DECAF: Deconvoluted Extracted Ion Chromatogram-Based Quantification of Therapeutic Oligonucleotides
Abstract
1. Introduction
2. Materials and Methods
2.1. Real-Life Data Validation
2.1.1. Dataset 1 (a.k.a. Strands B–C)
2.1.2. Dataset 2 (a.k.a. Oxydefluorination)
2.1.3. Experimental Procedures
2.2. DECAF Algorithmic Details
2.2.1. Theoretical Isotope Distribution Calculation
2.2.2. LC-MS Data Processing and Model Fitting
2.2.3. DIC and Summary Measures
3. Results
3.1. Strands B–C
3.2. Oxydefluorination
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AUC | Area Under Curve |
| DIC | Deconvoluted extracted Ion Chromatogram |
| DECAF | Deconvoluted Extracted ion Chromatogram-bAsed quantiFication |
| FLP | full-length product |
| ID | isotope distribution |
| IDF | Isotopic Distribution Factors |
| LC | liquid chromatography |
| m/z | mass-to-charge ratio |
| MS | mass spectrometry |
| TIC | Total Ion Count |
| TID | theoretical isotope distributions |
| XIC | extracted ion chromatogram |
References
- Ferrige, A.G.; Seddon, M.J.; Green, B.N.; Jarvis, S.A.; Skilling, J.; Staunton, J. Disentangling electrospray spectra with maximum entropy. Rapid Commun. Mass Spectrom. 1992, 6, 707–711. [Google Scholar] [CrossRef]
- Horn, D.M.; Zubarev, R.A.; McLafferty, F.W. Automated reduction and interpretation of. J. Am. Soc. Mass Spectrom. 2000, 11, 320–332. [Google Scholar] [CrossRef] [PubMed]
- Renard, B.Y.; Kirchner, M.; Steen, H.; Steen, J.A.; Hamprecht, F.A. NITPICK: Peak identification for mass spectrometry data. BMC Bioinform. 2008, 9, 355. [Google Scholar] [CrossRef] [PubMed]
- Dasari, S.; Wilmarth, P.A.; Reddy, A.P.; Robertson, L.J.G.; Nagalla, S.R.; David, L.L. Quantification of Isotopically Overlapping Deamidated and 18 O-Labeled Peptides Using Isotopic Envelope Mixture Modeling. J. Proteome Res. 2009, 8, 1263–1270. [Google Scholar] [CrossRef] [PubMed]
- Slawski, M.; Hussong, R.; Tholey, A.; Jakoby, T.; Gregorius, B.; Hildebrandt, A.; Hein, M. Isotope pattern deconvolution for peptide mass spectrometry by non-negative least squares/least absolute deviation template matching. BMC Bioinform. 2012, 13, 291. [Google Scholar] [CrossRef] [PubMed]
- Ciach, M.A.; Miasojedow, B.; Skoraczyński, G.; Majewski, S.; Startek, M.; Valkenborg, D.; Gambin, A. Masserstein: Linear regression of mass spectra by optimal transport. Rapid Commun. Mass Spectrom. 2025, 39, e8956. [Google Scholar] [CrossRef] [PubMed]
- Majewski, S.; Ciach, M.A.; Startek, M.; Niemyska, W.; Miasojedow, B.; Gambin, A. The Wasserstein distance as a dissimilarity measure for mass spectra with application to spectral deconvolution. In Proceedings of the 18th International Workshop on Algorithms in Bioinformatics (WABI 2018), Helsinki, Finland, 20–22 August 2018; Schloss Dagstuhl–Leibniz-Zentrum für Informatik: Wadern, Germany, 2018; pp. 25:1–25:21. [Google Scholar]
- Bochenek, M.; Ciach, M.A.; Smeets, S.; Beckers, O.; Vanderspikken, J.; Miasojedow, B.; Domżał, B.; Valkenborg, D.; Maes, W.; Gambin, A. An Automated Analysis of Homocoupling Defects Using MALDI-MS and Open-Source Computer Software. J. Am. Soc. Mass Spectrom. 2024, 35, 2366–2375. [Google Scholar] [CrossRef] [PubMed]
- Castellaneta, A.; Losito, I.; Coniglio, D.; Leoni, B.; Santamaria, P.; Di Noia, M.A.; Palmieri, L.; Calvano, C.D.; Cataldi, T.R. LIPIC: An Automated Workflow to account for isotopologue-related interferences in electrospray ionization high-resolution mass spectra of phospholipids. J. Am. Soc. Mass Spectrom. 2021, 32, 1008–1019. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Shi, X.; Kim, S.; Patrick, J.S.; Binkley, J.; Kong, M.; McClain, C.; Zhang, X. Data Dependent Peak Model Based Spectrum Deconvolution for Analysis of High Resolution LC-MS Data; American Chemical Society: Washington, DC, USA, 2014. [Google Scholar] [CrossRef]
- Hu, A.; Lu, Y.Y.; Bilmes, J.; Noble, W.S. Joint Precursor Elution Profile Inference via Regression for Peptide Detection in Data-Independent Acquisition Mass Spectra. J. Proteome Res. 2018, 18, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Peckner, R.; Myers, S.A.; Jacome, A.S.V.; Egertson, J.D.; Abelin, J.G.; MacCoss, M.J.; Carr, S.A.; Jaffe, J.D. Specter: Linear deconvolution for targeted analysis of data-independent acquisition mass spectrometry proteomics. Nat. Methods 2018, 15, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Rentel, C.; DaCosta, J.; Roussis, S.; Chan, J.; Capaldi, D.; Mai, B. Determination of oligonucleotide deamination by high resolution mass spectrometry. J. Pharm. Biomed. Anal. 2019, 173, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, D.; Gasilova, N.; Sepulveda, F.; Patiny, L.; Dyson, P.J.; Menin, L. Aom2S: A new web-based application for DNA/RNA tandem mass spectrometry data interpretation. Rapid Commun. Mass Spectrom. 2020, 34, e8927. [Google Scholar] [CrossRef] [PubMed]
- Seiffert, S.; Debelak, H.; Hadwiger, P.; Jahn-Hofmann, K.; Roehl, I.; Vornlocher, H.P.; Noll, B. Characterization of side reactions during the annealing of small interfering RNAs. Anal. Biochem. 2011, 414, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Claesen, J.; Dittwald, P.; Burzykowski, T.; Valkenborg, D. An Efficient Method to Calculate the Aggregated Isotopic Distribution and Exact Center-Masses. J. Am. Soc. Mass Spectrom. 2012, 23, 753–763. [Google Scholar] [CrossRef] [PubMed]
- Dittwald, P.; Claesen, J.; Burzykowski, T.; Valkenborg, D.; Gambin, A. BRAIN: A Universal Tool for High-Throughput Calculations of the Isotopic Distribution for Mass Spectrometry. Anal. Chem 2013, 85, 1991–1994. [Google Scholar] [CrossRef] [PubMed]
- Dittwald, P.; Valkenborg, D. BRAIN 2.0: Time and Memory Complexity Improvements in the Algorithm for Calculating the Isotope Distribution. J. Am. Soc. Mass Spectrom. 2014, 25, 588–594. [Google Scholar] [CrossRef] [PubMed]
- Levenberg, K. A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 1944, 2, 164–168. [Google Scholar] [CrossRef]
- Marquardt, D.W. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–441. [Google Scholar] [CrossRef]
- Galassi, M.; Davies, J.; Theiler, J.; Gough, B.; Jungman, G.; Alken, P.; Booth, M.; Rossi, F.; Ulerich, R. GNU Scientific Library; Network Theory Limited Godalming: Godalming, UK, 2002. [Google Scholar]
- Chau, J. gslnls: GSL Nonlinear Least-Squares Fitting. 2023. Available online: https://cran.r-project.org/web/packages/gslnls (accessed on 25 January 2026).
- Pourshahian, S. Therapeutic oligonucleotides, impurities, degradants, and their characterization by mass spectrometry. Mass Spectrom. Rev. 2021, 40, 75–109. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.J.; Li, W.; Dai, G. Application of LC-MS for quantitative analysis and metabolite identification of therapeutic oligonucleotides. J. Pharm. Biomed. Anal. 2007, 44, 330–341. [Google Scholar] [CrossRef] [PubMed]







| Ratio B:C in Volume | Strand B Percentage * |
|---|---|
| 0:1 | 0.00 |
| 1:80 | 1.23 |
| 1:40 | 2.44 |
| 1:16 | 5.88 |
| 1:8 | 11.11 |
| 1:4 | 20.00 |
| 1:2 | 33.33 |
| 1:1 | 50.00 |
| 2:1 | 66.67 |
| 4:1 | 80.00 |
| 8:1 | 88.89 |
| 16:1 | 94.12 |
| 40:1 | 97.56 |
| 80:1 | 98.77 |
| 1:0 | 100.00 |
| Impurity Percentage * | Number of Replicates |
|---|---|
| 100.00 | 1 |
| 28.41 | 1 |
| 25.00 | 2 |
| 21.25 | 1 |
| 17.10 | 3 |
| 12.50 | 2 |
| 7.35 | 1 |
| 3.96 | 3 |
| 2.78 | 2 |
| 1.56 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Prostko, P.; Liu, Y.; Ciach, M.A.; Khamiakova, T.; De Vijlder, T.; Valkenborg, D. DECAF: Deconvoluted Extracted Ion Chromatogram-Based Quantification of Therapeutic Oligonucleotides. Molecules 2026, 31, 570. https://doi.org/10.3390/molecules31030570
Prostko P, Liu Y, Ciach MA, Khamiakova T, De Vijlder T, Valkenborg D. DECAF: Deconvoluted Extracted Ion Chromatogram-Based Quantification of Therapeutic Oligonucleotides. Molecules. 2026; 31(3):570. https://doi.org/10.3390/molecules31030570
Chicago/Turabian StyleProstko, Piotr, Youzhong Liu, Michał Aleksander Ciach, Tatsiana Khamiakova, Thomas De Vijlder, and Dirk Valkenborg. 2026. "DECAF: Deconvoluted Extracted Ion Chromatogram-Based Quantification of Therapeutic Oligonucleotides" Molecules 31, no. 3: 570. https://doi.org/10.3390/molecules31030570
APA StyleProstko, P., Liu, Y., Ciach, M. A., Khamiakova, T., De Vijlder, T., & Valkenborg, D. (2026). DECAF: Deconvoluted Extracted Ion Chromatogram-Based Quantification of Therapeutic Oligonucleotides. Molecules, 31(3), 570. https://doi.org/10.3390/molecules31030570

