Nutritional and Functional Values of Grape Seed Flour and Extract for Production of Antioxidative Dietary Supplements and Functional Foods
Abstract
:1. Introduction
2. Results
2.1. Polyphenol Contents of Pinot Noir and Marselan Grape Seed Extracts
2.2. Determination of Nutritional Value of Pinot Noir and Marselan Grape Seed Flours and Extracts
2.3. Determination of Mineral Profile of Pinot Noir and Marselan Grape Seed Flours and Extracts
2.4. Determination of Inhibitory Effect of Pinot Noir and Marselan Grape Seed Extracts on Salivary α-Amylase, α-Glucosidase, and Pancreatic Lipase
2.5. In Vitro Digestion
3. Discussion
4. Materials and Methods
4.1. Materials and Chemicals
4.2. Preparation of Grape Seed Extract
4.3. Chemical Analysis of Grape Seed Extracts and Flours
4.4. Determination of Mineral Composition
4.5. α-Amylase Inhibitory Activity of GSE
4.6. α-Glucosidase Inhibitory Activity of GSE
4.7. Pancreatic Lipase Inhibitory Activity of GSE
4.8. In Vitro Digestion Method
4.9. Statistical Evaluation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GSE | Grape seed extract |
GSF | Grape seed flour |
FDA | Food and Drug Administration |
DPPH | 2,2 diphenyl-1-picrylhydrazyl |
TFs | Total flavonoids |
TPC | Total phenolic content |
TPs | Total procyanidins |
DW | Dry weight |
References
- Bungau, S.G.; Popa, V.C. Between Religion and Science Some Aspects Concerning Illness and Healing in Antiquity. Transylv. Rev. 2015, 26, 3–18. [Google Scholar]
- Chaachouay, N.; Zidane, L. Plant-Derived Natural Products: A Source for Drug Discovery and Development. Drugs Drug Candidates 2024, 3, 184–207. [Google Scholar] [CrossRef]
- Gitea, M.A.; Gitea, D.; Mirela Tit, D.; Bungau, S.G.; Bogdan, M.A.; Radu, A.-F.; Dulf, F.V.; Pasca, M.B. Organically Cultivated Vine Varieties—Distinctive Qualities of the Oils Obtained from Grape Seeds. Sustainability 2023, 15, 11037. [Google Scholar] [CrossRef]
- Felhi, S.; Baccouch, N.; Salah, H.B.; Smaoui, S.; Allouche, N.; Gharsallah, N.; Kadri, A. Nutritional constituents, phytochemical profiles, In Vitro antioxidant and antimicrobial properties, and gas chromatography–mass spectrometry analysis of various solvent extracts from grape seeds (Vitis vinifera L.). Food Sci. Biotechnol. 2016, 25, 1537–1544. [Google Scholar] [CrossRef]
- Silva, V.; Igrejas, G.; Falco, V.; Santos, T.; Torres, C.; Oliveira, A.; Pereira, J.E.; Amaral, S.A.; Poeta, P. Chemical composition, antioxidant and antimicrobial activity of phenolic compounds extracted from wine industry by-products. Food Control 2018, 92, 516–522. [Google Scholar] [CrossRef]
- Garcia-Cabezon, C.; Teixeira, G.G.; Dias, L.G.; Salvo-Comino, C.; García-Hernandez, C.; Rodriguez-Mendez, M.L.; Martin-Pedrosa, F. Analysis of Phenolic Content in Grape Seeds and Skins by Means of a Bio-Electronic Tongue. Sensors 2020, 20, 4176. [Google Scholar] [CrossRef]
- Machado, A.R.; Atatoprak, T.; Santos, J.; Alexandre, E.M.C.; Pintado, M.E.; Paiva, J.A.P.; Nunes, J. Potentialities of the Extraction Technologies and Use of Bioactive Compounds from Winery By-Products: A Review from a Circular Bioeconomy Perspective. Appl. Sci. 2023, 13, 7754. [Google Scholar] [CrossRef]
- Caponio, G.R.; Minervini, F.; Tamma, G.; Gambacorta, G.; De Angelis, M. Promising Application of Grape Pomace and Its Agri-Food Valorization. Source of Bioactive Molecules with Beneficial Effects. Sustainability 2023, 15, 9075. [Google Scholar] [CrossRef]
- Garcia-Lomillo, J.; Gonzalez-San Jose, M.L. Applications of wine pomace in the food industry: Approaches and functions. Compr. Rev. Food Sci. Food Saf. 2017, 16, 3–22. [Google Scholar] [CrossRef]
- Di Stefano, V.; Buzzanca, C.; Melilli, G.M.; Indelicato, S.; Mauro, M.; Vazzana, M.; Arizza, V.; Lucarini, M.; Durazzo, A.; Bongiorno, D. Polyphenol Characterization and Antioxidant Activity of Grape Seeds and Skins from Sicily. A Preliminary Study. Sustainability 2022, 14, 6702. [Google Scholar] [CrossRef]
- Sochorova, L.; Prusova, B.; Jurikova, T.; Mlcek, J.; Adamkova, A.; Baron, M.; Sochor, J. The Study of Antioxidant Components in Grape Seeds. Molecules 2020, 25, 3736. [Google Scholar] [CrossRef] [PubMed]
- Xia, E.O.; Deng, G.F.; Guo, Y.J.; Li, H.B. Biological Activities of Polyphenols from Grapes. Int. J. Mol. Sci. 2010, 11, 622–646. [Google Scholar] [CrossRef] [PubMed]
- Brenes, A.; Viveros, A.; Chamorro, S.; Arija, I. Use of polyphenol-rich grape byproducts in monogastric nutrition. Anim. Feed Sci. Technol. 2016, 211, 1–17. [Google Scholar] [CrossRef]
- Constantin, O.E.; Stoica, F.; Rat, R.N.; Stănciuc, N.; Bahrim, G.E.; Râpeanu, G. Bioactive Components, Applications, Extractions, and Health Benefits of Winery By-Products from a Circular Bioeconomy Perspective. Antioxidants 2024, 13, 100. [Google Scholar] [CrossRef]
- Sabra, A.; Netticadan, T.; Wijekoon, C. Grape bioactive molecules, and the potential health benefits in reducing the risk of heart diseases. Food Chem. X 2021, 12, 100149. [Google Scholar] [CrossRef]
- Feei Ma, Z.; Zhang, H. Phytochemical Constituents, Health Benefits, and Industrial Applications of Grape Seeds. Antioxidants 2017, 6, 71. [Google Scholar] [CrossRef]
- Omer, T.A. Fatty Acid Composition, Mineral contents and antioxidant activity of grape seed powder by (GC-MS), ICP/OES and DPPH method. EJAS 2022, 14, 302–314. [Google Scholar]
- Rubilar, M.; Burgos-Díaz, C.; Lorenzo, J.M. Grape Seeds (Vitis Vinifera) and Their Nutritional Value. In Grape Seeds: Nutrient Content, Antioxidant Properties and Health Benefits; Rodríguez, J., Ruiz, D., Eds.; Nova Science: Hauppauge, NY, USA, 2016. [Google Scholar]
- Elkatry, H.O.; Ahmed, A.R.; El-Beltagi, H.S.; Mohamed, H.I.; Eshak, N.S. Biological Activities of Grape Seed By-Products and Their Potential Use as Natural Sources of Food Additives in the Production of Balady Bread. Foods 2022, 11, 1948. [Google Scholar] [CrossRef]
- Pérez Cid, B.; Martínez, M.M.; Vázquezaand, F.A.V.; Segade, S.R. Content and bioavailability of trace elements and nutrients in grape pomace. J. Sci. Food Agric. 2019, 99, 6713–6721. [Google Scholar] [CrossRef]
- Ozcan, M.M. Mineral Contents of Several Grape Seeds. Asian J. Chem. 2010, 22, 6480–6488. [Google Scholar]
- Özvural, E.B.; Vural, H. Grape seed flour is a viable ingredient to improve the nutritional profile and reduce lipid oxidation of frankfurters. Meat Sci. 2011, 88, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Grases, F.; Priet, R.M.; Fernández-Cabot, R.A.; Costa-Bauzá, A.; Sánchez, A.M.; Prodanov, M. Effect of consuming a grape seed supplement with abundant phenolic compounds on the oxidative status of healthy human volunteers. Nutr. J. 2015, 14, 94. [Google Scholar] [CrossRef] [PubMed]
- Gengaihi, S.E.; Baker, D.H.A. Grape Seeds Extract as Brain Food. Int. J. Pharm. Clin. Res. 2017, 9, 77–85. [Google Scholar] [CrossRef]
- Gupta, M.; Dey, S.; Marbaniang, D.; Pal, P.; Ray, S.; Mazumder, B. Grape seed extract: Having a potential health benefit. J. Food Sci. Technol. 2019, 57, 1205–1215. [Google Scholar] [CrossRef]
- Gonçalves, S.; Romano, A. Inhibitory Properties of Phenolic Compounds Against Enzymes Linked with Human Diseases. In Phenolic Compounds—Biological Activity; Soto-Hernandez, M., Palma-Tenang, M., Garcia-Mateos, M., Eds.; Intech Open: London, UK, 2017; pp. 99–118. [Google Scholar]
- Cisneros-Yupanqui, M.; Lante, A.; Mihaylova, D.; Krastanov, A.I.; Rizzi, C. The α-Amylase and α-Glucosidase Inhibition Capacity of Grape Pomace. Food Bioprocess Technol. 2023, 16, 691–703. [Google Scholar] [CrossRef]
- Yilmazer-Musa, M.; Griffith, A.M.; Michels, A.J.; Schneider, E.; Frei, B. Grape seed and tea extracts and catechin 3-gallates are potent inhibitors of α-amylase and α-glucosidase activity. J. Agric. Food Chem. 2012, 60, 8924–8929. [Google Scholar] [CrossRef]
- Tan, Y.; Chang, S.K.C.; Zhang, Y. Comparison of a-amylase, a-glucosidase and lipase inhibitory activity of the phenolic substances in two black legumes of different genera. Food Chem. 2017, 214, 259–268. [Google Scholar] [CrossRef]
- Moreno, D.A.; Ilic, N.; Poulev, A.; Brasaemle, D.L.; Fried, S.K.; Raskin, I. Inhibitory Effects of Grape Seed Extract on Lipases. Nutrition 2003, 19, 876–879. [Google Scholar] [CrossRef]
- Hassan, H.M.M. Inhibitory Effects of Red Grape Seed Extracts on Pancreatic -amylase and Lipase. Glob. J. Biochem. Biotechnol. 2014, 9, 130–136. [Google Scholar]
- Adisakwattana, S.; Moonrat, J.; Srichairat, S.; Chanasit, C.; Tirapongporn, H.; Chanathong, B.; Ngamukote, S.; Mäkynen, K.; Sapwarobol, S. Lipid-Lowering mechanisms of grape seed extract (Virtis vinifera L) and its antihyperlidemic activity. J. Med. Plants Res. 2010, 4, 2113–2120. [Google Scholar]
- Yu, J.; Mi, Y.; Ji, S. In vitro Evaluating the Influence of Grape Seed Polyphenol Extract on the Digestibility of Macronutrients. J. Health Sci. 2016, 4, 167–176. [Google Scholar]
- Sekar, V.; Vasanthi, H.R. Grape Seed Extract and its Effects on Diabetes and its Complications. Curr. Res. Diabetes Obes. J. 2017, 2, 30–33. [Google Scholar]
- Tenore, G.S.; Campiglia, P.; Giannetti, D.; Novellino, E. Simulated gastrointestinal digestion, intestinal permeation and plasma protein interaction of white, green, and black tea polyphenols. Food Chem. 2014, 169, 320–326. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A standardised static in vitro digestion method suitable for food—An international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef]
- Wang, C.; Li, W.; Chen, Z.; Gao, X.; Yuan, G.; Pan, Y.; Chen, H. Effects of simulated gastrointestinal digestion in vitro on the chemical properties, antioxidant activity, α-amylase and α-glucosidase inhibitory activity of polysaccharides from Inonotus obliquus. Food Res. Int. 2018, 103, 280–288. [Google Scholar] [CrossRef]
- Elejalde, E.; Villaran, M.C.; Esquivel, A.; Alonso, R.M. Bioaccessibility and Antioxidant Capacity of Grape Seed and Grape Skin Phenolic Compounds After Simulated In Vitro Gastrointestinal Digestion. Plant Foods Hum. Nutr. 2024, 79, 432–439. [Google Scholar] [CrossRef]
- Chengolova, Z.; Ivanov, Y.; Godjevargova, T. Comparison of Identification and Quantification of Polyphenolic Compounds in Skins and Seeds of Four Grape Varieties. Molecules 2023, 28, 4061. [Google Scholar] [CrossRef]
- Ivanov, Y. Optimization of the extraction procedure of polyphenols from red Pinot Noir grape seeds. BIO Web Conf. 2024, 102, 02002. [Google Scholar] [CrossRef]
- Yilmaz, Y.; Göksel, Z.; Erdogan, S.; Öztürk, A.; Atak, A.; Özer, C. Antioxidant activity and phenolic content of seed, skin and pulp parts of 22 grape (Vitis vinifera L.) cultivars (4 common and 18 registered or candidate for registration). J. Food Process. Preserv. 2014, 39, 1682–1691. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Jafari, S.M. The importance of minerals in human nutrition: Bioavailability, food fortification, processing effects and nanoencapsulation. Trends Food Sci. Technol. 2017, 62, 119–132. [Google Scholar] [CrossRef]
- Rockenbach, I.I.; Gonzaga, L.V.; Maria-Rizelio, V.; De Souza, A.; Gonçalves, S.; Genovese, M.I.; Fett, R. Phenolic compounds and antioxidant activity of seed and skin extracts of red grape (Vitis vinifera and Vitis labrusca) pomace from Brazilian winemaking. Food Res. Int. 2011, 44, 897–901. [Google Scholar] [CrossRef]
- Guaita and Bosso Guaita, M.; Bosso, A. Polyphenolic characterization of grape skins and seeds of four Italian red cultivars at harvest and fermentative maceration. Foods 2019, 8, 395. [Google Scholar] [CrossRef] [PubMed]
- Beres, C.; Freitas, S.P.; Luiz de Oliveira Godoy, R.; Rodrigues de Oliveira, D.C.; Deliza, R.; Iacomini, M.; Mellinger-Silva, C.; Cabral, L.M.C. Antioxidant dietary fibre from grape pomace flour or extract: Does it make any difference on the nutritional and functional value. J. Funct. Foods 2019, 56, 276–285. [Google Scholar] [CrossRef]
- Sales, P.M.; de Souza, P.M.; Simeoni, L.A.; Magalhães, P.O.; Silveira, D. α-Amylase inhibitors: A review of raw material and isolated compounds from plant source. J. Pharm. Pharm. Sci. 2012, 15, 141–183. [Google Scholar] [CrossRef]
- Asgar, A. Anti-diabetic potential of phenolic compounds. Int. J. Food Prop. 2013, 16, 91–103. [Google Scholar] [CrossRef]
- Fernandes, A.; Martins, I.; Moreira, D.; Macedo, G. Use of agro-industrial residues as potent antioxidant, antiglycation agents, and α-amylase and pancreatic lipase inhibitory activity. J. Food Process. Preserv. 2020, 44, e14397. [Google Scholar] [CrossRef]
- Xiao, J.; Ni, X.; Kai, G.; Chen, X. A review on structure–activity relationship of dietary polyphenols inhibiting α-amylase. Food Sci. Nutr. 2013, 53, 497–506. [Google Scholar] [CrossRef]
- Tadera, K.; Minami, Y.; Takamatsu, K.; Matsuoka, T. Inhibition of α-glucosidase and α-amylase by flavonoids. J. Nutr. Sci. Vitaminol. 2006, 52, 149–153. [Google Scholar] [CrossRef]
- Lo Piparo, E.; Scheib, H.; Frei, N.; Williamson, G.; Grigorov, M.; Chou, C.J. Flavonoids for controlling starch digestion: Structural requirements for inhibiting human α-amylase. J. Med. Chem. 2008, 51, 3555–3561. [Google Scholar] [CrossRef]
- Lavelli, V.; Sri Harsha, P.S.C.; Ferranti, P.; Scarafoni, A.; Iametti, S. Grape skin phenolics as inhibitors of mammalian α-glucosidase and α-amylase—Effect of food matrix and processing on efficacy. Food Funct. 2016, 7, 1655–1663. [Google Scholar] [CrossRef]
- Buchholz, T.; Melzig, M.F. Polyphenolic compounds as pancreatic lipase inhibitors. Planta Med. 2015, 81, 771–783. [Google Scholar] [CrossRef] [PubMed]
- Fraisse, D.; Bred, A.; Felgines, C.; Senejoux, F. Impact of Simulated Gastrointestinal Conditions on Antiglycoxidant and α-Glucosidase Inhibition Capacities of Cyanidin-3-O-Glucoside. Antioxidants 2021, 10, 1670. [Google Scholar] [CrossRef] [PubMed]
- Quan, N.V.; Xuan, T.D.; Anh, L.H.; Cuc, D.T.K.; Khanh, T.D. Augmentation of α-amylase and α-glucosidase inhibitory propertiesof Callerya speciosa root extracts: An exploration throughsimulated human gastrointestinal digestion. Int. Food Res. J. 2024, 31, 796–810. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2005. [Google Scholar]
- Mariotti, F.; Tomé, D.; Mirand, P.P. Converting nitrogen into protein--beyond 6.25 and Jones’ factors. Food Sci Nutr. 2008, 48, 177–184. [Google Scholar] [CrossRef]
- Lu, X.; Chen, H.; Dong, P.; Fu, L.; Zhang, X. Phytochemical characteristics and hypoglycaemic activity of fraction from mushroom Intootus obliquus. J. Sci. Food Agric. 2010, 90, 276–280. [Google Scholar] [CrossRef]
- Xu, D.J.; Xia, Q.; Wang, J.J.; Wang, P.P. Molecular weight and monosaccharide composition of Astragalus polysaccharides. Molecules 2008, 13, 2408–2415. [Google Scholar] [CrossRef]
- Jagdish, P.; Deepa, V.; Rohan, G.; Bagdat, R.D. Production of Microbial Lipases Isolated from Curd Using Waste Oil as a Substrate. Res. J. Pharm. Biol. Chem. Sci. 2013, 4, 831–839. [Google Scholar]
Grapes | GSF and GSE | Lightness (L* Value) | Redness (a* Value) | Yellowness (b* Value) |
---|---|---|---|---|
Pinot Noir | flour | 22.45 ± 1.56 | 2.29 ± 0.21 | 4.95 ± 0.42 |
extract | 41.84 ± 1.82 | 4.21 ± 0.39 | 21.78 ± 1.43 | |
Marselan | flour | 28.25 ± 2.10 | 3.63 ± 0.35 | 1.81 ± 0.15 |
extract | 43.36 ± 2.42 | 14.10 ± 0.98 | 19.88 ± 1.37 |
Parameters, % | Pinot Noir | Marselan | ||
---|---|---|---|---|
GSE | GSF | GSE | GSF | |
Ash | 2.32 ± 0.11 | 3.42 ± 0.16 | 2.15 ± 0.06 | 3.61 ± 0.15 |
Moisture | 7.34 ± 0.45 | 6.45 ± 0.49 | 6.98 ± 0.25 | 6.68 ± 0.43 |
Crude protein | 8.98 ± 0.55 | 15.26 ± 0.65 | 7.12 ± 0.41 | 16.87 ± 0.67 |
Crude fat | 9.12 ± 0.61 | 15.82 ± 0.55 | 11.32 ± 0.67 | 16.41 ± 0.66 |
Total dietary fiber | 29.25 ± 1.23 | 32.05 ± 1.72 | 28.42 ± 1.02 | 34.02 ± 1.75 |
Total carbohydrates | 59.18 ± 4.11 | 27.09 ± 1.24 | 60.83 ± 4.23 | 22.45 ± 0.95 |
Elements | LOD, mg/kg | Pinot Noir GSF | Pinot Noir GSE | Marselan GSF | Marselan GSE |
---|---|---|---|---|---|
mg/kg DW | mg/kg DW | mg/kg DW | mg/kg DW | ||
Na | 34.70 | 194.98 ± 3.25 | 542.04 ± 22.32 | 120.77 ± 0.30 | 168.47 ± 5.84 |
Mg | 30.79 | 1401.17 ± 56.68 | 461.87 ± 15.95 | 1464.12 ± 92.96 | 264.65 ± 15.18 |
Al | 5.48 | 112.02 ± 1.80 | 44.01 ± 0.99 | 153.22 ± 4.20 | 16.43 ± 1.23 |
P | 8.10 | 3049.94 ± 25.95 | 3693.10 ± 25.08 | 3821.53 ± 263.95 | 1636.96 ± 10.01 |
K | 18.84 | 5108.01 ± 122.64 | 5279.99 ± 113.16 | 3718.25 ± 214.39 | 4030.24 ± 4.89 |
Ca | 93.73 | 1853.80 ± 74.50 | 257.53 ± 49.91 | 1878.77 ± 87.96 | 188.59 ± 3.88 |
Cr | 0.20 | 0.68 ± 0.02 | 4.44 ± 0.17 | 0.88 ± 0.08 | 0.87 ± 0.02 |
Fe | 4.37 | 160.89 ± 2.91 | 119.07 ± 2.08 | 78.59 ± 1.41 | 31.60 ± 1.79 |
Zn | 1.98 | 19.75 ± 0.56 | 14.72 ± 0.25 | 12.09 ± 0.55 | 3.19 ± 0.22 |
Cu | 0.30 | 19.65 ± 2.18 | 17.84 ± 0.90 | 10.13 ± 0.13 | 9.32 ± 0.05 |
Enzymes | Pinot Noir GSE | Marselan GSE | Commercial Inhibitor | ||
---|---|---|---|---|---|
Buffer | Salt Solution | Buffer | Salt Solution | ||
α-amylase | 99.05 ± 0.82 | 451.74 ± 42.52 | 11.18 ± 2.92 | 12.17 ± 1.32 | Acarbose 2381 ± 211.23 |
α-glucosidase | 8.53 ± 0.74 | 14.16 ± 1.25 | 2.53 ± 0.24 | 2.56 ± 0.27 | |
Pancreatic lipase | 601.28 ± 62.15 | 725.76 ± 71.85 | 601.28 ± 65.58 | 725.53 ± 69.17 | Orlistat 1150 ± 91.35 |
Enzymes | GSE Concen- tration, mg/mL | Pinot Noir GSE | GSE Concen- tration, mg/mL | Marselan GSE | ||||
---|---|---|---|---|---|---|---|---|
Gastric Phase | Intestinal Phase | Salt Solution | Gastric Phase | Intestinal Phase | Salt Solution | |||
α-glucosidase | 0.001 | 49.23 ± 2.95 | 42.38 ± 2.04 | 1.71 ± 0.11 | 0.0001 | 38.52 ± 2.15 4 | 36.27 ± 1.27 2 | 32.12 ± 1.11 |
0.0025 | 72.47 ± 5.23 | 70.26 ± 4.92 | 50.33 ± 3.12 | 0.001 | 72.46 ± 5.14 | 70.35 ± 4.92 | 69.48 ± 4.82 | |
0.030 | 88.54 ± 6.54 | 90.56 ± 6.68 | 82.32 ± 6.18 | 0.005 | 95.67 ± 6.73 | 94.22 ± 6.65 | 91.26 ± 6.75 | |
Pancreatic Lipase | 0.50 | 22.28 ± 1.12 | 20.18 ± 0.90 | 17.24 ± 1.17 | 0.50 | 35.56 ± 1.28 | 30.42 ± 1.27 | 25.24 ± 1.14 |
0.80 | 45.36 ± 2.13 | 40.48 ± 1.92 | 32.38 ± 1.14 | 0.80 | 52.31 ± 2.36 | 50.11 ± 2.93 | 42.48 ± 1.92 | |
1.50 | 82.69 ± 5.92 | 80.67 ± 6.10 | 70.56 ± 5.03 | 1.50 | 85.25 ± 6.33 | 80.54 ± 5.96 | 74.36 ± 5.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanov, Y.; Atanasova, M.; Godjevargova, T. Nutritional and Functional Values of Grape Seed Flour and Extract for Production of Antioxidative Dietary Supplements and Functional Foods. Molecules 2025, 30, 2029. https://doi.org/10.3390/molecules30092029
Ivanov Y, Atanasova M, Godjevargova T. Nutritional and Functional Values of Grape Seed Flour and Extract for Production of Antioxidative Dietary Supplements and Functional Foods. Molecules. 2025; 30(9):2029. https://doi.org/10.3390/molecules30092029
Chicago/Turabian StyleIvanov, Yavor, Milka Atanasova, and Tzonka Godjevargova. 2025. "Nutritional and Functional Values of Grape Seed Flour and Extract for Production of Antioxidative Dietary Supplements and Functional Foods" Molecules 30, no. 9: 2029. https://doi.org/10.3390/molecules30092029
APA StyleIvanov, Y., Atanasova, M., & Godjevargova, T. (2025). Nutritional and Functional Values of Grape Seed Flour and Extract for Production of Antioxidative Dietary Supplements and Functional Foods. Molecules, 30(9), 2029. https://doi.org/10.3390/molecules30092029