Effect of Oxidative Damage Due to Excessive Protein Ingestion on Pancreas Function in Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Diets
2.2. Sampling Procedures
2.3. Analytical Methods
2.3.1. Organ Index Determination
2.3.2. Lipid Peroxidation Determination
2.3.3. Antioxidant Activity Assay
2.3.4. Protein, DNA and RNA Content Assays
2.3.5. Digestive Enzyme Activity Assay
2.3.6. Hormone Level Determination
2.4. Statistical Analysis
3. Results
3.1. Viscera Indices in Mice
3.2. MDA Content, Activities of SOD and GSH-Px and T-AOC in Pancreas of Mice
3.3. Protein, DNA and RNA Content in the Pancreas of Mice
3.4. Amylase, Lipase and Trypsin Activities in Pancreas of Mice
3.5. Somatostatin and Insulin Levels in Pancreas of Mice
4. Discussion
5. Conclusions
Acknowledgments
References
- Blokhina, O; Virolainen, E; Fagerstedt, KV. Antioxidants, oxidative damage and oxygen deprivation stress: A review. Ann. Bot. (Lond.) 2003, 91, 179–194. [Google Scholar]
- Lopez-Farre, A; Casado, S. Heart failure, redox alterations, and endothelial dysfunction. Hypertension 2005, 38, 1400–1405. [Google Scholar]
- Fuchs, J; Zollner, TM; Kaufmann, R; Podda, M. Redox-modulated pathways in inflammatory skin diseases. Free Radic. Biol. Med 2001, 30, 337–353. [Google Scholar]
- Frassetto, LA; Todd, KM; Morris, RC, Jr; Sebastian, A. Estimation of net endogenous noncarbonic acid production in humans from diet potassium and protein contents. Am. J. Clin. Nutr 1998, 68, 576–583. [Google Scholar]
- Welbourne, TC. Acid-base balance and plasma glutamine concentration in man. Eur. J. Appl. Physiol 1980, 45, 185–188. [Google Scholar]
- Klein, CJ; Stanek, GS; Wiles, CE. Overfeeding macronutrients to critically ill adults: Metabolic complications. J. Am. Diet Assoc 1998, 98, 795–806. [Google Scholar]
- Hoogeveen, EK; Kostense, PJ; Jager, A; Heine, RJ; Jakobs, C; Bouter, LM; Donker, AJ; Stehouwer, CD. Serum homocysteine level and protein intake are related to risk of microalbinuria: The Hoorn study. Kidney Int 1998, 54, 203–209. [Google Scholar]
- Yanagisawa, H; Wada, O. Effects of dietary protein on eicosanoid production in rat renal tubules. Nephron 1998, 78, 179–186. [Google Scholar]
- Gu, CM; Shi, YH; Le, GW. Effect of dietary protein level and origin on the redox status in the digestive tract of mice. Int. J. Mol. Sci 2008, 9, 464–475. [Google Scholar]
- Luthen, R; Niederauc, C; Kotb, M. Intrapancreatic zymogene activation and level of ATP and glutachione during caerulein pancreatitis in rats. Am. J. Physiol 1995, 268, G592–G604. [Google Scholar]
- Hao, YL; Wen, QS. Effects of octreotide on endothelin and oxygen free radical in acute necrotizing pancretitis in rats. Chin J Crit Care Med 2001, 21, 596. (in Chinese). [Google Scholar]
- Ohkawa, H; Ohishi, N; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biolchem 1979, 95, 351–358. [Google Scholar]
- Spitz, DR; Oberley, LW. An assay for superoxide dismutase activity in mammalian tissue homogenates. Anal. Biochem 1989, 179, 8–18. [Google Scholar]
- Hafeman, DG; Sunde, RA; Hoekstra, WG. Effect of dietary selenium on erythrocyte and liver glutathione peroxidase in the rat. J. Nutr 1974, 104, 580–587. [Google Scholar]
- Opara, EC; Abdel-Rahman, E; Soliman, S; Kamel, WA; Souka, S; Lowe, JE; Abdel-Aleem, S. Depletion of total antioxidant capacity in type 2 diabetes. Metabolism 1999, 48, 1414–1417. [Google Scholar]
- Lowry, OH; Rosebrough, HJ; Farr, AL; Randall, RJ. Protein measurement with the Folinphenol reagent. J. Biol. Chem 1951, 193, 265–275. [Google Scholar]
- Giles, K; Myers, A. An improved diphenylamine method for the estimation of deoxyribomucleic acid. Nature 1965, 206, 93. [Google Scholar]
- Fleck, A; Begg, D. The estimation of ribonucleic acid using ultraviolet absorption measurements. Biochim. Biophys. Acta 1965, 108, 333–339. [Google Scholar]
- Nelson, N. A photometric adaptation of the Somogyi method for determination of glucose. J. Biol. Chem 1944, 153, 375–380. [Google Scholar]
- Lowry, RL; Tinsley, IJ. Rapid colorimetric determination of free fatty acids. J. Am. Oil Chem. Soc 1976, 53, 470–472. [Google Scholar]
- Hummel, BCW. A modified spectrophotometric determination of chymotrypsin, trypsin, and thrombin. Can. J. Biochem. Physiol 1959, 37, 1393–1399. [Google Scholar]
- Linda, H; Holst, JJ. On the accuracy of radioimmunological determination of somatostatin in plasma. Regul. Pept 1982, 4, 13–31. [Google Scholar]
- DeFronzo, RA; Tobin, JD; Andres, R. The glucose clamp technique. A method for the quantification of beta cell sensitivity to glucose and of tissue sensitivity to insulin. Am. J. Physiol 1979, 237, E214–223. [Google Scholar]
- Young, IS; McEneny, J. Lipoprotein oxidation and atherosclerosis. Biochem. Soc. Trans 2001, 29, 358–362. [Google Scholar]
- Zhu, JJ; Le, GW; Shi, YH. Biological function and application of cysteamine. Chin Feed 2005, 24, 22–23. (in Chinese).. [Google Scholar]
- Hara, H; Shiota, H. Differential increases in syntheses of newly identified trypsinogen 2 isoforms by dietary protein in rat pancreas. Exp. Biol. Med 2004, 229, 772–780. [Google Scholar]
- Brändle, E; Sieberth, HG; Hautmann, RE. Effect of chronic dietary protein intake on the renal function in healthy subjects. Eur. J. Clin. Nutr 1996, 50, 734–740. [Google Scholar]
- Chow, WH; Gridley, G; McLaughlin, JK; Mandel, JS; Wacholder, S; Blot, WJ; Niwa, S; Fraumeni, JF, Jr. Protein intake and risk of renal cell cancer. J. Natl. Cancer Inst 1994, 86, 1131–1139. [Google Scholar]
- Kitagawa, T; Owada, M; Urakami, T; Yamauchi, K. Increased incidence of non-insulin dependent diabetes mellitus among Japanese schoolchildren correlates with an increased intake of animal protein and fat. Clin. Pediatr 1998, 37, 111–115. [Google Scholar]
- Vlajinac, HD; Marinkovic, JM; Ilic, MD; Kocev, NI. Diet and prostate cancer: A case-control study. Eur. J. Cancer 1997, 33, 101–107. [Google Scholar]
- Holmes, RP; Goodman, HO; Hart, LJ; Assimos, DG. Relationship of protein intake to urinary oxalate and glycolate excretion. Kidney Int 1993, 44, 366–372. [Google Scholar]
- Zhang, GZ; Guo, CH; Li, GS; Wang, F; Kang, DR. Effects of selenium deficiency on secretive activities of acini and islets of rats pancreas. Chin J Pathophysiol 1997, 13, 25–28. (in Chinese).. [Google Scholar]
- Evers, BM. Sabiston Textbook of Surgery: The Biological Basis of Modern Surgical Practice, 16th ed; Saunders, WB, Ed.; Saunders Company Pudoc: Philadelphia, PA, USA, 2001; pp. 873–916. [Google Scholar]
- Remer, T; Pietrzik, K; Manz, F. A moderate increase in daily protein intake causing an enhanced endogenous insulin secretion does not alter circulating levels or urinary excretion of dehydroepiandrosterone sulfate. Metabolism 1996, 45, 1483–1486. [Google Scholar]
Ingredient | Group 1 | Group 2 | Group 3 |
---|---|---|---|
soybean protein b | 200 | 600 | 600 |
Corn starch c | 580 | 220 | 220 |
Sucrose | 60 | 20 | 20 |
Soybean oil d | 50 | 50 | 50 |
Cellulose powder c | 50 | 50 | 50 |
Mineral mixture e | 40 | 40 | 40 |
Vitamin mixture f | 20 | 20 | 20 |
Cysteamine c | 0.06 |
Group | Pancreas/body weight | Liver/body weight | Kidney/body weight | Spleen/body weight |
---|---|---|---|---|
Group 1 | 3.8 ± 0.5 a | 40 ± 2 | 12 ± 0.9 | 4 ± 0.4 |
Group 2 | 5.8 ± 0.3 b | 40 ± 5 | 11 ± 0.1 | 4 ± 0.7 |
Group 3 | 3.5 ± 0.7 a | 50 ± 5 | 14 ± 1.1 | 5 ± 0.9 |
Group | MDA (nmol/mg prot) | SOD (U/mg prot) | GSH-Px (U/mg prot) | T-AOC (U/mg prot) |
---|---|---|---|---|
Group 1 | 3.85 ± 0.69 a | 101.44 ± 1.78 c | 100.362 ± 1.22 | 3.00 ± 0.04 c |
Group 2 | 10.98 ± 2.29 c | 70.92 ± 4.05 a | 91.768 ± 2.53 | 1.18 ± 0.07 a |
Group 3 | 5.99 ± 0.12 b | 85.77 ± 4.34 b | 97.689 ± 1.69 | 2.16 ± 0.06 b |
Group | Protein | DNA | RNA |
---|---|---|---|
Group 1 | 50.66 ± 3.26 a | 1.08 ± 0.10 a | 2.01 ± 0.16 a |
Group 2 | 61.65 ± 5.13 b | 1.30 ± 0.12 b | 3.46 ± 0.33 b |
Group 3 | 51.96 ± 3.56 a | 1.12 ± 0.10 a | 2.18 ± 0.21 a |
Group | Amylase | Lipase | Trypsin |
---|---|---|---|
Group 1 | 0.65 ± 0.02 b | 57.13 ± 1.32 b | 154.43 ± 1.81 c |
Group 2 | 0.43 ± 0.01 a | 40.41 ± 0.89 a | 67.64 ± 0.64 a |
Group 3 | 0.58 ± 0.01 a | 52.79 ± 2.71 b | 84.95 ± 2.97 b |
Group | Somatostatin (U/mg prot) | Insulin (pg/mg prot) |
---|---|---|
Group 1 | 47.82 ± 1.33 a | 46.70 ± 1.76 a |
Group 2 | 83.11 ± 2.20a c | 55.91 ± 2.93 c |
Group 3 | 63.49 ± 2.08 b | 50.85 ± 2.43 b |
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Gu, C.; Xu, H. Effect of Oxidative Damage Due to Excessive Protein Ingestion on Pancreas Function in Mice. Int. J. Mol. Sci. 2010, 11, 4591-4600. https://doi.org/10.3390/ijms11114591
Gu C, Xu H. Effect of Oxidative Damage Due to Excessive Protein Ingestion on Pancreas Function in Mice. International Journal of Molecular Sciences. 2010; 11(11):4591-4600. https://doi.org/10.3390/ijms11114591
Chicago/Turabian StyleGu, Chunmei, and Huiyong Xu. 2010. "Effect of Oxidative Damage Due to Excessive Protein Ingestion on Pancreas Function in Mice" International Journal of Molecular Sciences 11, no. 11: 4591-4600. https://doi.org/10.3390/ijms11114591
APA StyleGu, C., & Xu, H. (2010). Effect of Oxidative Damage Due to Excessive Protein Ingestion on Pancreas Function in Mice. International Journal of Molecular Sciences, 11(11), 4591-4600. https://doi.org/10.3390/ijms11114591