Comparative Metabolomics Reveals Family–Genus-Specific Chemical Signatures and Potential Recognition Mechanisms in Cynomorium songaricum–Host Interactions
Abstract
1. Introduction
2. Results
2.1. Qualitative and Quantitative Analysis of Volatile Metabolites
2.2. Global Metabolomic Differentiation Among Host Species
2.3. Shared Volatile Compounds Among Host Species
2.4. Differential Volatile Metabolites Among Host Species
3. Discussion
3.1. Family-Specific Metabolomic Profiles Reflect Phylogenetic Relationships
3.2. Shared Alkanes as Potential Universal Recognition Signals
3.3. Genus-Specific Compounds and Host Selection
3.4. Limitations and Future Perspectives
4. Materials and Methods
4.1. Plant Material
4.2. Instruments and Reagents
4.3. Extraction and Concentration of Volatile Compounds
4.4. GC Conditions
4.5. MS Conditions
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| EI | Electron Impact Source |
| GC-MS | Gas Chromatography–Mass Spectrometry |
| HCA | Hierarchical Cluster Analysis |
| IUCN | International Union for Conservation of Nature |
| KEGG | Kyoto Encyclopedia of Genes and Genomes |
| MS | Mass Spectrometry |
| OPLS-DA | Orthogonal Partial Least Squares–Discriminant Analysis |
| PCA | Principal Component Analysis |
| VIP | Variable Importance in Projection |
| VU | Vulnerable |
References
- Yang, L.; Jia, H.; Hua, Q. Predicting suitable habitats of parasitic desert species based on Biomod2 ensemble model: Cynomorium songaricum rupr and its host plants as an example. BMC Plant Biol. 2025, 25, 351. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Guo, Z.; Miao, J.; Wang, Z.; Li, Q.; Chai, X.; Li, M. The genus Cynomorium in China: An ethnopharmacological and phytochemical review. J. Ethnopharmacol. 2013, 147, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yang, X.; He, Z.; Chen, W.; Zhao, Y.; Li, J.; Zong, Y.; Du, R. Cynomorium songaricum Rupr. flavonoids improve cyclophosphamide-induced reproductive function damage by regulating the testosterone synthesis pathway. Front. Pharmacol. 2024, 15, 1457780. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, W.; Li, G.; Gong, B.; Wang, Q.; Bi, H.; Zhou, Y. Structural characterization and protective activity of α-glucans derived from Cynomorium songaricum Rupr. against homocysteine-induced oxidative stress in MC3T3-E1 cells. Int. J. Biol. Macromol. 2025, 310, 143344. [Google Scholar] [CrossRef]
- Liu, Z.; Shang, Q.; Cheng, J.; He, Q.; Liu, Y.; Li, H.; Fang, D.; Li, X.; Zhu, Y.; Chen, J.; et al. Mechanistic study of a triterpenoid-enriched fraction derived from Cynomorium songaricum against NAFLD: An integrative elucidation. Phytomedicine 2025, 142, 156782. [Google Scholar] [CrossRef]
- Ji, J.; Wei, X.; Guan, H.; Jin, Z.; Yue, X.; Jiang, Z.; Su, Y.; Sun, S.; Chen, G. Evaluation of the impact of ecological factors on the habitat suitability and bioactive components accumulation of the medicinal holoparasitic plant Cynomorium songaricum using machine learning models. Front. Plant Sci. 2025, 16, 1586682. [Google Scholar] [CrossRef]
- Lyu, D.; Smith, D.L. The root signals in rhizospheric inter-organismal communications. Front. Plant Sci. 2022, 13, 1064058. [Google Scholar] [CrossRef]
- Wang, N.Q.; Kong, C.H.; Wang, P.; Meiners, S.J. Root exudate signals in plant-plant interactions. Plant Cell Environ. 2021, 44, 1044–1058. [Google Scholar] [CrossRef]
- Cui, J.L.; Vijayakumar, V.; Zhang, G. Partitioning of Fungal Endophyte Assemblages in Root-Parasitic Plant Cynomorium songaricum and Its Host Nitraria tangutorum. Front. Microbiol. 2018, 9, 666. [Google Scholar] [CrossRef]
- Wang, D.; Yu, H.; Chen, G. Scent chemistry and pollinators in the holoparasitic plant Cynomorium songaricum (Cynomoriaceae). Plant Biol. 2021, 23, 111–120. [Google Scholar] [CrossRef]
- Wang, J.; Su, H.; Han, H.; Wang, W.; Li, M.; Zhou, Y.; Li, Y.; Li, M. Transcriptomics Reveals Host-Dependent Differences of Polysaccharides Biosynthesis in Cynomorium songaricum. Molecules 2021, 27, 44. [Google Scholar] [CrossRef]
- Bunsick, M.; Toh, S.; Wong, C.; Xu, Z.; Ly, G.; McErlean, C.S.P.; Pescetto, G.; Nemrish, K.E.; Sung, P.; Li, J.D.; et al. SMAX1-dependent seed germination bypasses GA signalling in Arabidopsis and Striga. Nat. Plants 2020, 6, 646–652. [Google Scholar] [CrossRef] [PubMed]
- Zorrilla, J.G.; Cala, A.; Rial, C.; FJ, R.M.; Molinillo, J.M.G.; Varela, R.M.; Macías, F.A. Synthesis of Active Strigolactone Analogues Based on Eudesmane- and Guaiane-Type Sesquiterpene Lactones. J. Agric. Food Chem. 2020, 68, 9636–9645. [Google Scholar] [CrossRef] [PubMed]
- Bürger, M.; Chory, J. The Many Models of Strigolactone Signaling. Trends Plant Sci. 2020, 25, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Guan, H.; Li, B.; Zhang, Q.; Chen, Q.; Wang, D.; He, K.; Jin, Z.; Chen, G. Endozoochory by the cooperation between beetles and ants in the holoparasitic plant Cynomorium songaricum in the deserts of Northwest China. PLoS ONE 2025, 20, e0319087. [Google Scholar] [CrossRef]
- Huang, W.; Gfeller, V.; Erb, M. Root volatiles in plant-plant interactions II: Root volatiles alter root chemistry and plant-herbivore interactions of neighbouring plants. Plant Cell Environ. 2019, 42, 1964–1973. [Google Scholar] [CrossRef]
- Yoder, J.I. Host-plant recognition by parasitic Scrophulariaceae. Curr. Opin. Plant Biol. 2001, 4, 359–365. [Google Scholar] [CrossRef]
- Li, H.J.; Bai, W.P.; Liu, L.B.; Liu, H.S.; Wei, L.; Garant, T.M.; Kalinger, R.S.; Deng, Y.X.; Wang, G.N.; Bao, A.K.; et al. Massive increases in C31 alkane on Zygophyllum xanthoxylum leaves contribute to its excellent abiotic stress tolerance. Ann. Bot. 2023, 131, 723–736. [Google Scholar] [CrossRef]
- Özcan Aykutlu, A.; Makbul, S.; Coşkunçelebi, K.; Seyis, F. Secondary Volatile Metabolite Composition in Scorzonera pseudolanata Grossh. Plant Parts. Plants 2025, 14, 1624. [Google Scholar] [CrossRef]
- He, J.; Li, C.; Hu, N.; Zhu, Y.; He, Z.; Sun, Y.; Wang, Z.; Wang, Y. ECERIFERUM1-6A is required for the synthesis of cuticular wax alkanes and promotes drought tolerance in wheat. Plant Physiol. 2022, 190, 1640–1657. [Google Scholar] [CrossRef]
- Li, S.; Zhang, X.; Huang, H.; Yin, M.; Jenks, M.A.; Kosma, D.K.; Yang, P.; Yang, X.; Zhao, H.; Lü, S. Deciphering the core shunt mechanism in Arabidopsis cuticular wax biosynthesis and its role in plant environmental adaptation. Nat. Plants 2025, 11, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Teng, F.; Li, N.; Zhang, J.C.; Zhang, B.J.; Tsai, S.N.; Yue, X.L.; Gu, L.F.; Meng, G.H.; Deng, T.Q.; et al. A reference-grade genome of the xerophyte Ammopiptanthus mongolicus sheds light on its evolution history in legumes and drought-tolerance mechanisms. Plant Commun. 2024, 5, 100891. [Google Scholar] [CrossRef] [PubMed]
- Lukić, I.; Išić, N.; Ban, D.; Salopek Sondi, B.; Goreta Ban, S. Comprehensive Volatilome Signature of Various Brassicaceae Species. Plants 2023, 12, 177. [Google Scholar] [CrossRef] [PubMed]
- Jürgens, A.; Dötterl, S. Chemical composition of anther volatiles in Ranunculaceae: Genera-specific profiles in Anemone, Aquilegia, Caltha, Pulsatilla, Ranunculus, and Trollius species. Am. J. Bot. 2004, 91, 1969–1980. [Google Scholar] [CrossRef]
- Mescher, M.C.; Runyon, J.B.; De Moraes, C.M. Plant host finding by parasitic plants: A new perspective on plant to plant communication. Plant Signal. Behav. 2006, 1, 284–286. [Google Scholar] [CrossRef][Green Version]
- Djami-Tchatchou, A.T.; Harrison, G.A.; Harper, C.P.; Wang, R.; Prigge, M.J.; Estelle, M.; Kunkel, B.N. Dual Role of Auxin in Regulating Plant Defense and Bacterial Virulence Gene Expression During Pseudomonas syringae PtoDC3000 Pathogenesis. Mol. Plant-Microbe Interact. 2020, 33, 1059–1071. [Google Scholar] [CrossRef]
- Bernard, A.; Domergue, F.; Pascal, S.; Jetter, R.; Renne, C.; Faure, J.D.; Haslam, R.P.; Napier, J.A.; Lessire, R.; Joubès, J. Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very-long-chain alkane synthesis complex. Plant Cell 2012, 24, 3106–3118. [Google Scholar] [CrossRef]
- Wang, X.; Kong, L.; Zhi, P.; Chang, C. Update on Cuticular Wax Biosynthesis and Its Roles in Plant Disease Resistance. Int. J. Mol. Sci. 2020, 21, 5514. [Google Scholar] [CrossRef]
- White, A.R.F.; Kane, A.; Ogawa, S.; Shirasu, K.; Nelson, D.C. Dominant-Negative KAI2d Paralogs Putatively Attenuate Strigolactone Responses in Root Parasitic Plants. Plant Cell Physiol. 2024, 65, 1969–1982. [Google Scholar] [CrossRef]
- Kee, Y.J.; Ogawa, S.; Ichihashi, Y.; Shirasu, K.; Yoshida, S. Strigolactones in Rhizosphere Communication: Multiple Molecules With Diverse Functions. Plant Cell Physiol. 2023, 64, 955–966. [Google Scholar] [CrossRef]
- Aoki, N.; Cui, S.; Yoshida, S. Cytokinins Induce Prehaustoria Coordinately with Quinone Signals in the Parasitic Plant Striga hermonthica. Plant Cell Physiol. 2022, 63, 1446–1456. [Google Scholar] [CrossRef]
- Kokla, A.; Leso, M.; Šimura, J.; Wärdig, C.; Hayashi, M.; Nishii, N.; Tsuchiya, Y.; Ljung, K.; Melnyk, C.W. A long-distance inhibitory system regulates haustoria numbers in parasitic plants. Proc. Natl. Acad. Sci. USA 2025, 122, e2424557122. [Google Scholar] [CrossRef]
- Liu, F.; Yang, S.; Zhang, L.; Zhang, M.; Bi, Y.; Wang, S.; Wang, X.; Wang, Y. Design, synthesis and biological evaluation of amphiphilic benzopyran derivatives as potent antibacterial agents against multidrug-resistant bacteria. Eur. J. Med. Chem. 2024, 277, 116784. [Google Scholar] [CrossRef]
- Baetz, U.; Martinoia, E. Root exudates: The hidden part of plant defense. Trends Plant Sci. 2014, 19, 90–98. [Google Scholar] [CrossRef]
- Badri, D.V.; Vivanco, J.M. Regulation and function of root exudates. Plant Cell Environ. 2009, 32, 666–681. [Google Scholar] [CrossRef] [PubMed]
- Das, D.; Arulkumar, A.; Paramasivam, S.; Lopez-Santamarina, A.; Del Carmen Mondragon, A.; Miranda Lopez, J.M. Phytochemical Constituents, Antimicrobial Properties and Bioactivity of Marine Red Seaweed (Kappaphycus alvarezii) and Seagrass (Cymodocea serrulata). Foods 2023, 12, 2811. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Yang, L.; Hu, W.; Song, J.; Kuang, L.; Huang, Y.; Liu, D.; Liu, Y. The CsMYB44-csi-miR0008-CsCER1 module regulates cuticular wax biosynthesis and drought tolerance in citrus. New Phytol. 2025, 246, 1757–1779. [Google Scholar] [CrossRef] [PubMed]
- Lv, M.; Zhang, L.; Wang, Y.; Ma, L.; Yang, Y.; Zhou, X.; Wang, L.; Yu, X.; Li, S. Floral volatile benzenoids/phenylpropanoids: Biosynthetic pathway, regulation and ecological value. Hortic. Res. 2024, 11, uhae220. [Google Scholar] [CrossRef] [PubMed]
- Press, M.C.; Phoenix, G.K. Impacts of parasitic plants on natural communities. New Phytol. 2005, 166, 737–751. [Google Scholar] [CrossRef]
- Nabity, P.D.; Barron-Gafford, G.A.; Whiteman, N.K. Intraspecific competition for host resources in a parasite. Curr. Biol. CB 2021, 31, 1344–1350.e1343. [Google Scholar] [CrossRef]
- Goyet, V.; Billard, E.; Pouvreau, J.B.; Lechat, M.M.; Pelletier, S.; Bahut, M.; Monteau, F.; Spíchal, L.; Delavault, P.; Montiel, G.; et al. Haustorium initiation in the obligate parasitic plant Phelipanche ramosa involves a host-exudated cytokinin signal. J. Exp. Bot. 2017, 68, 5539–5552. [Google Scholar] [CrossRef]
- Miyakawa, T.; Xu, Y.; Tanokura, M. Molecular basis of strigolactone perception in root-parasitic plants: Aiming to control its germination with strigolactone agonists/antagonists. Cell. Mol. Life Sci. 2020, 77, 1103–1113. [Google Scholar] [CrossRef]
- Ranjan, A.; Ichihashi, Y.; Farhi, M.; Zumstein, K.; Townsley, B.; David-Schwartz, R.; Sinha, N.R. De novo assembly and characterization of the transcriptome of the parasitic weed dodder identifies genes associated with plant parasitism. Plant Physiol. 2014, 166, 1186–1199. [Google Scholar] [CrossRef]




| No. | Species | Abbreviation | Producing Area | Geographic Coordinates | Harvest Time |
|---|---|---|---|---|---|
| 1 | Nitraria roborowskii Kom. | NR | Delingha City | 36.84° N, 98.60° E | 8 May 2022 |
| 2 | Nitraria sibirica Pall. | NS | Delingha City | 37.31° N, 96.73° E | 8 May 2022 |
| 3 | Nitraria tangutorum Bobrov | NT | Delingha City | 37.34° N, 97.08° E | 8 May 2022 |
| 4 | Peganum multisectum (Maxim.) Bobrov | PM | Guide County | 36.06° N, 101.43° E | 10 May 2022 |
| 5 | Zygophyllum xanthoxylum (Bunge) Maxim. | ZX | Guide County | 36.05° N, 101.44° E | 10 May 2022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Tang, Y.; Chen, C.; Zhang, X.; Zhou, Y.; Wang, J. Comparative Metabolomics Reveals Family–Genus-Specific Chemical Signatures and Potential Recognition Mechanisms in Cynomorium songaricum–Host Interactions. Molecules 2026, 31, 491. https://doi.org/10.3390/molecules31030491
Tang Y, Chen C, Zhang X, Zhou Y, Wang J. Comparative Metabolomics Reveals Family–Genus-Specific Chemical Signatures and Potential Recognition Mechanisms in Cynomorium songaricum–Host Interactions. Molecules. 2026; 31(3):491. https://doi.org/10.3390/molecules31030491
Chicago/Turabian StyleTang, Yu, Changmao Chen, Xunchao Zhang, Yubi Zhou, and Jie Wang. 2026. "Comparative Metabolomics Reveals Family–Genus-Specific Chemical Signatures and Potential Recognition Mechanisms in Cynomorium songaricum–Host Interactions" Molecules 31, no. 3: 491. https://doi.org/10.3390/molecules31030491
APA StyleTang, Y., Chen, C., Zhang, X., Zhou, Y., & Wang, J. (2026). Comparative Metabolomics Reveals Family–Genus-Specific Chemical Signatures and Potential Recognition Mechanisms in Cynomorium songaricum–Host Interactions. Molecules, 31(3), 491. https://doi.org/10.3390/molecules31030491

