar]
- Mark, TB; Mike, I; Jim, O; Weishi, W. Progress with light-emitting polymers. Adv. Mater 2000, 12, 1737–1750. [Google Scholar]
- Ifor, DW; Samuel, GAT. Polymer lasers: Recent advances. Mater. Today 2004, 1, 28–35. [Google Scholar]
- Ho, G-K; Meng, H-F; Lin, S-C; Horng, S-F; Hsu, C-S; Chen, L-C; Chang, S-M. Efficient white light emission in conjugated polymer homojunctions. Appl. Phys. Lett 2004, 85, 4567–4578. [Google Scholar]
- Blatchford, JW; Gustafson, TL; Epstein, AJ; Vanden Bout, DA; Kerimo, J; Higgins, DA; Barbara, PF; Fu, D-K; Swager, TM; MacDiarmid, AG. Spatially and temporally resolved emission from aggregates in conjugated polymers. Phys. Rev. B 1996, 54, 3683–3686. [Google Scholar]
- Mohd, HH; Elias, S; Anuar, K; Noorhana, Y; Ekramul, M. Conjugated conducting polymers: A brief overview. JASA 2007, 2, 63–68. [Google Scholar]
- Heeger, AJ. Semiconducting polymers: The third generation. Chem. Soc. Rev 2010, 39, 2354–2371. [Google Scholar]
- Dong, HP; Mi, SK; Jinsoo, J. Hybrid nanostructures using π-conjugated polymers and nanoscale metals: Synthesis, characteristics, and optoelectronic applications. Chem. Soc. Rev 2010, 39, 2439–2452. [Google Scholar]
- Serguei, B; Natasha, K. Physical theory of excitons in conducting polymers. Chem. Soc. Rev 2010, 39, 2453–2465. [Google Scholar]
- Alexander, LK; Igor, FP; Peter, JS. Star-shaped π-conjugated oligomers and their applications in organic electronics and photonics. Chem. Soc. Rev 2010, 39, 2695–2728. [Google Scholar]
- Ding, L; Egbe, DAM; Karasz, FE. Photophysical and optoelectronic properties of green-emitting alkoxy-substituted PE/PV hybrid conjugated polymers. Macromolecules 2004, 37, 124–131. [Google Scholar]
- Friend, RH. Conjugated polymers. New materials foroptoelectronic devices. Pure Appl. Chem 2001, 73, 425–430. [Google Scholar]
- Piok, T; Plank, H; Mauthner, G; Gamerith, S; Gadermaier, C; Wenzl, FP; Patil, S; Montenegro, R; Bouguettaya, M; Reynolds, JR; Scherf, U; Landfester, K; List, EJW. Solution processed conjugated polymer multilayer structures for light emitting devices. Jap. J. Appl. Phys 2005, 44, 479–484. [Google Scholar]
- Jacob, J; Oldridge, L; Zhang, J; Gaal, M; List, EJW; Grimsdale, AC; Müllen, K. Progress towards stable blue light emitting polymers. Curr. Appl. Phys 2004, 4, 339–342. [Google Scholar]
- Emil, JWL; Günther, L. Excitation energy migration assisted processes in conjugated polymers. Synth. Met 2004, 141, 211–218. [Google Scholar]
- Bradley, DDC. Conjugated polymer electroluminescence. Synth. Met 1993, 54, 401–415. [Google Scholar]
- Hertel, D; Setayesh, S; Nothofer, HG; Scherf, U; Müllen, K; Bässler, H. Phosphorescence in conjugated poly(para-phenylene)-derivatives. Adv. Mater 2001, 13, 65–70. [Google Scholar]
- Francis, G. Functionalized conducting polymers—Towards intelligent materials. Adv. Mater 1989, 1, 117–121. [Google Scholar]
- Staring, EGJ; Demandt, RCJE; Braun, D; Rikken, GLJ; Kessener, YARR; Venhuizen, THJ; Wynberg, H; Hoeve, WT; Spoelstra, KJ. Photo- and electroluminescence efficiency in soluble poly (dialky1-p-phenylenevinylene). Adv. Mater 1994, 6, 934–937. [Google Scholar]
- Skotheim, TA. Handbook of Conducting Polymers, 2nd ed; CRC Press: New York NY, USA, 1997; pp. 343–351. [Google Scholar]
- Do, HH; Jeong, IL; Nam, SC; Hong, KS. Light-emitting properties of a germyl-substituted PPV derivative synthesized via a soluble precursor. J. Mater. Chem 2004, 14, 1026–1030. [Google Scholar]
- Andrew, CG; Khai, LC; Rainer, EM; Pawel, GJ; Andrew, BH. Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. Chem. Rev 2009, 109, 897–1091. [Google Scholar]
- Xiao, S; Wang, S; Fang, H; Li, Y; Shi, Z; Du, C; Zhu, D. Synthesis and characterization of a novel class of PPV derivatives covalently linked to C60. Macromol. Rapid Commun 2001, 22, 1313–1318. [Google Scholar]
- Chen, Z-K; Nancy, HSL; Wei, H; Xu, Y-S; Yong, C. New phenyl-substituted PPV derivatives for polymer light-emitting diodes−synthesis, characterization and structure−property relationship study. Macromolecules 2003, 36, 1009–1020. [Google Scholar]
- Seung, WK; Byung, JJ; Taek, A; Hong, KS. Novel poly(p-phenylenevinylene)s with an electron-withdrawing cyanophenyl group. Macromolecules 2002, 35, 6217–6223. [Google Scholar]
- Neef, CJ; Ferraris, JP. MEH-PPV: Improved synthetic procedure and molecular weight control. Macromolecules 2000, 33, 2311–2314. [Google Scholar]
- A new milestone in the OPAL research project. OSRAM Opto Semiconductors: Woodmead, South Africa, 17 March 2008. Available online: http://osram-os.com.cn/osram_os/EN/News_Center/Spotlights/Technology/OLED-lighting-achieves-high-levels-of-efficiency-and-lifetime.html (accessed on 2 March 2011).
- OLED-DISPLAY, Austria. 2010. Available online: http://www.oled-display.net/video-about-oled-lighting-applications-from-ge (accessed on 2 March 2011).
- Pei, J; Yu, W-L; Huang, W. A novel series of efficient thiophene-based light-emitting conjugated polymers and application in polymer light-emitting diodes. Macromolecules 2000, 33, 2462–2471. [Google Scholar]
- Eritt, M; May, C; Leo, K; Toerker, M; Radehaus, C. OLED manufacturing for large area lighting applications. Thin Solid Films 2010, 518, 3042–3045. [Google Scholar]
- Ullrich, S. Lighting up materials. Mater. Today 2007, 10, 59–61. [Google Scholar]
- Alan, M. Solid state lighting-A world of expanding opportunities at LED. III–Vs Rev 2003, 16, 30–33. [Google Scholar]
- Towns, CR; Grizzi, I; Roberts, M; Wehrum, A. Conjugated polymer-based light emitting diodes. J Luminesc 2007, 122–123, 976–979. [Google Scholar]
- Tzamalis, G; Lemaur, V; Karlsson, F; Holtz, PO; Andersson, M; Crispin, X; Cornil, J; Berggren, M. Fluorescence light emission at 1 eV from a conjugated polymer. Chem. Phys. Lett 2010, 489, 92–95. [Google Scholar]
- Gazotti, WA; Nogueira, AF; Girotto, EM; Micaroni, L; Martini, M; Neves, S; De Paoli, MA. Optical devices based on conductive polymers. In Handbook of Advanced Electronic and Photonic Materials and Devices; Nalwa, HS, Ed.; Academic Press: San Diego, CA, USA, 2001; Volume 10, pp. 53–98. [Google Scholar]
- Jain, SC; Willander, M; Kumar, V. Conducting organic materials and devices. Semiconduct. Semimet 2007, 81, 1–188. [Google Scholar]
- Gaal, M; Gadermaier, C; Plank, H; Moderegger, E; Pogantsch, A; Leising, G; List, EJW. Imprinted conjugated polymer laser. Adv. Mater 2003, 14, 1165–1167. [Google Scholar]
- Watanabea, M; Yamasakia, N; Nakaoa, T; Masuyamaa, K; Kuboa, H; Fujii, A; Ozakia, M. Optical and electrical properties and photoexcited laser oscillation of composite film based on π-conjugated polymer. Synth. Met 2009, 159, 935–938. [Google Scholar]
- Wegmann, G; Giessen, H; Hertel, D; Mahrt, RF. Blue-green laser emission from a solid conjugated polymer. Solid State Commun 1997, 104, 759–762. [Google Scholar]
- Ruidong, X; George, H; Yanbing, H; Donal, DCB. Fluorene-based conjugated polymer optical gain media. Org. Electr 2003, 4, 165–177. [Google Scholar]
- Polson, RC; Vardeny, ZV. Laser action in organic semiconductors. In Comprehensive Nanoscience and Technology; Elsevier: Amsterdam, The Netherland, 2011; Chapter 1.03; pp. 41–71. [Google Scholar]
- Tessler, N. Laser devices from molecular and polymers semiconductors. Encyclopedia Mater: Sci. Technol 2008, 1, 4402–4407. [Google Scholar]
Year | First author | Paper title | References no. |
---|---|---|---|
2011 | Tarver, J. | Organic electronic devices with water-dispersible conducting polymers | Comprehensive Nanoscience and Technology, Chapter 4.14, 413–446. [68] |
2011 | Antonio, F. | π-Conjugated polymers for organic electronics and photovoltaic cell applications | Chem. Mater. 23, 733–758. [69] |
2010 | Schumacher, S. | Dynamics of photo excitation and stimulated optical emission in conjugated polymers: A multi scale quantum-chemistry and Maxwell-Bloch-equations approach | Phys. Rev. B 81, 245407–11. [70] |
2010 | Ebinazar, B.N. | Organic light emitting complementary inverters | Appl. Phys. Lett. 96, 043304–3. [71] |
2010 | Carlos, S. | Organic semiconductors: A little energy goes a long way | Nature Mater. 9, 884–885. [72] |
2010 | Cuihong, L. | Three-dimensional conjugated macromolecules as light-emitting materials | Polymer 51, 4273–4294. [73] |
2010 | Adam, J.M. | Power from plastic | Curr. Opin. Solid State Mater. Sci. 14, 123–130. [74] |
2010 | Shufen, C. | Recent developments in top-emitting organic light-emitting diodes | Adv. Mater. 22, 5227–5239. [75] |
2010 | Taeshik, E. | Solution-processed highly efficient blue phosphorescent polymer light-emitting diodes enabled by a new electron transport material | Adv. Mater. 22, 4744–4748. [76] |
2010 | Tao, R. | Blue phosphorescence materials for organic light-emitting diodes | Prog. Chem. 22, 2215–2227. [77] |
2010 | Jenny, C. | Organic photonics for communications | Nature. Photon. 4, 438–446. [78] |
2010 | Neil, W. | Conjugated polymers: Phases go their separate ways | Nature. Chem. June, 748–748. [79] |
2010 | Shahul, H. | Polymer light emitting diodes —A review on Materials and techniques | Rev. Adv. Mater. Sci. 26, 30–42. [80] |
2009 | Stefano, T. | Lighting technology: Time to change the bulb | Nature 459, 312–314. [81] |
2009 | Namdas, E.B. | Low threshold in polymer lasers on conductive substrates by distributed feedback nanoimprinting: Progress toward electrically pumped plastic lasers | Adv. Mater. 21, 799–802. [82] |
2009 | Hui, J. | Conjugated polyelectrolytes: Synthesis, photophysics, and applications | Angew. Chem. Int. Ed. 48, 4300–4316. [83] |
2009 | Rachel, A.S. | Block copolymers for organic optoelectronics | Macromolecules 42, 9205–9216. [84] |
2008 | Daniele, B. | High-performance organic field-effect transistors | Adv. Mater. 21, 1473–1486. [85] |
2008 | Qi, D.L. | Polymer electronic memories: Materials, devices and mechanisms | Prog. Polym. Sci. 33, 917–978. [86] |
2008 | Kalinowski, J. | Optical materials for organic light-emitting devices | Opt. Mater. 30, 792–799. [87] |
2008 | Johannes, K.F. | Poly(arylene vinylene)s | High Perform. Polym. 1, 89–137. [88] |
2008 | Inamul, H.R. | Recent progress in the development of polymers for white light-emitting polymer devices | Monatsh. Chem. 139, 725–737. [89] |
2008 | Abouelaoualim, D. | Numerical study of electrical characteristics of conjugated polymer light-emitting diodes | Semiconduct. Phys. Quantum Electron. Optoelectr. 11, 151–153. [90] |
2008 | Yang, X. | Saturation, relaxation, and dissociation of excited triplet excitons in conjugated polymers | Adv. Mater. 20, 1–4. [91] |
2008 | Murano, S. | Highly Efficient White PIN OLEDs for Lighting Applications | LED J. 40–41. [92] |
2008 | Sony, a.b. | a. b. Sony XEL-1:The world’s first OLED TV | www.OLED-Info.com. [93] |
2007 | Samuel, I.D.W. | Organic semiconductor lasers | Chem. Rev. 107, 1272–1295. [94] |
2006 | Friend, R. | Polymers show they’re metal | Nature 441, 37, 1–1. [95] |
2006 | Amarasingh, D. | Broadband solid state optical amplifier based on a semiconducting polymer | Appl. Phys. Lett. 89, 2011–2019. [96] |
2006 | Roger, J.M. | Electrochromic organic and polymeric materials for display applications | Displays 27, 2–18. [97] |
2005 | Danilo, D. | Electrochemiluminescence from organic emitters | Chem. Mater. 17, 1933–1945. [98] |
2005 | Service, R.F. | Organic LEDs look forward to a bright, white future | Science 310, 1762–1763. [99] |
2005 | David, G.L. | Laser-assisted patterning of conjugated polymer light emitting diodes | Org. Electr. 6, 221–228. [100] |
2005 | Stuart, S. | Case study: Cambridge Display Technology Ltd. | University of Cambridge Centre for Technology Management, pp. 1–19. [101] |
2004 | Andrade, B.W.D. | White organic light emitting devices for solid state lighting | Adv. Mater. 16, l585–l595. [102] |
2004 | Kulkarni, A.P. | Electron transport materials for organic light-emitting diodes | Chem. Mater. 16, 4556–4573. [103] |
2004 | Forrest, S.R. | The path to ubiquitous and low-cost organic electronic appliances on plastic | Nature 428, 911–918. [104] |
2004 | Josemon, J. | Progress towards stable blue light-emitting polymer | Curr. Appl. Phys. 4, 339–342. [105] |
2004 | Ifor, D.W.S. | Laser physics: Fantastic plastic | Nature 429, 709–711. [106] |
2004 | Ifor, D.W.S. | Towards polymer lasers and amplifiers ultrafast photonics | Ultrafast Phot. Taylor & Francis, 291–304. [107] |
2004 | Hiroyuki, S. | Organic light-emitting materials and devices for optical communication technology | J. Photochem. Photobiol. 166, 155–161. [108] |
2004 | John, K.B. | Developments in organic displays | Mater. Today 7, 42–46. [109] |
2004 | Asawapirom, U. | Materials for polymer electronics applications—Semiconducting polymer thin films and nanoparticles | Macromol. Symp. 212, 83–91. [110] |
2002 | Hong, K.S. | Light-emitting characteristics of conjugated polymers | Adv. Polym. Sci. 158, 193–243. [111] |
2002 | David, B. | Semiconducting polymer LEDs | Mater. Today 5, 3032–3039. [112] |
2002 | Hung, L.S. | Recent progress of molecular organic electroluminescent materials and devices | Mater. Sci. Eng. R 39, 143–222. [113] |
2002 | Köhler, A. | Fluorescence and phosphorescence in organic materials | Adv. Eng. Mater. 4, 453–459. [114] |
2002 | Brabec, C.J. | A low-bandgap semiconducting polymer for photovoltaic devices and infrared emitting devices | Adv. Funct. Mater. 12, 709–712. [115] |
2002 | Vander, H.J.W. | Electronic and optical excitations in crystalline conjugated polymers | Phys. Rev. B 66, 035206:1–035206:7. [116] |
2001 | Heeger, A.J. | Nobel Lecture—Semiconducting and metallic polymers—The fourth generation of polymeric materials | Rev. Modern Phys. 73, 681–700. [117] |
2001 | McDiarmid, A.G. | Nobel lecture—“Synthetic metals”—a novel role for organic polymers | Rev. Modern Phys. 73, 701–712. [118] |
2001 | Shirakawa, H. | Nobel lecture: The discovery of polyacetylene film—The dawning of an era of conducting polymers | Rev. Modern Phys. 73, 713–718. [119] |
2001 | Philip, B. | A happier marriage | Nature, Nature News, 010201–3. [120] |
2001 | Scherf, U. | Conjugated polymers: Lasing and stimulated emission | Curr. Opin. Solid State Mater. Sci. 5, 143–154. [121] |
2001 | Friend, R.H. | Conjugated polymers. New materials for optoelectronic devices | Pure Appl. Chem. 73, 425–430. [122] |
2001 | Lee, C.H. | Photoluminescence and electroluminescence of vacuum-deposited poly(p-phenylene) thin film | Synth. Met. 117, 75–79. [123] |
2001 | Liming, D. | Effect of forster energy transfer and hole transport layer on performance of polymer light-emitting diodes | Macromolecules 34, 9183–9188. [124] |
2000 | Philip, B. | Let there be more light | Nature, Nature News, 000217–11. [125] |
2000 | Kranzelbinder, G. | Organic solid-state lasers | Rep. Prog. Phys. 63, 729–762. [126] |
2000 | Ullrich, M. | The electroluminescence of organic materials | J. Mater. Chem. 10, 1471–1507. [127] |
2000 | Tien, Y.L. | Electroluminescent polymeric materials | Curr. Sci. 78, 1352–1357. [128] |
2000 | Marai, F. | Photoluminescence and electroluminescence investigations in PEPPV and its derivatives | Synth. Met. 114, 255–259. [129] |
2000 | Markus, G. | Improving the performance of doped π-conjugated polymers for use in organic light-emitting diodes | Nature 405, 661–665. [130] |
2000 | Sun, R. | High PL quantum efficiency of poly(phenylene vinylene) systems through exciton confinement | Synth. Met. 111–112, 595–602. [131] |
2000 | Bernius, M.T. | Progress with light-emitting polymers | Adv. Mater. 12, 1737–1750. [132] |
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
AlSalhi, M.S.; Alam, J.; Dass, L.A.; Raja, M. Recent Advances in Conjugated Polymers for Light Emitting Devices. Int. J. Mol. Sci. 2011, 12, 2036-2054. https://doi.org/10.3390/ijms12032036
AlSalhi MS, Alam J, Dass LA, Raja M. Recent Advances in Conjugated Polymers for Light Emitting Devices. International Journal of Molecular Sciences. 2011; 12(3):2036-2054. https://doi.org/10.3390/ijms12032036
Chicago/Turabian StyleAlSalhi, Mohamad Saleh, Javed Alam, Lawrence Arockiasamy Dass, and Mohan Raja. 2011. "Recent Advances in Conjugated Polymers for Light Emitting Devices" International Journal of Molecular Sciences 12, no. 3: 2036-2054. https://doi.org/10.3390/ijms12032036