Evaluation of the Performance of New Fluorescence Immunoassay POCTs for Determining the Value of Vitamin D in Whole Blood
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Makin, H.L.J.; Jones, G.; Calverley, M.J. Analysis of VD, Its Metabolites and Structural Analogues. In Steroid Analysis; Makin, H.L.J., Gower, D.B., Kirk, D.N., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 1995; pp. 562–620. [Google Scholar]
- Benedik, E. Sources of VD for Humans. Int. J. Vitam. Nutr. Res. 2022, 92, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.-W.; Lee, H.-C. VD and Health—The Missing Vitamin in Humans. Pediatr. Neonatol. 2019, 60, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Göring, H. VD in Nature: A Product of Synthesis and/or Degradation of Cell Membrane Components. Biochemistry 2018, 83, 1350–1357. [Google Scholar] [CrossRef] [PubMed]
- Juan, D. VD Metabolism: Update for the Clinician. Postgrad. Med. 1980, 68, 210–214, 217–218. [Google Scholar] [CrossRef]
- Bolodeoku, J. An Assessment of Automated VD Measurement Methods Including a Point-of-Care Testing Method, I-CHROMATM Using the Randox International Quality Assurance Scheme (Riqas). BJSTR 2018, 3. [Google Scholar] [CrossRef]
- Holick, M.F.; Schnoes, H.K.; DeLuca, H.F.; Suda, T.; Cousins, R.J. Isolation and Identification of 1,25-Dihydroxycholecalciferol. A Metabolite of VD Active in Intestine. Biochemistry 1971, 10, 2799–2804. [Google Scholar] [CrossRef]
- Saida, F.B.; Yuan, C. VD Testing in Clinical Settings: Methodologies, Accuracy and Standardization. Available online: https://it.scribd.com/document/591897309/vitamin-d-testing-in-clinical-settings-methodologies-accuracy-and-standardization (accessed on 15 October 2025).
- Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, VD, and Fluoride; The National Academies Collection: Reports funded by National Institutes of Health; National Academies Press (US): Washington, DC, USA, 1997. [Google Scholar]
- Dietary Supplement Fact Sheet: VD. Available online: https://www.thebodypro.com/article/dietary-supplement-fact-sheet-vitamin-d (accessed on 15 December 2023).
- Perales-Afán, J.J.; Aparicio-Pelaz, D.; López-Triguero, S.; Llorente, E.; Puente-Lanzarote, J.J.; Fabre, M. Direct and Indirect Reference Intervals of 25-HydroxyVD: It Is Not a Real VD Deficiency Pandemic. Biochem. Med. 2024, 34, 020706. [Google Scholar] [CrossRef]
- Bartoszewicz, Z.; Kondracka, A.; Jaźwiec, R.; Popow, M.; Dadlez, M.; Bednarczuk, T. Can We Accurately Measure the Concentration of Clinically Relevant VD Metabolites in the Circulation? The Problems and Their Consequences. Endokrynol. Pol. 2013, 64, 238–245. [Google Scholar]
- Kennel, K.A.; Drake, M.T.; Hurley, D.L. VD Deficiency in Adults: When to Test and How to Treat. Mayo Clin. Proc. 2010, 85, 752–758. [Google Scholar] [CrossRef]
- Zhao, S.; Qian, F.; Wan, Z.; Chen, X.; Pan, A.; Liu, G. VD and Major Chronic Diseases. Trends Endocrinol. Metab. 2024, 35, 1050–1061. [Google Scholar] [CrossRef]
- Agmon-Levin, N.; Theodor, E.; Segal, R.M.; Shoenfeld, Y. VD in Systemic and Organ-Specific Autoimmune Diseases. Clin. Rev. Allergy Immunol. 2013, 45, 256–266. [Google Scholar] [CrossRef]
- Venkatram, S.; Chilimuri, S.; Adrish, M.; Salako, A.; Patel, M.; Diaz-Fuentes, G. VD Deficiency Is Associated with Mortality in the Medical Intensive Care Unit. Crit. Care 2011, 15, R292. [Google Scholar] [CrossRef]
- Zhang, Y.-P.; Wan, Y.-D.; Sun, T.-W.; Kan, Q.-C.; Wang, L.-X. Association between VD Deficiency and Mortality in Critically Ill Adult Patients: A Meta-Analysis of Cohort Studies. Crit. Care 2014, 18, 684. [Google Scholar] [CrossRef] [PubMed]
- Moraes, R.B.; Friedman, G.; Wawrzeniak, I.C.; Marques, L.S.; Nagel, F.M.; Lisboa, T.C.; Czepielewski, M.A. VD Deficiency Is Independently Associated with Mortality among Critically Ill Patients. Clinics 2015, 70, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Garg, U. 25-HydroxyVD Testing: Immunoassays Versus Tandem Mass Spectrometry. Clin. Lab. Med. 2018, 38, 439–453. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, D.; Lombardi, G.; Banfi, G. Concerning the VD Reference Range: Pre-Analytical and Analytical Variability of VD Measurement. Biochem. Med. 2017, 27, 030501. [Google Scholar] [CrossRef]
- Arneson, W.L.; Arneson, D.L. Current Methods for Routine Clinical Laboratory Testing of VD Levels. Lab. Med. 2013, 44, e38–e42. [Google Scholar] [CrossRef]
- Zelzer, S.; Goessler, W.; Herrmann, M. Measurement of VD Metabolites by Mass Spectrometry, an Analytical Challenge. J. Lab. Precis. Med. 2018, 3. [Google Scholar] [CrossRef]
- Altieri, B.; Cavalier, E.; Bhattoa, H.P.; Pérez-López, F.R.; López-Baena, M.T.; Pérez-Roncero, G.R.; Chedraui, P.; Annweiler, C.; Della Casa, S.; Zelzer, S.; et al. VD Testing: Advantages and Limits of the Current Assays. Eur. J. Clin. Nutr. 2020, 74, 231–247. [Google Scholar] [CrossRef]
- Enko, D.; Kriegshäuser, G.; Stolba, R.; Worf, E.; Halwachs-Baumann, G. Method Evaluation Study of a New Generation of VD Assays. Biochem. Med. 2015, 25, 203–212. [Google Scholar] [CrossRef]
- Tang, J.C.Y.; Dunn, R.; Dutton, J.J.; Farag, A.; Piec, I.; Chipchase, A.; Greeves, J.; Fraser, W.D.; Webb, E.A. Measurement of 1,25-DihydroxyVD in Serum by LC-MS/MS Compared to Immunoassay Reveals Inconsistent Agreement in Paediatric Samples. Clin. Chem. Lab. Med. 2025, 63, 962–971. [Google Scholar] [CrossRef] [PubMed]
- Jenkinson, C.; Taylor, A.E.; Hassan-Smith, Z.K.; Adams, J.S.; Stewart, P.M.; Hewison, M.; Keevil, B.G. High Throughput LC-MS/MS Method for the Simultaneous Analysis of Multiple VD Analytes in Serum. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1014, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Li, H.; Liu, H.; Cong, L.; Liu, L.; An, Z. High Throughput UHPLC-MS/MS Method for the Simultaneous Quantification of Six VD Metabolites: Application for VD Determination in Patients after Liver or Kidney Transplantation. Anal. Methods 2020, 12, 5591–5600. [Google Scholar] [CrossRef] [PubMed]
- Adamec, J.; Jannasch, A.; Huang, J.; Hohman, E.; Fleet, J.C.; Peacock, M.; Ferruzzi, M.G.; Martin, B.; Weaver, C.M. Development and Optimization of an LC-MS/MS-Based Method for Simultaneous Quantification of VD2, VD3, 25-HydroxyVD2 and 25-HydroxyVD3. J. Sep. Sci. 2011, 34, 11–20. [Google Scholar] [CrossRef]
- IFU—AFIAS VD. Available online: https://it.scribd.com/document/904358018/Ifu-Afias-Vitamin-d-180305-1 (accessed on 27 October 2025).
- Palermiti, A.; Manca, A.; Mastrantonio, F.; Maiese, D.; Curatolo, A.; Antonucci, M.; Simiele, M.; De Nicolò, A.; D’Avolio, A. Comparative Performance Assessment of Novel Fluorescence Immunoassay POCTs for Measuring Circulating Levels of Vitamin-D. Molecules 2024, 29, 1636. [Google Scholar] [CrossRef]
- Crocker, B.; Lewandrowski, E.-L.; Lewandrowski, N.; Gregory, K.; Lewandrowski, K. Patient Satisfaction with Point-of-Care Laboratory Testing: Report of a Quality Improvement Program in an Ambulatory Practice of an Academic Medical Center. Clin. Chim. Acta 2013, 424, 8–11. [Google Scholar] [CrossRef]
- Chaisirin, W.; Wongkrajang, P.; Thoesam, T.; Praphruetkit, N.; Nakornchai, T.; Riyapan, S.; Ruangsomboon, O.; Laiwejpithaya, S.; Rattanathummawat, K.; Pavichai, R.; et al. Role of Point-of-Care Testing in Reducing Time to Treatment Decision-Making in Urgency Patients: A Randomized Controlled Trial. West. J. Emerg. Med. 2020, 21, 404–410. [Google Scholar] [CrossRef]
- Laurence, C.O.; Gialamas, A.; Bubner, T.; Yelland, L.; Willson, K.; Ryan, P.; Beilby, J. Point of Care Testing in General Practice Trial Management Group Patient Satisfaction with Point-of-Care Testing in General Practice. Br. J. Gen. Pract. 2010, 60, e98–e104. [Google Scholar] [CrossRef]
- Jolliffe, D.A.; Camargo, C.A.; Sluyter, J.D.; Aglipay, M.; Aloia, J.F.; Ganmaa, D.; Bergman, P.; Bischoff-Ferrari, H.A.; Borzutzky, A.; Damsgaard, C.T.; et al. VD Supplementation to Prevent Acute Respiratory Infections: A Systematic Review and Meta-Analysis of Aggregate Data from Randomised Controlled Trials. Lancet Diabetes Endocrinol. 2021, 9, 276–292. [Google Scholar] [CrossRef]
- Jeyakumar, A.; Bhalekar, P.; Shambharkar, P. Effect of VD Supplementation on the Immune Response to Respiratory Tract Infections and Inflammatory Conditions: A Systematic Review and Meta-Analysis. Hum. Nutr. Metab. 2024, 37, 200272. [Google Scholar] [CrossRef]
- Meng, J.; Li, X.; Liu, W.; Xiao, Y.; Tang, H.; Wu, Y.; Xiong, Y.; Gao, S. The Role of VD in the Prevention and Treatment of SARS-CoV-2 Infection: A Meta-Analysis of Randomized Controlled Trials. Clin. Nutr. 2023, 42, 2198–2206. [Google Scholar] [CrossRef] [PubMed]
- Lindh, J.D.; Björkhem-Bergman, L.; Eliasson, E. VD and Drug-Metabolising Enzymes. Photochem. Photobiol. Sci. 2012, 11, 1797–1801. [Google Scholar] [CrossRef] [PubMed]
- Cusato, J.; Tempestilli, M.; Calcagno, A.; Vergori, A.; Piselli, P.; Antonucci, M.; Avataneo, V.; Palermiti, A.; Notari, S.; Antinori, A.; et al. VD as Modulator of Drug Concentrations: A Study on Two Italian Cohorts of People Living with HIV Administered with Efavirenz. Nutrients 2021, 13, 3571. [Google Scholar] [CrossRef] [PubMed]
- Lindh, J.D.; Andersson, M.L.; Eliasson, E.; Björkhem-Bergman, L. Seasonal Variation in Blood Drug Concentrations and a Potential Relationship to VD. Drug Metab. Dispos. 2011, 39, 933–937. [Google Scholar] [CrossRef]
- Manca, A.; Mula, J.; Palermiti, A.; Vischia, F.; Cori, D.D.; Venturello, S.; Emanuelli, G.; Maiese, D.; Antonucci, M.; Nicolò, A.D.; et al. VD Impact in Affecting Clozapine Plasma Exposure: A Potential Contribution of Seasonality. Biomed. Pharmacother. 2023, 165, 115103. [Google Scholar] [CrossRef]
- European Medicines Agency. Q 2 (R1) Validation of Analytical Procedures: Text and Methodology; European Medicines Agency: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Brescia, V.; Tampoia, M.; Cardinali, R. Biological Variability of Serum 25-HydroxyVD and Other Biomarkers in Healthy Subjects. Lab. Med. 2013, 44, 20–24. [Google Scholar] [CrossRef]
- Dodd, S.A.S.; Adolphe, J.; Dewey, C.; Khosa, D.; Abood, S.K.; Verbrugghe, A. Efficacy of VD2 in Maintaining Serum Total VD Concentrations and Bone Mineralisation in Adult Dogs Fed a Plant-Based (Vegan) Diet in a 3-Month Randomised Trial. Br. J. Nutr. 2024, 131, 391–405. [Google Scholar] [CrossRef]
- Lu, C.M. Pathology Consultation on VD Testing: Clinical Indications for 25(OH) VD Measurement. Am. J. Clin. Pathol. 2012, 137, 831–832. [Google Scholar] [CrossRef]
- Aranow, C. VD and the Immune System. J. Investig. Med. 2011, 59, 881–886. [Google Scholar] [CrossRef]
- Avataneo, V.; Palermiti, A.; De Nicolò, A.; Cusato, J.; Giussani, G.; Calcagno, A.; D’Avolio, A. Monthly Increase in VD Levels upon Supplementation with 2000 IU/Day in Healthy Volunteers: Result from “Integriamoci”, a Pilot Pharmacokinetic Study. Molecules 2022, 27, 1042. [Google Scholar] [CrossRef]



| AFIAS-1® (ng/mL) | LC MS/MS (ng/mL)-Thawed | |
|---|---|---|
| Lowest value | 5.86 | 3.57 |
| Highest value | 39.42 | 34.41 |
| VD3 (mean ± SD) | 18.86 ± 8.18 | 15.49 ± 7.21 |
| CV% | 43% | 47% |
| Regression Equation | |
|---|---|
| y = 2.244520 + 1.078287 x | |
| Systematic differences | |
| Intercept A | 2.2445 |
| 95% CI | −0.2222 to 3.9455 |
| Proportional differences | |
| Slope B | 1.0783 |
| 95% CI | 0.9248 to 1.2553 |
| Random differences | |
| Residual Standard Deviation (RSD) | 2.5795 |
| ±1.96 RSD Interval | −5.0559 to 5.0559 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Palermiti, A.; Manca, A.; Mastrantonio, F.; Maiese, D.; Cat Genova, E.; Menegatti, G.; Simiele, M.; Martino, C.; De Nicolò, A.; D’Avolio, A. Evaluation of the Performance of New Fluorescence Immunoassay POCTs for Determining the Value of Vitamin D in Whole Blood. Molecules 2026, 31, 130. https://doi.org/10.3390/molecules31010130
Palermiti A, Manca A, Mastrantonio F, Maiese D, Cat Genova E, Menegatti G, Simiele M, Martino C, De Nicolò A, D’Avolio A. Evaluation of the Performance of New Fluorescence Immunoassay POCTs for Determining the Value of Vitamin D in Whole Blood. Molecules. 2026; 31(1):130. https://doi.org/10.3390/molecules31010130
Chicago/Turabian StylePalermiti, Alice, Alessandra Manca, Fabrizio Mastrantonio, Domenico Maiese, Elena Cat Genova, Giorgia Menegatti, Marco Simiele, Camilla Martino, Amedeo De Nicolò, and Antonio D’Avolio. 2026. "Evaluation of the Performance of New Fluorescence Immunoassay POCTs for Determining the Value of Vitamin D in Whole Blood" Molecules 31, no. 1: 130. https://doi.org/10.3390/molecules31010130
APA StylePalermiti, A., Manca, A., Mastrantonio, F., Maiese, D., Cat Genova, E., Menegatti, G., Simiele, M., Martino, C., De Nicolò, A., & D’Avolio, A. (2026). Evaluation of the Performance of New Fluorescence Immunoassay POCTs for Determining the Value of Vitamin D in Whole Blood. Molecules, 31(1), 130. https://doi.org/10.3390/molecules31010130

