Halogen as Template to Modulate the Structures of the Nanocage-Based Silver(I)-Thiolate Coordination Polymers
Abstract
1. Introduction
2. Experimental Section
2.1. Materials and Methods
2.2. Synthetic Procedures
2.2.1. Preparation of [Ag6(μ-StBu)6]n (USC-CP-2)
2.2.2. Preparation of [Ag6(μ-StBu)5Br]n (USC-CP-4)
2.2.3. Preparation of [Ag14(μ-StBu)12I2]n (USC-CP-3)
2.3. X-Ray Crystallographic Analysis
3. Results and Discussion
3.1. Synthesis
3.2. Crystal Structure Description
3.2.1. Molecular Structure of [Ag6(μ-StBu)6]n (USC-CP-2)
3.2.2. Molecular Structure of [Ag6(μ-StBu)5Br]n (USC-CP-4)
3.2.3. Molecular Structure of Ag14(μ-StBu)12I2]n (USC-CP-3)
3.3. Structural Comparison
3.4. Stability Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Q.; Dong, S.L.; Tao, D.D.; Li, Z.; Jiang, Y.B. Ag(I)-thiolate coordination polymers: Synthesis, structures and applications as emerging sensory ensembles. Coord. Chem. Rev. 2021, 432, 213717. [Google Scholar] [CrossRef]
- Fukuoka, M.; Takashima, Y.; Akamatsu, K.; Demessence, A.; Tsuruoka, T. Structural transformation of silver(I)–thiolate coordination polymer film at solid–liquid interfaces. CrystEngComm 2024, 26, 6269–6273. [Google Scholar] [CrossRef]
- Chakraborty, I.; Pradeep, T. Atomically Precise Clusters of Noble Metals: Emerging Link between Atoms and Nanoparticles. Chem. Rev. 2017, 117, 8208–8271. [Google Scholar] [CrossRef]
- Hawila, S.; Massuyeau, F.; Gautier, R.; Fateeva, A.; Lebègue, S.; Kim, W.J.; Ledoux, G.; Mesbah, A.; Demessence, A. Tuning the 1D-2D dimensionality upon ligand exchange in silver thiolate coordination polymers with photoemission switching. J. Mater. Chem. B 2023, 11, 5670–5677. [Google Scholar] [CrossRef]
- Xu, T.Y.; Si, W.D.; Zhang, C.K.; Han, B.L.; Wang, Z.; Tung, C.H.; Sun, D. Photoswitchable Arylazopyrazole-Functionalized Ag8 Nanoclusters with Light-Modulated Photoluminescence. J. Am. Chem. Soc. 2025, 147, 21468–21477. [Google Scholar] [CrossRef]
- Zhang, W.F.; Ye, G.M.; Liao, D.H.; Chen, X.L.; Lu, C.Y.; Nezamzadeh-Ejhieh, A.; Khan, M.S.; Liu, J.Q.; Pan, Y.; Dai, Z. Recent advances of silver-based coordination polymers on antibacterial applications. Molecules 2022, 27, 7166. [Google Scholar] [CrossRef] [PubMed]
- Kaur, N.; Tiwari, P.; Kapoor, K.S.; Saini, A.K.; Sharma, V.; Mobin, S.M. Metal-organic framework based antibiotic release and antimicrobial response: An overview. CrystEngComm 2020, 22, 7513–7527. [Google Scholar] [CrossRef]
- Medici, S.; Peana, M.; Crisponi, G.; Nurchi, V.M.; Lachowicz, J.I.; Remelli, M.; Zoroddu, M.A. Silver coordination compounds: A new horizon in medicine. Coord. Chem. Rev. 2016, 327, 349–359. [Google Scholar] [CrossRef]
- Veselska, O.; Demessence, A. d10 Coinage metal organic chalcogenolates: From oligomers to coordination polymers. Coord. Chem. Rev. 2018, 355, 240–270. [Google Scholar] [CrossRef]
- Biswas, S.; Das, S.; Negishi, Y. Progress and prospects in the design of functional atomically-precise Ag(I)-thiolate nanoclusters and their assembly approaches. Coord. Chem. Rev. 2023, 492, 215255. [Google Scholar] [CrossRef]
- Dar, W.A.; Jana, A.; Sugi, K.S.; Paramasivam, G.; Bodiuzzaman, M.; Khatun, E.; Som, A.; Mahendranath, A.; Chakraborty, A.; Pradeep, T. Molecular Engineering of Atomically Precise Silver Clusters into 2D and 3D Framework Solids. Chem. Mater. 2022, 34, 4703–4711. [Google Scholar] [CrossRef]
- Das, A.K.; Biswas, S.; Manna, S.S.; Pathak, B.; Mandal, S. Solvent-Dependent Photophysical Properties of a Semiconducting One-Dimensional Silver Cluster-Assembled Material. Inorg. Chem. 2021, 60, 18234–18241. [Google Scholar] [CrossRef]
- Hu, F.; Yang, G.; Zheng, L.M.; Liang, G.J.; Wang, Q.M. Deciphering icosahedra structural evolution with atomically precise silver nanoclusters. Science 2025, 389, 921–924. [Google Scholar] [CrossRef]
- Hajda, A.; Guha, R.; Copp, S.M.; Olesiak-Bańska, J. Two-photon brightness of NIR-emitting, atomically precise DNA-stabilized silver nanoclusters. Chem. Sci. 2025, 16, 1737–1745. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.Q.; Xiao, F.X. Photosensitization Efficiency Modulation of Atomically Precise Silver Nanoclusters for Photoelectrocatalysis. Inorg. Chem. 2023, 62, 6138–6146. [Google Scholar] [CrossRef]
- Tan, C.H.; Lu, M.H.; Zhou, T.; Fang, Z.; Zhou, J.; Wang, X.-F.; Wang, G.Q.; Lin, Y.W.; Rocha, J. Improved pleiotropic antibacterial activity of Ag(I)-thiolate coordination polymers via iodide encapsulation in multinuclear silver nano-cages. Mater. Today Bio. 2025, 32, 101673. [Google Scholar] [CrossRef] [PubMed]
- Horita, Y.; Ishimi, M.; Negishi, Y. Anion-templated silver nanoclusters: Precise synthesis and geometric structure. Sci. Technol. Adv. Mater. 2023, 24, 2203832. [Google Scholar] [CrossRef]
- Healy, C.; Schmitt, W. Multicomponent halide templating: The effect of structure-directing agents on the assembly of molecular and extended coordination compounds. Coord. Chem. Rev. 2018, 371, 67–85. [Google Scholar] [CrossRef]
- Xie, Y.P.; Jin, J.L.; Lu, X.; Mak, T.C.W. High-nuclearity silver thiolate clusters constructed with phosphonates. Angew. Chem. Int. Ed. 2015, 54, 15176–15180. [Google Scholar] [CrossRef]
- Wang, Q.M.; Lin, Y.M.; Liu, K.G. Role of anions associated with the formation and properties of silver clusters. Acc. Chem. Res. 2015, 48, 1570–1579. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.S.K.; Tseng, W.B.; Arputharaj, E.; Huang, P.J.; Tseng, W.L.; Bajda, T. Covalent organic framework nanosheets as an enhancer for light-responsive oxidase-like nanozymes: Multifunctional applications in colorimetric sensing, antibiotic degradation, and antibacterial agents. ACS Sustain. Chem. Eng. 2023, 11, 6956–6969. [Google Scholar] [CrossRef]
- Li, S.; Du, X.S.; Li, B.; Wang, J.Y.; Li, G.P.; Gao, G.G.; Zang, S.Q. Atom-Precise Modification of Silver(I) Thiolate Cluster by Shell Ligand Substitution: A New Approach to Generation of Cluster Functionality and Chirality. J. Am. Chem. Soc. 2018, 140, 594–597. [Google Scholar] [CrossRef]
- Tao, Y.; Luan, N.; Yang, C.Y.; Sun, J.Y.; Li, K.; Dai, X.; Zhang, H.L.; Chai, Z.F.; Wang, S.; Wang, Y.X. Incorporation of the 99TcO4− Anion within the Ag24(C≡CtBu)204+ Cluster Unveiling the Unique Shell-to-Core Charge Transfer. J. Am. Chem. Soc. 2024, 146, 11018–11024. [Google Scholar] [CrossRef]
- Biswas, S.; Das, A.K.; Mandal, S. Surface Engineering of Atomically Precise M(I) Nanoclusters: From Structural Control to Room Temperature Photoluminescence Enhancement. Acc. Chem. Res. 2023, 56, 1838–1849. [Google Scholar] [CrossRef]
- Ma, A.L.; Du, W.J.; Wang, J.W.; Jiang, K.F.; Zhang, C.; Sheng, W.H.; Zheng, H.Y.; Jin, R.C.; Wang, S.X. Transforming Silver Nanoclusters from Racemic to Homochiral via Seeded Crystallization. J. Phys. Chem. Lett. 2023, 14, 5095–5101. [Google Scholar] [CrossRef]
- Alhilaly, M.J.; Huang, R.W.; Naphade, R.; Alamer, B.; Hedhili, M.N.; Emwas, A.H.; Maity, P.; Yin, J.; Shkurenko, A.; Mohammed, O.F.; et al. Assembly of Atomically Precise Silver Nanoclusters into Nanocluster-Based Frameworks. J. Am. Chem. Soc. 2019, 141, 9585–9592. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Ye, S.; Huang, R.H.; Wang, M.Y.; Lin, P.X.; Zhang, H.R.; Wang, D.P. Luminescence Properties and Theoretical Modeling of the Ag3 Cluster Confined inside the D6r Cavity of Faujasite Zeolite: Implications for the Design of Tunable Emission Phosphor. ACS Appl. Nano Mater. 2024, 7, 9934–9941. [Google Scholar] [CrossRef]
- Mondal, S.; Sahoo, R.; Behera, J.; Das, M.C. Advances on silver-based MOFs and/or CPs and their composites: Synthesis strategies and applications. Coord. Chem. Rev. 2024, 514, 215924. [Google Scholar] [CrossRef]
- Sunada, Y.; Yamaguchi, K.; Suzuki, K. “Template synthesis” of discrete metal clusters with two-or three-dimensional architectures. Coord. Chem. Rev. 2022, 469, 214673. [Google Scholar] [CrossRef]
- Du, W.J.; Deng, S.Y.; Chen, S.; Jin, S.; Zhen, Y.R.; Pei, Y.; Zhu, M.Z. Anisotropic Evolution of Nanoclusters from Ag40 to Ag45: Halogen- and Defect-Induced Epitaxial Growth in Nanoclusters. J. Phys. Chem. Lett. 2021, 12, 6654–6660. [Google Scholar] [CrossRef]
- Yonesato, K.; Ito, H.; Itakura, H.; Yokogawa, D.; Kikuchi, T.; Mizuno, N.; Yamaguchi, K.; Suzuki, K. Controlled Assembly Synthesis of Atomically Precise Ultrastable Silver Nanoclusters with Polyoxometalates. J. Am. Chem. Soc. 2019, 141, 19550–19554. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Xu, H.; Liu, Y.; Zhao, Y.; Daemen, L.L.; Brown, C.; Wang, H.; Hu, Y.J.; Liu, D.J. Hydrated silicotungstate-directed assembly of a 3D silver-thiolate framework with enhanced CO2 selectivity. Chem. Commun. 2014, 50, 5143–5145. [Google Scholar] [CrossRef] [PubMed]
- Bonačić-Koutecký, V.; Mitrić, R.; Bügel, F.; Schlauch, M.; Falk, M.; Griesbeck, A. Optical properties and dynamics of small silver clusters: Theoretical and experimental study. Phys. Chem. Chem. Phys. 2012, 14, 9282–9290. [Google Scholar] [CrossRef] [PubMed]




| Parameter | USC-CP-4 |
|---|---|
| Formula | C20H45Ag6S5Br |
| Mr | 1172.99 |
| Cryst system | Tetragonal |
| Space group | |
| a/Å | 12.208(3) |
| b/Å | 12.208(3) |
| c/Å | 44.948(2) |
| α/° | 90 |
| β/° | 90 |
| γ/° | 90 |
| V/Å3 | 6699(3) |
| Z | 8 |
| Dc/g cm−3 | 2.326 |
| μ/mm−1 | 4.954 |
| F(000) | 4496 |
| R(int) | 0.0572 |
| Total reflections | 28,639 |
| Unique reflections | 3917 |
| I > 2σ(I) | 3781 |
| R1 | 0.0721 |
| wR2 | 0.2466 |
| S | 1.086 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Tan, C.; Tang, L.; Tan, J.; Zhang, J.; Zhou, J.; Yin, L.; Wang, X.-F. Halogen as Template to Modulate the Structures of the Nanocage-Based Silver(I)-Thiolate Coordination Polymers. Molecules 2026, 31, 331. https://doi.org/10.3390/molecules31020331
Tan C, Tang L, Tan J, Zhang J, Zhou J, Yin L, Wang X-F. Halogen as Template to Modulate the Structures of the Nanocage-Based Silver(I)-Thiolate Coordination Polymers. Molecules. 2026; 31(2):331. https://doi.org/10.3390/molecules31020331
Chicago/Turabian StyleTan, Chunhong, Li Tang, Jiajia Tan, Jinrong Zhang, Juan Zhou, Linmao Yin, and Xiao-Feng Wang. 2026. "Halogen as Template to Modulate the Structures of the Nanocage-Based Silver(I)-Thiolate Coordination Polymers" Molecules 31, no. 2: 331. https://doi.org/10.3390/molecules31020331
APA StyleTan, C., Tang, L., Tan, J., Zhang, J., Zhou, J., Yin, L., & Wang, X.-F. (2026). Halogen as Template to Modulate the Structures of the Nanocage-Based Silver(I)-Thiolate Coordination Polymers. Molecules, 31(2), 331. https://doi.org/10.3390/molecules31020331

