Cationic Gemini Surfactants in the Oil Industry: Applications in Extraction, Transportation and Refinery Products
Abstract
1. Introduction
2. Discussion
2.1. Structure and Physicochemical Characteristics of Cationic Gemini Surfactants
2.1.1. Molecular Architecture
2.1.2. Comparison with Conventional (Monomeric) Surfactants
2.1.3. Surface Activity and Critical Micelle Concentration (CMC)
2.1.4. Micellar and Aggregation Behavior in Hydrocarbon Media
2.2. Mechanistic Aspects of Interaction with Oil and Rock Surfaces
2.2.1. Adsorption Mechanisms on Mineral and Reservoir Rock Surfaces
2.2.2. Compatibility with Crude Oil Components and Brine
2.2.3. Stability Under Reservoir Conditions
2.3. Applications in the Oil Extraction Process
2.3.1. Enhanced Oil Recovery Techniques Using Gemini Surfactants
2.3.2. Foam and Emulsion Stabilization in Drilling Fluids
2.4. Applications in Transportation and Pipeline Operations
2.4.1. Flow Assurance and Drag Reduction
2.4.2. Corrosion Inhibition in Pipeline Systems
2.5. Additives in Fuel Formulations and Lubricants
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Massarweh, O.; Abushaikha, A.S. The Use of Surfactants in Enhanced Oil Recovery: A Review of Recent Advances. Energy Rep. 2020, 6, 3150–3178. [Google Scholar] [CrossRef]
- Kamal, M.S.; Hussein, I.A.; Sultan, A.S. Review on Surfactant Flooding: Phase Behavior, Retention, IFT, and Field Applications. Energy Fuels 2017, 31, 7701–7720. [Google Scholar] [CrossRef]
- Bp Energy Outlook. 2025. Available online: https://www.bp.com/en/global/corporate/energy-economics.html (accessed on 15 October 2025).
- IEA. World Energy Outlook. 2023. Available online: https://www.iea.org/reports/world-energy-outlook-2023 (accessed on 15 October 2025).
- Maia, K.C.B.; Densy Dos Santos Francisco, A.; Moreira, M.P.; Nascimento, R.S.V.; Grasseschi, D. Advancements in Surfactant Carriers for Enhanced Oil Recovery: Mechanisms, Challenges, and Opportunities. ACS Omega 2024, 9, 36874–36903. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Yu, S.; Mou, J.; Wu, D.; Zheng, S. Research Progress on the Collaborative Drag Reduction Effect of Polymers and Surfactants. Materials 2020, 13, 444. [Google Scholar] [CrossRef]
- Brycki, B.E.; Kowalczyk, I.H.; Szulc, A.; Kaczerewska, O.; Pakiet, M. Multifunctional Gemini Surfactants: Structure, Synthesis, Properties and Applications. In Application and Characterization of Surfactants; Najjar, R., Ed.; InTech: Rijeka, Croatia, 2017; ISBN 978-953-51-3325-4. [Google Scholar]
- Menger, F.M.; Littau, C.A. Gemini-Surfactants: Synthesis and Properties. J. Am. Chem. Soc. 1991, 113, 1451–1452. [Google Scholar] [CrossRef]
- Menger, F.M.; Keiper, J.S.; Azov, V. Gemini Surfactants with Acetylenic Spacers. Langmuir 2000, 16, 2062–2067. [Google Scholar] [CrossRef]
- Han, Y.; Wang, Y. Aggregation Behavior of Gemini Surfactants and Their Interaction with Macromolecules in Aqueous Solution. Phys. Chem. Chem. Phys. 2011, 13, 1939–1956. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Han, L.; Luo, P.; Ye, Z. The Ultralow Interfacial Tensions between Crude Oils and Gemini Surfactant Solutions. J. Colloid Interface Sci. 2005, 285, 872–874. [Google Scholar] [CrossRef]
- Ye, Z.; Zhang, F.; Han, L.; Luo, P.; Yang, J.; Chen, H. The Effect of Temperature on the Interfacial Tension between Crude Oil and Gemini Surfactant Solution. Colloids Surf. Physicochem. Eng. Asp. 2008, 322, 138–141. [Google Scholar] [CrossRef]
- Zhang, S.; Ding, S.; Yu, J.; Chen, X.; Lei, Q.; Fang, W. Antibacterial Activity, in Vitro Cytotoxicity, and Cell Cycle Arrest of Gemini Quaternary Ammonium Surfactants. Langmuir 2015, 31, 12161–12169. [Google Scholar] [CrossRef]
- Laatiris, A.; El Achouri, M.; Rosa Infante, M.; Bensouda, Y. Antibacterial Activity, Structure and CMC Relationships of Alkanediyl α,ω-Bis(Dimethylammonium Bromide) Surfactants. Microbiol. Res. 2008, 163, 645–650. [Google Scholar] [CrossRef]
- Kuperkar, K.; Modi, J.; Patel, K. Surface-Active Properties and Antimicrobial Study of Conventional Cationic and Synthesized Symmetrical Gemini Surfactants. J. Surfactants Deterg. 2012, 15, 107–115. [Google Scholar] [CrossRef]
- Koziróg, A.; Brycki, B. Monomeric and Gemini Surfactants as Antimicrobial Agents–Influence on Environmental and Reference Strains. Acta Biochim. Pol. 2015, 62, 879–883. [Google Scholar] [CrossRef]
- Minbiole, K.P.C.; Jennings, M.C.; Ator, L.E.; Black, J.W.; Grenier, M.C.; LaDow, J.E.; Caran, K.L.; Seifert, K.; Wuest, W.M. From Antimicrobial Activity to Mechanism of Resistance: The Multifaceted Role of Simple Quaternary Ammonium Compounds in Bacterial Eradication. Tetrahedron 2016, 72, 3559–3566. [Google Scholar] [CrossRef]
- Jennings, M.C.; Buttaro, B.A.; Minbiole, K.P.C.; Wuest, W.M. Bioorganic Investigation of Multicationic Antimicrobials to Combat QAC-Resistant Staphylococcus aureus. ACS Infect. Dis. 2015, 1, 304–309. [Google Scholar] [CrossRef]
- Brycki, B.; Szulc, A. Gemini Surfactants as Corrosion Inhibitors. A Review. J. Mol. Liq. 2021, 344, 117686. [Google Scholar] [CrossRef]
- Brycki, B.E.; Kowalczyk, I.H.; Szulc, A.; Kaczerewska, O.; Pakiet, M. Organic Corrosion Inhibitors. In Corrosion Inhibitors, Principles and Recent Applications; Aliofkhazraei, M., Ed.; InTech: Rijeka, Croatia, 2018; ISBN 978-953-51-3917-1. [Google Scholar]
- Pakiet, M.; Kowalczyk, I.; Leiva Garcia, R.; Akid, R.; Brycki, B. Cationic Clevelable Surfactants as Highly Efficient Corrosion Inhibitors of Stainless Steel AISI 304: Electrochemical Study. J. Mol. Liq. 2020, 315, 113675. [Google Scholar] [CrossRef]
- Pakiet, M.; Tedim, J.; Kowalczyk, I.; Brycki, B. Functionalised Novel Gemini Surfactants as Corrosion Inhibitors for Mild Steel in 50 mM NaCl: Experimental and Theoretical Insights. Colloids Surf. Physicochem. Eng. Asp. 2019, 580, 123699. [Google Scholar] [CrossRef]
- Kaczerewska, O.; Brycki, B.; Ribosa, I.; Comelles, F.; Garcia, M.T. Cationic Gemini Surfactants Containing an O-Substituted Spacer and Hydroxyethyl Moiety in the Polar Heads: Self-Assembly, Biodegradability and Aquatic Toxicity. J. Ind. Eng. Chem. 2018, 59, 141–148. [Google Scholar] [CrossRef]
- Pakiet, M.; Kowalczyk, I.; Leiva Garcia, R.; Moorcroft, R.; Nichol, T.; Smith, T.; Akid, R.; Brycki, B. Gemini Surfactant as Multifunctional Corrosion and Biocorrosion Inhibitors for Mild Steel. Bioelectrochemistry 2019, 128, 252–262. [Google Scholar] [CrossRef] [PubMed]
- Brycki, B.; Waligórska, M.; Szulc, A. The Biodegradation of Monomeric and Dimeric Alkylammonium Surfactants. J. Hazard. Mater. 2014, 280, 797–815. [Google Scholar] [CrossRef]
- Szwach, I. Comparative Study on Biodegradation of Selected Cationic and Gemini Surfactants Porównawcze Badania Biodegradacji Wybranych Kationowych Środków Powierzchniowo Czynnych i Surfaktantów Gemini. Przem. Chem. 2016, 1, 208–211. [Google Scholar] [CrossRef]
- Brycki, B.; Szulc, A. Gemini Alkyldeoxy-D-Glucitolammonium Salts as Modern Surfactants and Microbiocides: Synthesis, Antimicrobial and Surface Activity, Biodegradation. PLoS ONE 2014, 9, e84936. [Google Scholar] [CrossRef] [PubMed]
- Garcia, M.T.; Kaczerewska, O.; Ribosa, I.; Brycki, B.; Materna, P.; Drgas, M. Biodegradability and Aquatic Toxicity of Quaternary Ammonium-Based Gemini Surfactants: Effect of the Spacer on Their Ecological Properties. Chemosphere 2016, 154, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Hernández, L.; Meléndez-Ortiz, H.I.; Cortez-Mazatan, G.Y.; Vaillant-Sánchez, S.; Peralta-Rodríguez, R.D. Gemini and Bicephalous Surfactants: A Review on Their Synthesis, Micelle Formation, and Uses. Int. J. Mol. Sci. 2022, 23, 1798. [Google Scholar] [CrossRef]
- Kamal, M.S. A Review of Gemini Surfactants: Potential Application in Enhanced Oil Recovery. J. Surfactants Deterg. 2016, 19, 223–236. [Google Scholar] [CrossRef]
- Numin, M.S.; Jumbri, K.; Kee, K.E.; Hassan, A.; Borhan, N.; Matmin, J. DFT Calculation and MD Simulation Studies on Gemini Surfactant Corrosion Inhibitor in Acetic Acid Media. Polymers 2023, 15, 2155. [Google Scholar] [CrossRef] [PubMed]
- Brycki, B.E.; Szulc, A.; Kowalczyk, I.; Koziróg, A.; Sobolewska, E. Antimicrobial Activity of Gemini Surfactants with Ether Group in the Spacer Part. Molecules 2021, 26, 5759. [Google Scholar] [CrossRef]
- Mivehi, L.; Bordes, R.; Holmberg, K. Adsorption of Cationic Gemini Surfactants at Solid Surfaces Studied by QCM-D and SPR: Effect of the Rigidity of the Spacer. Langmuir 2011, 27, 7549–7557. [Google Scholar] [CrossRef]
- Mechken, K.A.; Menouar, M.; Talbi, Z.; Saidi-Besbes, S.; Belkhodja, M. Self-Assembly and Antimicrobial Activity of Cationic Gemini Surfactants Containing Triazole Moieties. RSC Adv. 2024, 14, 19185–19196. [Google Scholar] [CrossRef]
- Han, X.; Lu, M.; Fan, Y.; Li, Y.; Holmberg, K. Recent Developments on Surfactants for Enhanced Oil Recovery. Tenside Surfactants Deterg. 2021, 58, 164–176. [Google Scholar] [CrossRef]
- Chang, H.; Cui, Y.; Wang, Y.; Li, G.; Gao, W.; Li, X.; Zhao, X.; Wei, W. Wettability and Adsorption of PTFE and Paraffin Surfaces by Aqueous Solutions of Biquaternary Ammonium Salt Gemini Surfactants with Hydroxyl. Colloids Surf. A 2016, 506, 416–424. [Google Scholar] [CrossRef]
- Li, Q.; Wang, X.; Zhuang, W.; Yao, M.; Pan, Y.; Chen, X. Spacer Length Effect on the Aggregation Behaviours of Gemini Surfactants in EAN. Colloid Polym. Sci. 2021, 299, 685–692. [Google Scholar] [CrossRef]
- Bhadani, A.; Singh, S. Novel Gemini Pyridinium Surfactants: Synthesis and Study of Their Surface Activity, DNA Binding, and Cytotoxicity. Langmuir 2009, 25, 11703–11712. [Google Scholar] [CrossRef]
- Mirgorodskaya, A.B.; Kudryavtseva, L.A.; Pankratov, V.A.; Lukashenko, S.S.; Rizvanova, L.Z.; Konovalov, A.I. Geminal Alkylammonium Surfactants: Aggregation Properties and Catalytic Activity. Russ. J. Gen. Chem. 2006, 76, 1625–1631. [Google Scholar] [CrossRef]
- Fan, Z.Z.; Li, L.L.; Zhang, L.F.; Liu, Q.W. Surface Activity Research of Cationic Gemini Surfactants. Adv. Mater. Res. 2013, 652–654, 1450–1454. [Google Scholar] [CrossRef]
- Wettig, S.D.; Verrall, R.E. Thermodynamic Studies of Aqueous m–s–m Gemini Surfactant Systems. J. Colloid Interface Sci. 2001, 235, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Devínsky, F.; Lacko, I.; Bittererová, F.; Tomečková, L. Relationship between Structure, Surface Activity, and Micelle Formation of Some New Bisquaternary Isosteres of 1,5-Pentanediammonium Dibromides. J. Colloid Interface Sci. 1986, 114, 314–322. [Google Scholar] [CrossRef]
- Zana, R. Alkanediyl-α,ω-Bis(Dimethylalkylammonium Bromide) Surfactants. 10. Behavior in Aqueous Solution at Concentrations below the Critical Micellization Concentration: An Electrical Conductivity Study. J. Colloid Interface Sci. 2002, 246, 182–190. [Google Scholar] [CrossRef]
- Zana, R. Critical Micellization Concentration of Surfactants in Aqueous Solution and Free Energy of Micellization. Langmuir 1996, 12, 1208–1211. [Google Scholar] [CrossRef]
- Pisárčik, M.; Polakovičová, M.; Markuliak, M.; Lukáč, M.; Devinsky, F. Self-Assembly Properties of Cationic Gemini Surfactants with Biodegradable Groups in the Spacer. Molecules 2019, 24, 1481. [Google Scholar] [CrossRef] [PubMed]
- Sharma, T.; Dohare, N.; Kumari, M.; Singh, U.K.; Khan, A.B.; Borse, M.S.; Patel, R. Comparative Effect of Cationic Gemini Surfactant and Its Monomeric Counterpart on the Conformational Stability and Activity of Lysozyme. RSC Adv. 2017, 7, 16763–16776. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Sonu; Saha, S.K. Aggregation Behaviour and Thermodynamics of Mixed Micellization of Gemini Surfactants with a Room Temperature Ionic Liquid in Water and Water-Organic Solvent Mixed Media. J. Chem. Thermodyn. 2013, 60, 29–40. [Google Scholar] [CrossRef]
- Banipal, T.S.; Sood, A.K.; Kaur, J. Mixed Micellization Behavior of Gemini and Conventional Surfactants: Influence of Spacer Length and Temperature. J. Dispers. Sci. Technol. 2013, 34, 834–841. [Google Scholar] [CrossRef]
- Bergström, L.M.; Garamus, V.M. Geometrical Shape of Micelles Formed by Cationic Dimeric Surfactants Determined with Small-Angle Neutron Scattering. Langmuir 2012, 28, 9311–9321. [Google Scholar] [CrossRef]
- Gharibi, H.; Khodadadi, Z.; Mousavi-Khoshdel, S.M.; Hashemianzadeh, S.M.; Javadian, S. Mixed Micellization of Gemini and Conventional Surfactant in Aqueous Solution: A Lattice Monte Carlo Simulation. J. Mol. Graph. Model. 2014, 53, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Nakahara, H.; Nishizaka, H.; Iwasaki, K.; Otsuji, Y.; Sato, M.; Matsuoka, K.; Shibata, O. Role of the Spacer of Gemini Surfactants in Solubilization into Their Micelles. J. Mol. Liq. 2017, 244, 499–505. [Google Scholar] [CrossRef]
- Kalam, S.; Abu-Khamsin, S.A.; Kamal, M.S.; Hussain, S.M.S.; Norrman, K.; Mahmoud, M.; Patil, S. Adsorption Mechanisms of a Novel Cationic Gemini Surfactant onto Different Rocks. Energy Fuels 2022, 36, 5737–5748. [Google Scholar] [CrossRef]
- Wang, G.; Liu, L.; He, D.; Lu, R.; Xie, Y.; Lai, L. Cationic-Anionic Surfactant Mixtures Based on Gemini Surfactant as a Candidate for Enhanced Oil Recovery. Colloids Surf. Physicochem. Eng. Asp. 2023, 677, 132297. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, F.; Xu, J.; Liu, P.; Chen, S.; Wang, Y. Spontaneous Imbibition and Core Flooding Experiments of Enhanced Oil Recovery in Tight Reservoirs with Surfactants. Energies 2023, 16, 1815. [Google Scholar] [CrossRef]
- Ahmed, S.M.; Khidr, T.T.; Ismail, D.A. Effect of Gemini Surfactant Additives on Pour Point Depressant of Crude Oil. J. Dispers. Sci. Technol. 2018, 39, 1160–1164. [Google Scholar] [CrossRef]
- Fattahi, R.; Lashkarbolooki, M.; Abedini, R.; Younesi, H. Investigating the Synergistic/Antagonistic Effects of Mixing SiO2 Nanoparticles and Ionic Liquid, Nonionic Emulsifier, and Gemini Surfactants on the Main Mechanisms of Crude Oil Production. Energy Fuels 2023, 37, 14741–14751. [Google Scholar] [CrossRef]
- Kuang, N.; Yang, S.; Yuan, Z.; Wang, M.; Zhang, Z.; Zhang, X.; Wang, M.; Zhang, Y.; Li, S.; Wu, J.; et al. Study on Oil and Gas Amphiphilic Surfactants Promoting the Miscibility of CO2 and Crude Oil. ACS Omega 2021, 6, 27170–27182. [Google Scholar] [CrossRef]
- Li, B.; Guo, Z.; Du, M.; Han, D.; Han, J.; Zheng, L.; Yang, C. Research Status and Outlook of Mechanism, Characterization, Performance Evaluation, and Type of Pour Point Depressants in Waxy Crude Oil: A Review. Energy Fuels 2024, 38, 7480–7509. [Google Scholar] [CrossRef]
- Kalam, S.; Kamal, M.S.; Patil, S.; Hussain, S.M.S. Role of Counterions and Nature of Spacer on Foaming Properties of Novel Polyoxyethylene Cationic Gemini Surfactants. Processes 2019, 7, 502. [Google Scholar] [CrossRef]
- Al-Azani, K.; Abu-Khamsin, S.; Al-Abdrabalnabi, R.; Kamal, M.S.; Patil, S.; Zhou, X.; Hussain, S.M.S.; Al Shalabi, E. Oil Recovery Performance by Surfactant Flooding: A Perspective on Multiscale Evaluation Methods. Energy Fuels 2022, 36, 13451–13478. [Google Scholar] [CrossRef]
- Bhut, P.R.; Pal, N.; Mandal, A. Characterization of Hydrophobically Modified Polyacrylamide in Mixed Polymer-Gemini Surfactant Systems for Enhanced Oil Recovery Application. ACS Omega 2019, 4, 20164–20177. [Google Scholar] [CrossRef]
- Yuan, T.; Liu, Z.; Gao, R.; Hu, G.; Zhang, G.; Zhao, J. Enhanced Oil Recovery from High-salinity Reservoirs by Cationic Gemini Surfactants. J. Appl. Polym. Sci. 2018, 135, 46086. [Google Scholar] [CrossRef]
- Al-Azani, K.; Abu-Khamsin, S.; Kamal, M.S.; Patil, S.; Hussain, S.M.S.; Al-Shehri, D.; Mahmoud, M. Role of Injection Rate on Chemically Enhanced Oil Recovery Using a Gemini Surfactant under Harsh Conditions. Energy Fuels 2024, 38, 3682–3692. [Google Scholar] [CrossRef]
- Liu, X.; Yu, M. Synergistic Effect of Gemini Cationic/Anionic Surfactant Mixtures for Enhanced Oil Recovery. Energy Fuels 2025, 39, 18857–18869. [Google Scholar] [CrossRef]
- Shaban, S.M.; Kang, J.; Kim, D.-H. Surfactants: Recent Advances and Their Applications. Compos. Commun. 2020, 22, 100537. [Google Scholar] [CrossRef]
- Abdurrahman, M.; Kamal, M.S.; Ramadhan, R.; Daniati, A.; Arsad, A.; Abdul Rahman, A.F.; Rita, N. Ecofriendly Natural Surfactants in the Oil and Gas Industry: A Comprehensive Review. ACS Omega 2023, 8, 41004–41021. [Google Scholar] [CrossRef]
- Pal, N.; Hoteit, H.; Mandal, A. Structural Aspects, Mechanisms and Emerging Prospects of Gemini Surfactant-Based Alternative Enhanced Oil Recovery Technology: A Review. J. Mol. Liq. 2021, 339, 116811. [Google Scholar] [CrossRef]
- Chowdhury, S.; Shrivastava, S.; Kakati, A.; Sangwai, J.S. Comprehensive Review on the Role of Surfactants in the Chemical Enhanced Oil Recovery Process. Ind. Eng. Chem. Res. 2022, 61, 21–64. [Google Scholar] [CrossRef]
- Yuan, C.-D.; Pu, W.-F.; Wang, X.-C.; Sun, L.; Zhang, Y.-C.; Cheng, S. Effects of Interfacial Tension, Emulsification, and Surfactant Concentration on Oil Recovery in Surfactant Flooding Process for High Temperature and High Salinity Reservoirs. Energy Fuels 2015, 29, 6165–6176. [Google Scholar] [CrossRef]
- He, Y.; Jiang, G.; Deng, Z.; Liu, F.; Peng, S.; Ni, X.; Shi, Y.; Cui, W. Polyhydroxy Gemini Surfactant as a Mechano-Responsive Rheology Modifier for Inverted Emulsion Drilling Fluid. RSC Adv. 2018, 8, 342–353. [Google Scholar] [CrossRef]
- Gowida, A.; Elkatatny, S.; Kamal, M.S.; Hussain, S.M.S. Experimental Study on an Eco-Friendly Gemini Foaming Agent for Enhancing Foam Drilling Applications. J. Pet. Explor. Prod. Technol. 2024, 14, 1995–2010. [Google Scholar] [CrossRef]
- Kowalczyk, I.; Szulc, A.; Brycki, B. Gemini Surfactants: Advances in Applications and Prospects for the Future. Molecules 2025, 30, 4599. [Google Scholar] [CrossRef]
- Liu, P.; Li, X.; Li, H.; Liu, S.; Wang, J.; Zhang, P. Application and Synthesis of Gemini Surfactant in Heavy Oil Development. ACS Omega 2025, 10, 8832–8842. [Google Scholar] [CrossRef]
- Elarbe, B.; Elganidi, I.; Ridzuan, N.; Abdullah, N.; Yusoh, K. Paraffin Wax Deposition and Its Remediation Methods on Crude Oil Pipelines: A Systematic Review. Maejo Int. J. Energy Environ. Commun. 2021, 3, 6–34. [Google Scholar] [CrossRef]
- Ansari, F.; Shinde, S.B.; Paso, K.G.; Sjöblom, J.; Kumar, L. Chemical Additives as Flow Improvers for Waxy Crude Oil and Model Oil: A Critical Review Analyzing Structure–Efficacy Relationships. Energy Fuels 2022, 36, 3372–3393. [Google Scholar] [CrossRef]
- Ala, B.S.K.; Daraboina, N. Chemical Management for Wax Deposition: Recent Developments and Future Prospects. Energy Fuels 2024, 38, 11437–11454. [Google Scholar] [CrossRef]
- Mahmoud, S.B.; Ezzo, E.M.; Mohamed, M.; Hegazy, M.A. Chemical Cleaning of Heat Exchanger Components and the Efficacy of a Novel Cationic Gemini Surfactant in Inhibiting Corrosion. J. Mol. Liq. 2025, 428, 127507. [Google Scholar] [CrossRef]
- Deyab, M.A.; Mohsen, Q. Inhibitory Influence of Cationic Gemini Surfactant on the Dissolution Rate of N80 Carbon Steel in 15% HCl Solution. Sci. Rep. 2021, 11, 10521. [Google Scholar] [CrossRef]
- Devi, Y.G.; Pulikkal, A.K. Amide-Linked Alkylpyridinium Gemini Surfactants for Corrosion Mitigation of Low-Carbon Steel. Langmuir 2025, 41, 5071–5082. [Google Scholar] [CrossRef] [PubMed]
- Kaczerewska, O.; Leiva-Garcia, R.; Akid, R.; Brycki, B. Efficiency of Cationic Gemini Surfactants with 3-Azamethylpentamethylene Spacer as Corrosion Inhibitors for Stainless Steel in Hydrochloric Acid. J. Mol. Liq. 2017, 247, 6–13. [Google Scholar] [CrossRef]
- Abdel-Hameed, R.; Abourashed, N.M.; Hegazy, A.; Alshammari, O.A.O.; Alshammary, F.; Alanazi, K.D.; Alshammari, B.H.; Alanazi, T.Y.A.; Tantawy, A.H.; Seyam, D.F.; et al. Gemini Cationic Pyridinium Surfactants Based on Palm Kernel Oil Mucilage as Novel Green Corrosion Inhibitors for Pipeline Steel in Aerated 0.5 Wt% NaCl Solution under Dynamic Conditions: Experimental and Computational Studies. J. Mol. Liq. 2025, 429, 127631. [Google Scholar] [CrossRef]
- Santhosh Kumar, A.; Sivakumar, L.; Rajadesingu, S.; Sathish, S.; Malik, T.; Parthipan, P. Sustainable Corrosion Inhibition Approaches for the Mitigation of Microbiologically Influenced Corrosion—A Systematic Review. Front. Mater. 2025, 12, 1545245. [Google Scholar] [CrossRef]
- Gao, G.; Wang, J.; Liang, P.; Ruan, Y.; Wang, D.; Feng, L.; Ma, X.; Hu, Z.; Zhu, H. Two Novel Triazine-Based Quaternary Ammonium Salt Gemini Surfactants as Potential Corrosion Inhibitors for Carbon Steel in a Sulfate-Reducing Bacteria Solution: Experimental and Theoretical Studies. Heliyon 2024, 10, e40385. [Google Scholar] [CrossRef]
- Maithufi, M.N.; Joubert, D.J.; Klumperman, B. Application of Gemini Surfactants as Diesel Fuel Wax Dispersants. Energy Fuels 2011, 25, 162–171. [Google Scholar] [CrossRef]
- Ghazal, Y.; Najjar, R. Gasoil/Sunflower Oil Blend/Water Fuel Microemulsions Prepared with Ionic Liquids-Type Gemini Surfactants. Alex. Eng. J. 2024, 90, 161–169. [Google Scholar] [CrossRef]
- Najjar, R.; Zarei-Gharehbaba, L.; Tazerout, M. The Exhaust Emission Characteristics of a Water-Emulsified Diesel/Sunflower Oil Blend Fuel by Ionic Liquid Surfactants. Int. J. Environ. Sci. Technol. 2022, 19, 1175–1184. [Google Scholar] [CrossRef]
- Najjar, R.; Zarei-Gharehbaba, L.; Tazerout, M.; Patil, S.R. Stable Gasoil/Sunflower Oil Fuel Microemulsions Prepared by Using Methylimidazolium Based Ionic Liquids as Surfactant. J. Mol. Liq. 2020, 298, 111970. [Google Scholar] [CrossRef]
- Zhou, Y.; Qu, J. Ionic Liquids as Lubricant Additives: A Review. ACS Appl. Mater. Interfaces 2017, 9, 3209–3222. [Google Scholar] [CrossRef] [PubMed]




is gemini surfactants. The arrow indicates increasing concentration of gemini surfactant.
is gemini surfactants. The arrow indicates increasing concentration of gemini surfactant.
| Surfactant | CMC [mol/L] | Γmax × 106 [mol/m2] | ΔG°mic [kJ/mol] |
|---|---|---|---|
| 6-5-6 | 1.6 × 10−1 | 1.38 | −2.1 |
| 8-5-8 | 4.9 × 10−2 | 1.42 | −7.4 |
| 10-5-10 | 7.7 × 10−3 | 1.30 | −11.9 |
| 12-5-12 | 1 × 10−3 | 1.45 | −16.8 |
| 14-5-14 | 2 × 10−4 | 1.38 | −20.8 |
| 16-6-16 | 9.3 × 10−6 | 1.58 | −28.3 |
| Surfactant Type | Key Performance Characteristics | EOR Potential/Advantages | Limitations/Considerations |
|---|---|---|---|
| Gemini surfactants | Very high surface activity; extremely low CMC; high stability under elevated temperature and pressure; ability to form complex self-assembled structures (e.g., worm-like micelles) | Excellent IFT reduction; improved sweep efficiency; robust performance under harsh reservoir conditions; tunable molecular structure enables optimization for specific reservoirs; strong synergy with nanoparticles and polymers; considered environmentally safer than many alternatives | Production may be more complex; performance strongly depends on spacer architecture and optimized formulation |
| Zwitterionic surfactants | Tolerant to salinity and temperature variations; often compatible with diverse reservoir chemistries | Can enhance performance when combined with gemini surfactants or nanoparticles; provide stable interfacial films and improve oil mobilization pathways | May require co-surfactants to reach ultra-low IFT; cost may be higher than conventional surfactants |
| Nonionic surfactants | Good thermal stability; minimal sensitivity to salinity; can modify interfacial properties without strong electrostatic interactions | Improve wettability alteration and can enhance formulations containing gemini surfactants; useful in environmentally compliant formulations | Limited ability to achieve very low IFT on their own; performance depends strongly on hydrophile–lipophile balance (HLB) |
| Conventional monomeric surfactants (e.g., anionic, cationic) | Moderate surface activity; higher CMC; performance strongly affected by salinity, divalent cations, and temperature | Widely available; established field experience; effective in mild reservoir conditions | Reduced efficiency in harsh environments; limited self-assembly capabilities; weaker interfacial adsorption compared with gemini surfactants; often require higher concentrations and additional stabilizing agents |
| Surfactant Type | Typical CMC (mM) | Achievable IFT (Oil/Water, mN·m−1) | Thermal Stability (°C) | Incremental Oil Recovery |
|---|---|---|---|---|
| Gemini surfactants | 0.01–0.1 | 10−3–10−4 (ultra-low IFT) | Up to 120–150 | 20–35% additional OOIP in core flooding |
| Zwitterionic surfactants | 0.1–1 | 10−2–10−3 | 100–140 | 10–25% OOIP |
| Nonionic surfactants | 0.1–1.5 | 10−1–10−2 | 80–120 | 8–18% OOIP |
| Conventional anionic surfactants | 1–10 | 10−2–10−1 | 60–90 | 5–15% OOIP |
| Conventional cationic surfactants | 1–5 | 10−2–10−1 | 60–100 | 3–12% OOIP |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Brycki, B.; Szulc, A.; Brycka, J.; Kowalczyk, I. Cationic Gemini Surfactants in the Oil Industry: Applications in Extraction, Transportation and Refinery Products. Molecules 2026, 31, 108. https://doi.org/10.3390/molecules31010108
Brycki B, Szulc A, Brycka J, Kowalczyk I. Cationic Gemini Surfactants in the Oil Industry: Applications in Extraction, Transportation and Refinery Products. Molecules. 2026; 31(1):108. https://doi.org/10.3390/molecules31010108
Chicago/Turabian StyleBrycki, Bogumił, Adrianna Szulc, Justyna Brycka, and Iwona Kowalczyk. 2026. "Cationic Gemini Surfactants in the Oil Industry: Applications in Extraction, Transportation and Refinery Products" Molecules 31, no. 1: 108. https://doi.org/10.3390/molecules31010108
APA StyleBrycki, B., Szulc, A., Brycka, J., & Kowalczyk, I. (2026). Cationic Gemini Surfactants in the Oil Industry: Applications in Extraction, Transportation and Refinery Products. Molecules, 31(1), 108. https://doi.org/10.3390/molecules31010108

