Utilization of Quinoa Post-Fermentation Waste as a Medium for Carotenoid Production by Yeast
Abstract
1. Introduction
2. Results
2.1. Yeast Strains
2.2. Culture Media
2.3. Carotenoid Production
2.4. FTIR Analysis
2.5. DPPH Reduction Activity
3. Discussion
3.1. Plant Waste as a Substrate for Carotenoid Synthesis
3.2. Carotenoid Production
3.3. FTIR Analysis
3.4. Antioxidant Potential
4. Materials and Methods
4.1. Yeast Strains
4.2. Plant Waste Used
4.3. Yeast Culture Methods
4.4. Extraction and Determination of Carotenoid Content
4.5. Powder Preparation
4.6. Determination of DPPH Radical Reduction Ability
4.7. FTIR Analysis
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zakynthinos, G.; Varzakas, T. Carotenoids: From plants to food industry. Curr. Res. Nutr. Food Sci. 2016, 4, 38–51. [Google Scholar] [CrossRef]
- Nagao, A. Absorption and metabolism of dietary carotenoids. Biofactors 2011, 37, 83–87. [Google Scholar] [CrossRef]
- Pursall, E.R.; Rolff, J. Immune responses accelerate ageing: Proof-of-principle in an insect model. PLoS ONE 2011, 6, e19972. [Google Scholar] [CrossRef] [PubMed]
- Ghilardi, C.; Sanmartin Negrete, P.; Carelli, A.A.; Borroni, V. Evaluation of olive mill waste as substrate for carotenoid production by Rhodotorula mucilaginosa. Bioresour. Bioprocess. 2020, 7, 52. [Google Scholar] [CrossRef]
- Cipolatti, E.P.; Remedi, R.D.; dos Santos Sá, C.; Rodrigues, A.B.; Ramos, J.M.G.; Burkert, C.A.V.; Furlong, E.B.; de Medeiros Burkert, J.F. Use of agroindustrial byproducts as substrate for production of carotenoids with antioxidant potential by wild yeasts. Biocatal. Agric. Biotechnol. 2019, 20, 101208. [Google Scholar] [CrossRef]
- Moreira, M.D.; Melo, M.M.; Coimbra, J.M.; Dos Reis, K.C.; Schwan, R.F.; Silva, C.F. Solid coffee waste as alternative to produce carotenoids with antioxidant and antimicrobial activities. Waste Manag. 2018, 82, 93–99. [Google Scholar] [CrossRef]
- Malisorn, C.; Suntornsuk, W. Optimization of β-carotene production by Rhodotorula glutinis DM28 in fermented radish brine. Bioresour. Technol. 2008, 99, 2281–2287. [Google Scholar] [CrossRef]
- Mohamed Ahmed, I.A.; Al Juhaimi, F.; Özcan, M.M. Insights into the nutritional value and bioactive properties of quinoa (Chenopodium quinoa): Past, present and future prospective. Int. J. Food Sci. Technol. 2021, 56, 3726–3741. [Google Scholar] [CrossRef]
- Kulczyk-Małysa, E.; Bogusławska-Wąs, E. Carotenoid Yeasts and Their Application Potential. Foods 2025, 14, 1866. [Google Scholar] [CrossRef] [PubMed]
- Mata-Gómez, L.C.; Montañez, J.C.; Méndez-Zavala, A.; Aguilar, C.N. Biotechnological production of carotenoids by yeasts: An overview. Microb. Cell Factories 2014, 13, 12. [Google Scholar] [CrossRef] [PubMed]
- Šovljanski, O.; Cvetković, D.; Budimac, T.; Vučetić, A.; Tomić, A.; Marić, T.; Ranitović, A. A Potential of Agro-Industrial Biowaste as Low-Cost Substrates for Carotenoid Production by Rhodotorula mucilaginosa. Fermentation 2025, 11, 531. [Google Scholar] [CrossRef]
- Braunwald, T.; Schwemmlein, L.; Graeff-Hönninger, S.; French, W.T.; Hernandez, R.; Holmes, W.E.; Claupein, W. Effect of different C/N ratios on carotenoid and lipid production by Rhodotorula glutinis. Appl. Microbiol. Biotechnol. 2013, 97, 6581–6588. [Google Scholar] [CrossRef] [PubMed]
- Marova, I.; Haronikova, A.; Petrik, S.; Dvorakova, T.; Breierova, E. Production of enriched biomass by red yeasts of Sporobolomyces sp. grown on waste substrates. J. Microbiol. Biotechnol. Food Sci. 2012, 1, 534–551. [Google Scholar]
- Kulczyk-Małysa, E.; Bogusławska-Wąs, E. Optymalizacja warunków biosyntezy wybranych karotenoidów przez drożdże z rodzaju Rhodotorula. ŻYWNOŚĆ. Nauka. Technologia. Jakość. 2024, 31, 45–62. [Google Scholar]
- Marova, I.; Carnecka, M.; Halienova, A.; Certik, M.; Dvorakova, T.; Haronikova, A. Use of several waste substrates for carotenoid-rich yeast biomass production. J. Environ. Manag. 2012, 95, S338–S342. [Google Scholar] [CrossRef]
- Zhang, Z.; Pang, Z.; Xu, S.; Wei, T.; Song, L.; Wang, G.; Zhang, J.; Yang, X. Improved carotenoid productivity and COD removal efficiency by co-culture of Rhodotorula glutinis and Chlorella vulgaris using starch wastewaters as raw material. Appl. Biochem. Biotechnol. 2019, 189, 193–205. [Google Scholar] [CrossRef]
- Simova, E.D.; Frengova, G.I.; Beshkova, D.M. Effect of aeration on the production of carotenoid pigments by Rhodotorula rubra-lactobacillus casei subsp. casei co-cultures in whey ultrafiltrate. Z. Für Naturforschung C 2003, 58, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Simova, E.D.; Frengova, G.I.; Beshkova, D.M. Exopolysaccharides produced by mixed culture of yeast Rhodotorula rubra GED10 and yogurt bacteria (Streptococcus thermophilus 13a+ Lactobacillus bulgaricus 2–11). J. Appl. Microbiol. 2004, 97, 512–519. [Google Scholar] [CrossRef]
- Jones, J.A.; Wang, X. Use of bacterial co-cultures for the efficient production of chemicals. Curr. Opin. Biotechnol. 2018, 53, 33–38. [Google Scholar] [CrossRef]
- Simova, E.D.; Frengova, G.I.; Beshkova, D.M. Synthesis of carotenoids by Rhodotorula rubra GED8 co-cultured with yogurt starter cultures in whey ultrafiltrate. J. Ind. Microbiol. Biotechnol. 2004, 31, 115–121. [Google Scholar] [CrossRef]
- Nenciarini, S.; Reis-Costa, A.; Pallecchi, M.; Renzi, S.; D’Alessandro, A.; Gori, A.; Cerasuolo, B.; Meriggi, N.; Bartolucci, G.L.; Cavalieri, D. Investigating Yeast–Lactobacilli Interactions through Co-Culture Growth and Metabolite Analysis. Fermentation 2023, 9, 933. [Google Scholar] [CrossRef]
- Bhosale, P.; Jogdand, V.V.; Gadre, R.V. Stability of β-carotene in spray dried preparation of Rhodotorula glutinis mutant 32. J. Appl. Microbiol. 2003, 95, 584–590. [Google Scholar] [CrossRef] [PubMed]
- Pénicaud, C.; Achir, N.; Dhuique-Mayer, C.; Dornier, M.; Bohuon, P. Degradation of β-carotene during fruit and vegetable processing or storage: Reaction mechanisms and kinetic aspects: A review. Fruits 2011, 66, 417–440. [Google Scholar] [CrossRef]
- Wahab, A.A.; Dare, A.P.; Shittu, R.S.; Anate, M.O.; Akande, R.O. Optimization of Pigment Production by Rhodotorula mucilaginosa Strain A2J2 Isolated from Soil for Promising Application in Textile and Food Industries. Res. Soc. Dev. 2021, 10, e152101724311. [Google Scholar] [CrossRef]
- Hagos, M.; Redi-Abshiro, M.; Chandravanshi, B.S.; Yaya, E.E. Development of analytical methods for determination of β-carotene in pumpkin (Cucurbita maxima) flesh, peel, and seed powder samples. Int. J. Anal. Chem. 2022, 2022, 9363692. [Google Scholar] [CrossRef]
- Saha, N.; Samanta, A.K.; Chaudhuri, S.; Dutta, D. Characterization and antioxidant potential of a carotenoid from a newly isolated yeast. Food Sci. Biotechnol. 2015, 24, 117–124. [Google Scholar] [CrossRef]
- Lóránd, T.; Deli, J.; Molnár, P.; Tóth, G. FT-IR study of some carotenoids. Helv. Chim. Acta 2002, 85, 1691–1697. [Google Scholar] [CrossRef]
- Anshi; Kaur, H.; Goswami, L.; Kapil, S.; Sharma, V. Isolation, Optimization and Characterization of Rhodotorula alborubescens for Dietary Pigment β-Carotene Production. Appl. Microbiol. 2025, 5, 54. [Google Scholar] [CrossRef]
- Abubakar, H.; Astuti, R.I.; Batubara, I.; Listiyowati, S.; Wahyudi, A.T. Investigating antioxidant activity of carotenoid compound from Paracoccus Haeundaensis SAB E11 at the cellular level in Schizosaccharomyces pombe ARC039 yeast model. J. Appl. Pharm. Sci. 2025, 15, 183–193. [Google Scholar] [CrossRef]
- McCord, J.M. The evolution of free radicals and oxidative stress. Am. J. Med. 2000, 108, 652–659. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Sarkar, A.; Rao, K.V.B. Extraction and characterization of carotenoid pigments with antioxidant and antibacterial potential from marine yeast Rhodotorula sp. KSB1. Int. Microbiol. 2025, 28, 137–156. [Google Scholar] [CrossRef]
- Naghavi, F.S. The capability of Rhodotorula slooffiae to produce carotenoid. Zahedan J. Res. Med. Sci. 2015, 17, e1986. [Google Scholar]
- Łopusiewicz, Ł.; Bogusławska-Wąs, E.; Drozłowska, E.; Trocer, P.; Dłubała, A.; Mazurkiewicz-Zapałowicz, K.; Bartkowiak, A. The application of spray-dried and reconstituted flaxseed oil cake extract as encapsulating material and carrier for probiotic Lacticaseibacillus rhamnosus GG. Materials 2021, 14, 5324. [Google Scholar] [CrossRef]
- Horwitz, W.; Latimer, G.W. Official Methods of Analysis of AOAC International, 17th ed.; AOAC International: Gaithersburg, DC, USA, 2000; pp. 12–35. [Google Scholar]
- Sinha, S.; Das, S.; Saha, B.; Paul, D.; Basu, B. Anti-microbial, anti-oxidant, and anti-breast cancer properties unraveled in yeast carotenoids produced via cost-effective fermentation technique utilizing waste hydrolysate. Front. Microbiol. 2023, 13, 1088477. [Google Scholar] [CrossRef] [PubMed]
- Kot, A.M.; Sęk, W.; Kieliszek, M.; Błażejak, S.; Pobiega, K.; Brzezińska, R. Diversity of red yeasts in various regions and environments of Poland and biotechnological potential of the isolated strains. Appl. Biochem. Biotechnol. 2024, 196, 3274–3316. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.-T.; Yang, C.-F. Using strain Rhodotorula mucilaginosa to produce carotenoids using food wastes. J. Taiwan Inst. Chem. Eng. 2016, 61, 270–275. [Google Scholar] [CrossRef]
- Chen, D.; Han, Y.; Gu, Z. Application of statistical methodology to the optimization of fermentative medium for carotenoids production by Rhodobacter sphaeroides. Process Biochem. 2006, 41, 1773–1778. [Google Scholar] [CrossRef]
- Herigstad, B.; Hamilton, M.; Heersink, J. How to optimize the drop plate method for enumerating bacteria. J. Microbiol. Methods 2001, 44, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Ghoshal, G. Optimization of carotenoids production by Rhodotorula mucilaginosa (MTCC-1403) using agro-industrial waste in bioreactor: A statistical approach. Biotechnol. Rep. 2020, 25, e00407. [Google Scholar] [CrossRef]


| Strain Designation | Strain Species | Place of Isolation |
|---|---|---|
| Natural Environment | ||
| SR-20 | Rhodotorula mucilaginosa | Fish digestive system |
| SR-50 | Rhodotorula mucilaginosa | Bottom sediments |
| SR-60 | Rhodotorula glutinis | Water from a water reservoir |
| Plants | ||
| R-1 | Rhodotorula mucilaginosa | Lentil grains |
| R-2 | Rhodotorula mucilaginosa | Lentil grains |
| WUT-167 | Rhodotorula mucilaginosa | Rowan tree |
| WUT-182 | Sporobolomyces roseus | Quince fruit |
| Dairy Products | ||
| M-66 | Rhodotorula glutinis | Mozzarella |
| WUT-10 | Rhodotorula mucilaginosa | Kefir |
| Yeast Strain | DCW | VCC | TFC |
|---|---|---|---|
| g/L | mg/L | μg/g d.w. | |
| Variant I | |||
| SR-20 | 2.42 ± 0.20 e | 1.05 ± 0.02 bc | 433.90 ± 7.81 b |
| SR-50 | 3.92 ± 0.12 c | 1.10 ± 0.02 b | 281.30 ± 6.80 d |
| SR-60 | 5.69 ± 0.10 a | 2.03 ± 0.35 a | 357.20 ± 3.51 c |
| R-1 | 1.81 ± 0.23 f | 0.11 ± 0.01 f | 62.20 ± 1.33 h |
| R-2 | 1.19 ± 0.57 h | 0.07 ± 0.02 f | 56.70 ± 1.62 h |
| WUT-167 | 3.10 ± 0.14 d | 0.56 ± 0.05 d | 180.56 ± 5.08 f |
| WUT-182 | 1.58 ± 0.09 g | 0.31 ± 0.03 e | 195.15 ± 2.51 e |
| M-66 | 1.89 ± 0.67 f | 1.01 ± 0.21 c | 531.70 ± 7.03 a |
| WUT-10 | 5.27 ± 1.12 b | 0.55 ± 0.03 d | 99.62 ± 2.89 g |
| Variant II | |||
| SR-20 | 2.30 ± 0.36 ab | 0.18 ± 0.04 bc | 79.77 ± 2.66 e |
| SR-50 | 1.53 ± 0.35 bc | 0.70 ± 0.17 a | 452.27 ± 8.63 b |
| SR-60 | 1.49 ± 0.17 c | 0.27 ± 0.03 b | 181.17 ± 3.55 de |
| R-1 | 1.21 ± 0.29 c | 0.71 ± 0.07 a | 597.07 ± 9.25 a |
| R-2 | 1.49 ± 0.22 c | 0.61 ± 0.14 a | 403.63 ± 7.52 bc |
| WUT-167 | 2.57 ± 0.33 a | 0.58 ± 0.07 a | 227.23 ± 10.99 cd |
| WUT-182 | 0.00 ± 0.00 d | 0.00 ± 0.00 c | 0.00 ± 0.00 f |
| M-66 | 1.69 ± 0.40 bc | 0.51 ± 0.13 ab | 298.53 ± 10.55 c |
| WUT-10 | 1.20 ± 0.18 c | 0.56 ± 0.03 a | 472.13 ± 5.85 b |
| Variant III | |||
| SR-20 | 1.29 ± 0.12 cd | 0.07 ± 0.01 ef | 29.50 ± 2.21 e |
| SR-50 | 2.23 ± 0.10 ab | 0.95 ± 0.04 a | 426.80 ± 4.59 a |
| SR-60 | 1.64 ± 0.19 bcd | 0.10 ± 0.03 ef | 40.61± 3.19 e |
| R-1 | 1.19 ± 0.17 d | 0.30 ± 0.05 de | 253.07 ± 4.82 c |
| R-2 | 1.98 ± 0.61 abc | 0.69 ± 0.26 b | 349.37 ± 8.99 b |
| WUT-167 | 2.60 ± 0.16 a | 0.60 ± 0.07 bc | 229.93 ± 2.59 c |
| WUT-182 | 0.00 ± 0.00 e | 0.00 ± 0.00 f | 0.00 ± 0.00 f |
| M-66 | 1.41 ± 0.18 cd | 0.58 ± 0.08 bc | 414.80 ± 8.41 a |
| WUT-10 | 2.16 ± 0.23 ab | 0.37 ± 0.03 cd | 171.73 ± 8.45 d |
| Yeast Strain | Variant II | Variant III |
|---|---|---|
| TFC [mg/g d.w.] | ||
| SR-50 | 1.55 ± 0.10 c | 2.60 ± 0.04 a |
| R-1 | 2.85 ± 0.04 a | 2.24 ± 0.09 b |
| R-2 | 3.05 ± 0.08 a | 2.33 ± 0.01 b |
| WUT-167 | 2.25 ± 0.01 b | 2.58 ± 0.04 ab |
| M-66 | 0.97 ± 0.02 d | 2.00 ± 0.06 c |
| WUT-10 | 1.40 ± 0.04 c | 1.26 ± 0.02 d |
| β—carotene [mg/g d.w.] | ||
| SR-50 | 0.34 ± 0.01 c | 0.49 ± 0.01 ab |
| R-1 | 0.65 ± 0.02 a | 0.55 ± 0.03 a |
| R-2 | 0.65 ± 0.02 a | 0.45 ± 0.02 b |
| WUT-167 | 0.46 ± 0.01 b | 0.49 ± 0.02 ab |
| M-66 | 0.18 ± 0.05 d | 0.42 ± 0.01 b |
| WUT-10 | 0.21 ± 0.01 d | 0.18 ± 0.05 c |
| Yeast Strain | Variant II | Variant III |
|---|---|---|
| DPPH [%] | ||
| SR-50 | 67.68 ± 1.61 cd | 84.15 ± 0.61 a |
| R-1 | 71.14 ± 0.35 b | 70.16 ± 3.15 c |
| R-2 | 76.83 ± 1.61 a | 78.05 ± 2.19 b |
| WUT-167 | 69.92 ± 0.35 bc | 69.11 ± 0.93 c |
| M-66 | 66.87 ±0.70 d | 69.90 ± 0.61 c |
| WUT-10 | 66.80 ± 0.93 d | 70.12 ± 0.62 c |
| Variable | Yeast Strain | DCW [g/L] | TFC in Powder [mg/g d.w.] | DPPH [%] |
|---|---|---|---|---|
| Yeast strain | 1.00 | 0.09 | 0.30 | 0.24 |
| DCW [g/L] | 0.09 | 1.00 | - | −0.01 |
| TFC in powder [mg/g d.w.] | 0.30 | - | 1.00 | 0.91 * |
| Variable | Yeast Strain | DCW [g/L] | TFC in Powder [mg/g d.w.] | DPPH [%] |
|---|---|---|---|---|
| Yeast strain | 1.00 | −0.25 | −0.47 | −0.85 * |
| DCW [g/L] | −0.25 | 1.00 | 0.18 | 0.27 |
| TFC in powder [mg/g d.w.] | −0.47 | 0.18 | 1.00 | 0.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Kulczyk-Małysa, E.; Bogusławska-Wąs, E.; Jaroszek, P.; Szkolnicka, K.; Rybarczyk, A. Utilization of Quinoa Post-Fermentation Waste as a Medium for Carotenoid Production by Yeast. Molecules 2026, 31, 329. https://doi.org/10.3390/molecules31020329
Kulczyk-Małysa E, Bogusławska-Wąs E, Jaroszek P, Szkolnicka K, Rybarczyk A. Utilization of Quinoa Post-Fermentation Waste as a Medium for Carotenoid Production by Yeast. Molecules. 2026; 31(2):329. https://doi.org/10.3390/molecules31020329
Chicago/Turabian StyleKulczyk-Małysa, Ewa, Elżbieta Bogusławska-Wąs, Patrycja Jaroszek, Katarzyna Szkolnicka, and Artur Rybarczyk. 2026. "Utilization of Quinoa Post-Fermentation Waste as a Medium for Carotenoid Production by Yeast" Molecules 31, no. 2: 329. https://doi.org/10.3390/molecules31020329
APA StyleKulczyk-Małysa, E., Bogusławska-Wąs, E., Jaroszek, P., Szkolnicka, K., & Rybarczyk, A. (2026). Utilization of Quinoa Post-Fermentation Waste as a Medium for Carotenoid Production by Yeast. Molecules, 31(2), 329. https://doi.org/10.3390/molecules31020329

