A Comprehensive Review of Milk Components: Recent Developments on Extraction and Analysis Methods
Abstract
1. Introduction
2. Milk Macro-Constituents
2.1. Lipids
2.2. Sugars
2.3. Proteins
3. Extraction Methods for Milk Macro-Constituents
Extraction Method | Advantages | Drawbacks | Macro-Constituents | Used Solvents | Refs. |
---|---|---|---|---|---|
Liquid extraction |
|
| Lipids | Chloroform Methanol Water | [38,39] |
Polysaccharides | Ethanol | [51] | |||
Ionic liquids | [54] | ||||
Supercritical CO2 and liquid–liquid extraction |
|
| Lipids | CO2 | [45] |
Soxhlet extraction |
|
| Lipids | Chloroform | [40,41] |
Accelerated solvent extraction (ASE)/Microwave assisted extraction (MAE) |
|
| Lipids | Cyclohexane/ethyl acetate Petroleum ether, Tert-butyl methyl ether/cyclohexane/isopropanol | [45,46,47,48] |
Proteins | Water | [59] | |||
Solid phase extraction (SPE) |
|
| Lipids | 1% formic acid in methanol | [49] |
Polysaccharides | Water/acetonitrile | [55] |
4. Analytical Methods for Milk Macro-Constituents
4.1. Analysis of Fatty Acids
4.2. Analysis of Polysaccharides
4.3. Analysis of Proteins
5. Micro-Constituents
Polyphenols and Metabolites
6. Micro-Constituents Extraction
Extraction of Polyphenols and Their Metabolites
Extraction Method | Advantages | Drawbacks | Micro- Constituents | Sed Solvents | Refs. |
---|---|---|---|---|---|
Solvent Extraction | Standard methods and high yield | Laborious multistep process and solvent residues in the extract | Vitamins | Water/acid for proteins denaturation | [125] |
Minerals | Nitric Acid 65% | [127,128] | |||
Biogenic amines | Water/acid for proteins denaturation | [136] | |||
Nucleotides | Water | [126] | |||
Polyphenols | Acetonitrile/water | [141] | |||
Ultrasonic Assisted Extraction | High performance/high yield | High cost | Vitamins | Water | [131] |
Microwave Assisted extraction | Automated | Use of strong mineral acid | Mineral | Strong mineral acid | [128] |
Commercially available technique | Nucleotides | Water | [146] | ||
ASE/PLE | Special ASE Instrument required | Vitamins | Methanol/methanol-isopropanol | [132] | |
Low consumption of solvents Commercially available technique | Nucleotides | Methanol | [126] | ||
DLLME | Low consumption of solvents | Polyphenols | 0.1% formic acid solution/water | [142,143] |
7. Micro-Constituents’ Analysis
7.1. Spectrophotometric Methods
7.2. Electrochemical Methods
7.3. Atomic Absorption Spectroscopy (AAS) and Inductively Coupled Plasma (ICP)
7.4. Chromatographic Techniques
7.4.1. LC Coupled Detectors
7.4.2. Untargeted LC-MS Analysis
8. Mass Spectrometric Advances in Milk Metabolomic and Lipidomic
9. Conclusions
10. Perspectives and Challenges
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Haug, A.; Christophersen, O.A.; Høstmark, A.T.; Harstad, O.M. Milk and Health. Tidsskrift Den Nor. Laegeforening 2007, 127, 2542–2545. [Google Scholar]
- Dror, D.K.; Allen, L.H. Overview of Nutrients in Humanmilk. Adv. Nutr. 2018, 9, 278S–294S. [Google Scholar] [CrossRef]
- Samuel, T.M.; Zhou, Q.; Giuffrida, F.; Munblit, D.; Verhasselt, V.; Thakkar, S.K. Nutritional and Non-Nutritional Composition of Human Milk Is Modulated by Maternal, Infant, and Methodological Factors. Front Nutr 2020, 7, 576133. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Li, L.; Wang, F.; Zhang, L.; Xiong, L. Impact of Dairy Imports on Raw Milk Production Technology Progress in China. Int. J. Environ. Res. Public Health 2022, 19, 2911. [Google Scholar] [CrossRef]
- Pegu, K.; Arya, S.S. Non-Thermal Processing of Milk: Principles, Mechanisms and Effect on Milk Components. J. Agric. Food Res. 2023, 14, 100730. [Google Scholar] [CrossRef]
- Karaman, A.D.; Alvarez, V.B. Microbiology of Evaporated, Condensed and Powdered Milk. In Dairy Microbiology and Biochemistry: Recent Developments; CRC Press: London, UK, 2014; pp. 271–287. ISBN 9781482235043. [Google Scholar]
- Silva, B.Q.; Smetana, S. Review on Milk Substitutes from an Environmental and Nutritional Point of View. Appl. Food Res. 2022, 2, 100105. [Google Scholar] [CrossRef]
- McClements, D.J. Development of Next-Generation Nutritionally Fortified Plant-Based Milk Substitutes: Structural Design Principles. Foods 2020, 9, 421. [Google Scholar] [CrossRef]
- Qin, C.; Liu, L.; Wang, Y.; Leng, T.; Zhu, M.; Gan, B.; Xie, J.; Yu, Q.; Chen, Y. Advancement of Omics Techniques for Chemical Profile Analysis and Authentication of Milk. Trends Food Sci. Technol. 2022, 127, 114–128. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S.; Zhang, F.; Lu, Y.; Yang, B.; Zhang, F.; Liang, X. Study of Matrix Effects for Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometric Analysis of 4 Aminoglycosides Residues in Milk. J. Chromatogr. A 2016, 1437, 8–14. [Google Scholar] [CrossRef]
- Lv, Y.; Zhao, J.; Xue, H.; Ma, Q. Ambient Ionization Mass Spectrometry for Food Analysis: Recent Progress and Applications. TrAC-Trends Anal. Chem. 2024, 178, 117814. [Google Scholar] [CrossRef]
- Kang, M.; Wang, H.; Chen, C.; Suo, R.; Sun, J.; Yue, Q.; Liu, Y. Analytical Strategies Based on Untargeted and Targeted Metabolomics for the Accurate Authentication of Organic Milk from Jersey and Yak. Food Chem. X 2023, 19, 100786. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Li, C.; Luo, J.; Wang, R.; Zhang, H. Lipid Composition and Its Molecular Classes of Milk Fat Globule Membranes Derived from Yak, Buffalo, and Holstein Cow Milk Were Characterized Based on UHPLC-MS/MS and Untargeted-Lipidomics. LWT 2025, 219, 117563. [Google Scholar] [CrossRef]
- Tan, D.; Zhang, X.; Su, M.; Jia, M.; Zhu, D.; Kebede, B.; Wu, H.; Chen, G. Establishing an Untargeted-to-MRM Liquid Chromatography–Mass Spectrometry Method for Discriminating Reconstituted Milk from Ultra-High Temperature Milk. Food Chem. 2021, 337, 127946. [Google Scholar] [CrossRef] [PubMed]
- Koletzko, B. Human Milk Lipids. Ann. Nutr. Metab. 2017, 69, 28–40. [Google Scholar] [CrossRef]
- Djordjevic, J.; Ledina, T.; Baltic, M.Z.; Trbovic, D.; Babic, M.; Bulajic, S. Fatty Acid Profile of Milk. In IOP Conference Series: Earth and Environmental Science; Institute of Physics Publishing: Bristol, UK, 2019; Volume 333. [Google Scholar]
- Sumarmono, J.; Sulistyowati, M. Soenarto Fatty Acids Profiles of Fresh Milk, Yogurt and Concentrated Yogurt from Peranakan Etawah Goat Milk. Procedia Food Sci. 2015, 3, 216–222. [Google Scholar] [CrossRef]
- Mosley, E.E.; Wright, A.L.; Mcguire, M.K.; Mcguire, M.A. Trans Fatty Acids in Milk Produced by Women in the United States 1–3. Am. J. Clin. Nutr. 2005, 82, 1292. [Google Scholar]
- Virsangbhai, C.K.; Goyal, A.; Tanwar, B.; Sihag, M.K. Potential Health Benefits of Conjugated Linoleic Acid: An Important Functional Dairy Ingredient. Eur. J. Nutr. Food Saf. 2020, 11, 200–213. [Google Scholar] [CrossRef]
- Gong, M.; Wei, W.; Hu, Y.; Jin, Q.; Wang, X. Structure Determination of Conjugated Linoleic and Linolenic Acids. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2020, 1153, 122292. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Katan, M.B.; Ascherio, A.; Stampfer, M.J.; Willett, W.C. Trans Fatty Acids and Cardiovascular Disease. N. Engl. J. Med. 2006, 354, 1601–1613. [Google Scholar] [CrossRef]
- Daniels, S.R.; Eckel, R.H.; Engler, M.; Howard, B.V.; Krauss, R.M.; Lichtenstein, A.H.; Sacks, F.; St Jeor, S.; Stampfer, M.; Grundy, S.M.; et al. Summary of the Scientific Conference on Dietary Acids and Cardiovascular Health. J. Nutr. 2001, 131, 1322. [Google Scholar]
- Mensink, R.P.; Zock, P.L.; Kester, A.D.; Katan, M.B. Effects of Dietary Fatty Acids and Carbohydrates on the Ratio of serum Total to HDL Cholesterol and on Serum Lipids and apolipoproteins: A Meta-Analysis of 60 Controlled Trials. Am. J. Clin. Nutr. 2003, 77, 1146–1155. [Google Scholar] [CrossRef] [PubMed]
- Jensen, R.G. The Composition of Bovine Milk Lipids: January 1995 to December 2000. J. Dairy Sci. 2002, 85, 295–350. [Google Scholar] [CrossRef]
- Taormina, V.M.; Unger, A.L.; Schiksnis, M.R.; Torres-Gonzalez, M.; Kraft, J. Branched-Chain Fatty Acids—An Underexplored Class of Dairy-Derived Fatty Acids. Nutrients 2020, 12, 2875. [Google Scholar] [CrossRef]
- Dominici, S.; Marescotti, F.; Sanmartin, C.; Macaluso, M.; Taglieri, I.; Venturi, F.; Zinnai, A.; Facioni, M.S. Lactose: Characteristics, Food and Drug-Related Applications, and Its Possible Substitutions in Meeting the Needs of People with Lactose Intolerance. Foods 2022, 11, 1486. [Google Scholar] [CrossRef]
- Portnoy, M.; Barbano, D.M. Lactose: Use, Measurement, and Expression of Results. J. Dairy Sci. 2021, 104, 8314–8325. [Google Scholar] [CrossRef]
- Da Costa, S.L.; Rossi, N.P.; Maldonado, R.R. Evaluation of Lactose in Milk and Dairy Products. Int. J. Innov. Educ. Res. 2013, 1, 1–4. [Google Scholar] [CrossRef]
- Widyastuti, Y.; Febrisiantosa, A. The Role of Lactic Acid Bacteria in Milk Fermentation. Food Nutr. Sci. 2014, 5, 435–442. [Google Scholar] [CrossRef]
- Bulgaru, V. Lactose Intolerance and the Importance of Lactose-Free Dairy Products in This Condition. J. Soc. Sci. 2021, 4, 119–133. [Google Scholar] [CrossRef]
- Costa, A.; Lopez-Villalobos, N.; Sneddon, N.W.; Shalloo, L.; Franzoi, M.; De Marchi, M.; Penasa, M. Invited Review: Milk Lactose—Current Status and Future Challenges in Dairy Cattle. J. Dairy Sci. 2019, 102, 5883–5898. [Google Scholar] [CrossRef]
- Suri, S.; Kumar, V.; Prasad, R.; Tanwar, B.; Goyal, A.; Kaur, S.; Gat, Y.; Kumar, A.; Kaur, J.; Singh, D. Considerations for Development of Lactose-Free Food. J. Nutr. Intermed. Metab. 2019, 15, 27–34. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Scientific Opinion on Dietary Reference Values for Protein; EFSA Journal, Ed.; Wiley-Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2012; Volume 10. [Google Scholar]
- Wu, G. Dietary Protein Intake and Human Health. Food Funct 2016, 7, 1251–1265. [Google Scholar] [CrossRef] [PubMed]
- Heck, J.M.L.; Schennink, A.; Van Valenberg, H.J.F.; Bovenhuis, H.; Visker, M.H.P.W.; Van Arendonk, J.A.M.; Van Hooijdonk, A.C.M. Effects of Milk Protein Variants on the Protein Composition of Bovine Milk. J. Dairy Sci. 2009, 92, 1192–1202. [Google Scholar] [CrossRef] [PubMed]
- Koonin, E.; Wolf, Y.; Karev, G. The Structure of the Protein universe and Genome Evolution. Nature 2002, 420, 218. [Google Scholar] [CrossRef] [PubMed]
- Schanbacher, F.L.; Talhouk, R.S.; Murray, F.A. Biology and Origin of Bioactive Peptides in Milk. Livest. Prod. Sci. 1997, 50, 105–123. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. Dyer A Rapid Method of Total Lipid Extraction and Purification. Can. J. Biochem. Physiol. 1959, 37, 911–919. [Google Scholar] [CrossRef] [PubMed]
- Folch, J.; Lees, M.; Sloane, G.H. A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues. J. Biol. Chem. 1959, 226, 497–509. [Google Scholar] [CrossRef]
- Manirakiza, P.; Covaci, A.; Schepens, P. Comparative Study on Total Lipid Determination Using Soxhlet, Roese-Gottlieb, Bligh & Dyer, and Modified Bligh & Dyer Extraction Methods. J. Food Compos. Anal. 2001, 14, 93–100. [Google Scholar] [CrossRef]
- Archer, J.C.; Jenkins, R.G. Automated Milk Fat Extraction for the Analyses of Persistent Organic Pollutants. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1041–1042, 70–76. [Google Scholar] [CrossRef]
- Ramluckan, K.; Moodley, K.G.; Bux, F. An Evaluation of the Efficacy of Using Selected Solvents for the Extraction of Lipids from Algal Biomass by the Soxhlet Extraction Method. Fuel 2014, 116, 103–108. [Google Scholar] [CrossRef]
- Liu, Z.; Rochfort, S.; Cocks, B.G. Optimization of a Single Phase Method for Lipid Extraction from Milk. J. Chromatogr. A 2016, 1458, 145–149. [Google Scholar] [CrossRef]
- de Jesus, S.S.; Ferreira, G.F.; Moreira, L.S.; Wolf Maciel, M.R.; Maciel Filho, R. Comparison of Several Methods for Effective Lipid Extraction from Wet Microalgae Using Green Solvents. Renew. Energy 2019, 143, 130–141. [Google Scholar] [CrossRef]
- Singh, S.K.; Pavan, M.S.; SaiPrasanna, N.; Kant, R. Applications of Super Critical Fluid Extraction in Milk and Dairy Industry: A Review. J. Food Process Technol. 2018, 9, 2157–7110. [Google Scholar] [CrossRef]
- Mentana, A.; Zianni, R.; Campaniello, M.; Tomaiuolo, M.; Chiappinelli, A.; Iammarino, M.; Nardelli, V. Optimizing Accelerated Solvent Extraction Combined with Liquid Chromatography-Orbitrap Mass Spectrometry for Efficient Lipid Profile Characterization of Mozzarella Cheese. Food Chem. 2022, 394, 133542. [Google Scholar] [CrossRef]
- Thurnhofer, S.; Lehnert, K.; Vetter, W. Exclusive quantification of methyl-branched fatty acids and minor 18:1-isomers in foodstuff by GC/MS in the sim mode using 10,11-dichloroundecanoic acid and fatty acid ethyl esters as internal standards. Eur. Food Res. Technol. 2008, 226, 975–983. [Google Scholar] [CrossRef]
- Petronijevic, R.B.; Trbovic, D.; Milicevic, D. Fast, Simple and Reliable Triglyceride Composition Analysis of Milk Fat for Discrimination of Cheese Origin and Adulteration Detection. IOP Conf. Ser. Earth Environ. Sci. 2019, 333, 0120940. [Google Scholar] [CrossRef]
- Bakhytkyzy, I.; Hewelt-Belka, W.; Kot-Wasik, A. The Dispersive Micro-Solid Phase Extraction Method for MS-Based Lipidomics of Human Breast Milk. Microchem. J. 2020, 152, 104269. [Google Scholar] [CrossRef]
- Jiang, C.; Ma, B.; Song, S.; Lai, O.M.; Cheong, L.Z. Fingerprinting of Phospholipid Molecular Species from Human Milk and Infant Formula Using HILIC-ESI-IT-TOF-MS and Discriminatory Analysis by Principal Component Analysis. J. Agric. Food Chem. 2018, 66, 7131–7138. [Google Scholar] [CrossRef]
- Cui, S.W. Food Carbohydrates: Chemistry, Physical Properties, and Applications; Taylor & Francis Group, Ed.; CRC Press: Boca Raton, FL, USA, 2005; ISBN 0849315743. [Google Scholar]
- Balieiro, A.L.; Santos, R.A.; Pereira, M.M.; Figueiredo, R.T.; Freitas, L.S.; De Alsina, O.L.S.; Lima, A.S.; Soares, C.M.F. Adsorption Process of Molecularly Imprinted Silica for Extraction of Lactose from Milk. Braz. J. Chem. Eng. 2016, 33, 361–372. [Google Scholar] [CrossRef]
- Gonzaga, N.; Watanabe, L.S.; Mareze, J.; Madeira, T.B.; Tamanini, R.; Rios, E.A.; Nixdorf, S.L.; Beloti, V. Green Method Using Water for Lactose and Lactulose Extraction and Determination in Milk by High-Performance Liquid Chromatography with Refractive Index Detection. LWT 2019, 113, 108288. [Google Scholar] [CrossRef]
- Mena-García, A.; Ruiz-Matute, A.I.; Soria, A.C.; Sanz, M.L. Green Techniques for Extraction of Bioactive Carbohydrates. TrAC-Trends Anal. Chem. 2019, 119, 115612. [Google Scholar] [CrossRef]
- Robinson, R.C.; Colet, E.; Tian, T.; Poulsen, N.A.; Barile, D. An Improved Method for the Purification of Milk Oligosaccharides by Graphitised Carbon-Solid Phase Extraction. Int. Dairy J. 2018, 80, 62–68. [Google Scholar] [CrossRef]
- Vincent, D.; Ezernieks, V.; Elkins, A.; Nguyen, N.; Moate, P.J.; Cocks, B.G.; Rochfort, S. Milk Bottom-up Proteomics: Method Optimization. Front. Genet. 2016, 6, 360. [Google Scholar] [CrossRef]
- Tiwari, B.K. Ultrasound: A Clean, Green Extraction Technology. TrAC-Trends Anal. Chem. 2015, 71, 100–109. [Google Scholar] [CrossRef]
- Bu, G.; Yang, Y.; Chen, F.; Liao, Z.; Gao, Y.; Yang, H.; Li, R.; Liu, K.; Zhao, J. Extraction and Physicochemical Properties of Soya Bean Protein and Oil by a New Reverse Micelle System Compared with Other Extraction Methods. Int. J. Food Sci. Technol. 2014, 49, 1079–1089. [Google Scholar] [CrossRef]
- Pojić, M.; Mišan, A.; Tiwari, B. Eco-Innovative Technologies for Extraction of Proteins for Human Consumption from Renewable Protein Sources of Plant Origin. Trends Food Sci. Technol. 2018, 75, 93–104. [Google Scholar] [CrossRef]
- O’Donnell, R.; Holland, J.W.; Deeth, H.C.; Alewood, P. Milk Proteomics. Int. Dairy J. 2004, 14, 1013–1023. [Google Scholar] [CrossRef]
- Amores, G.; Virto, M. Total and Free Fatty Acids Analysis in Milk and Dairy Fat. Separations 2019, 6, 14. [Google Scholar] [CrossRef]
- Morrison, W.R.; Smith, L.M. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. J. Lipid Res. 1964, 5, 600–608. [Google Scholar] [CrossRef]
- Schuchardt, U.; Lopes, O.C. Tetramethylguanidine Catalyzed Transesterification of Fats and Oils: A New Method for Rapid Determination of Their Composition. J. Am. Oil Chem. Soc. 1988, 65, 1940–1941. [Google Scholar] [CrossRef]
- Yurchenko, S.; Sats, A.; Poikalainen, V.; Karus, A. Method for Determination of Fatty Acids in Bovine Colostrum Using GC-FID. Food Chem. 2016, 212, 117–122. [Google Scholar] [CrossRef]
- Danudol, A.; Judprasong, K. Development and Method Validation of Butyric Acid and Milk Fat Analysis in Butter Blends and Blended Milk Products by GC-FID. Foods 2022, 11, 3606. [Google Scholar] [CrossRef]
- Montpetit, A.; Tremblay, A.Y. A Quantitative Method of Analysis for Sterol Glycosides in Biodiesel and FAME Using GC-FID. JAOCS J. Am. Oil Chem. Soc. 2016, 93, 479–487. [Google Scholar] [CrossRef]
- Lee Simas Porto, B.; Faria, I.D.L.; de Souza, J.C.Q.; de Oliveira Moreira, O.B.; Gama, M.A.S.D.; Oliveira, M.A.L.D. Rapid method for simultaneous determination of cis-9, trans-11 and trans-10, cis-12 conjugated linoleic acid isomers in milk by GC-FID. Quim. Nova 2023, 46, 743–746. [Google Scholar] [CrossRef]
- Eisenstecken, D.; Stanstrup, J.; Robatscher, P.; Huck, C.W.; Oberhuber, M. Fatty Acid Profiling of Bovine Milk and Cheese from Six European Areas by GC-FID and GC-MS. Int. J. Dairy Technol. 2021, 74, 215–224. [Google Scholar] [CrossRef]
- Cattani, M.; Mantovani, R.; Schiavon, S.; Bittante, G.; Bailoni, L. Recovery of N-3 Polyunsaturated Fatty Acids and Conjugated Linoleic Acids in Ripened Cheese Obtained from Milk of Cows Fed Different Levels of Extruded Flaxseed. J. Dairy Sci. 2014, 97, 123–135. [Google Scholar] [CrossRef]
- Tzamaloukas, O.; Orford, M.; Miltiadou, D.; Papachristoforou, C. Partial Suckling of Lambs Reduced the Linoleic and Conjugated Linoleic Acid Contents of Marketable Milk in Chios Ewes. J. Dairy Sci. 2015, 98, 1739–1749. [Google Scholar] [CrossRef]
- Firl, N.; Kienberger, H.; Rychlik, M. Validation of the Sensitive and Accurate Quantitation of the Fatty Acid Distribution in Bovine Milk. Int. Dairy J. 2014, 35, 139–144. [Google Scholar] [CrossRef]
- Onzo, A.; Acquavia, M.A.; Cataldi, T.R.I.; Ligonzo, M.; Coviello, D.; Pascale, R.; Martelli, G.; Bondoni, M.; Scrano, L.; Bianco, G. Coceth Sulfate Characterization by Electrospray Ionization Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 2020, 34, 1–10. [Google Scholar] [CrossRef]
- Yang, X.; Karrar, E.; Cong, F.; Lu, H.; Jin, Q.; Xu, X.; Huppertz, T.; Wei, W.; Wang, X. Identification and Quantification of Branched-Chain Fatty Acids and Odd-Chain Fatty Acids of Mammalian Milk, Dairy Products, and Vegetable Oils Using GC/TOF-MS. Int. Dairy J. 2023, 140, 105587. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, Y.; Wang, F.; Zheng, N.; Wang, J. Simultaneous Determination of C18 Fatty Acids in Milk by Gc-Ms. Separations 2021, 8, 118. [Google Scholar] [CrossRef]
- Li, M.; Yang, L.; Bai, Y.; Liu, H. Analytical Methods in Lipidomics and Their Applications. Am. Chem. Soc. 2014, 86, 161–175. [Google Scholar] [CrossRef]
- Liu, Z.; Rochfort, S.; Cocks, B. Milk Lipidomics: What We Know and What We Don’t. Prog. Lipid Res. 2018, 71, 70–85. [Google Scholar] [CrossRef]
- Elliott, J.M.; de Haan, B.; Parkin, K.L. An Improved Liquid Chromatographic Method for the Quantitative Determination of Free Fatty Acids in Milk Products. J. Dairy Sci. 1989, 72, 2478–2482. [Google Scholar] [CrossRef]
- Ledoux, M.; Laloux, L.; Wolff, R.L. Analytical Methods for Determination of Trans-C18 Fatty Acid Isomers in Milk Fat. A Review. Analusis 2000, 28, 402–412. [Google Scholar]
- Liu, Z.; Moate, P.; Cocks, B.; Rochfort, S. Comprehensive Polar Lipid Identification and Quantification in Milk by Liquid Chromatography-Mass Spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2015, 978–979, 95–102. [Google Scholar] [CrossRef]
- Liu, Z.; Li, C.; Pryce, J.; Rochfort, S. Comprehensive Characterization of Bovine Milk Lipids: Phospholipids, Sphingolipids, Glycolipids, and Ceramides. J. Agric. Food Chem. 2020, 68, 6726–6738. [Google Scholar] [CrossRef]
- Lagutin, K.; Mackenzie, A.; Bloor, S.; Scott, D.; Vyssotski, M. HPLC-MS, GC and NMR Profiling of Bioactive Lipids of Human Milk and Milk of Dairy Animals (Cow, Sheep, Goat, Buffalo, Camel, Red Deer). Separations 2022, 9, 145. [Google Scholar] [CrossRef]
- Sokol, E.; Ulven, T.; Færgeman, N.J.; Ejsing, C.S. Comprehensive and Quantitative Profiling of Lipid Species in Human Milk, Cow Milk and a Phospholipid-Enriched Milk Formula by GC and MS/MSALL. Eur. J. Lipid Sci. Technol. 2015, 117, 751–759. [Google Scholar] [CrossRef]
- Imperiale, S.; Morozova, K.; Ferrentino, G.; Scampicchio, M. Analysis of Milk with Liquid Chromatography–Mass Spectrometry: A Review. Eur. Food Res. Technol. 2023, 249, 861–902. [Google Scholar]
- Tsugawa, H.; Ikeda, K.; Takahashi, M.; Satoh, A.; Mori, Y.; Uchino, H.; Okahashi, N.; Yamada, Y.; Tada, I.; Bonini, P.; et al. MS-DIAL 4: Accelerating Lipidomics Using an MS/MS, CCS, and Retention Time Atlas. bioRxiv 2020. [Google Scholar] [CrossRef]
- Fahy, E.; Sud, M.; Cotter, D.; Subramaniam, S. LIPID MAPS Online Tools for Lipid Research. Nucleic Acids Res. 2007, 35, W606–W612. [Google Scholar] [CrossRef]
- Lynch, J.M.; Barbano, D.M.; Schweisthal, M.; Fleming, J.R. Precalibration Evaluation Procedures for Mid-Infrared Milk Analyzers. J. Dairy Sci. 2006, 89, 2761–2774. [Google Scholar] [CrossRef]
- Hurum, D.; Rohrer, J. Determination of Carbohydrates in Urine by HPAE-PAD; Thermo Fisher Scientific: Sunnyvale, CA, USA, 2016. [Google Scholar]
- Trani, A.; Gambacorta, G.; Loizzo, P.; Cassone, A.; Fasciano, C.; Zambrini, A.V.; Faccia, M. Comparison of HPLC-RI, LC/MS-MS and Enzymatic Assays for the Analysis of Residual Lactose in Lactose-Free Milk. Food Chem. 2017, 233, 385–390. [Google Scholar] [CrossRef]
- Sivongdao, H.; Ruengsitagoon, W. Development of Sugars Quantification Method Using Polarimeter Couple with UV-Visible Quartz Cuvette Cell. Sci. Technol. Rev. Res. Artic. Health Sci. 2023, 16, 16–27. [Google Scholar]
- Monti, L.; Negri, S.; Meucci, A.; Stroppa, A.; Galli, A.; Contarini, G. Lactose, Galactose and Glucose Determination in Naturally “Lactose Free” Hard Cheese: HPAEC-PAD Method Validation. Food Chem. 2017, 220, 18–24. [Google Scholar] [CrossRef]
- Ohlsson, J.A.; Johansson, M.; Hansson, H.; Abrahamson, A.; Byberg, L.; Smedman, A.; Lindmark-Månsson, H.; Lundh, Å. Lactose, Glucose and Galactose Content in Milk, Fermented Milk and Lactose-Free Milk Products. Int. Dairy J. 2017, 73, 151–154. [Google Scholar] [CrossRef]
- van Scheppingen, W.B.; van Hilten, P.H.; Vijverberg, M.P.; Duchateau, A.L.L. Selective and Sensitive Determination of Lactose in Low-Lactose Dairy Products with HPAEC-PAD. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1060, 395–399. [Google Scholar] [CrossRef]
- Altendorfer, I.; König, S.; Braukmann, A.; Saenger, T.; Bleck, E.; Vordenbäumen, S.; Kubiak, A.; Schneider, M.; Jose, J. Quantification of AS1-Casein in Breast Milk Using a Targeted Mass Spectrometry-Based Approach. J. Pharm. Biomed. Anal. 2015, 103, 52–58. [Google Scholar] [CrossRef]
- Warakaulle, S.; Mohamed, H.; Ranasinghe, M.; Shah, I.; Yanyang, X.; Chen, G.; Ayyash, M.M.; Vincent, D.; Kamal-Eldin, A. Advancement of Milk Protein Analysis: From Determination of Total Proteins to Their Identification and Quantification by Proteomic Approaches. J. Food Compos. Anal. 2024, 126, 105854. [Google Scholar] [CrossRef]
- Fusch, G.; Rochow, N.; Choi, A.; Fusch, S.; Poeschl, S.; Ubah, A.O.; Lee, S.Y.; Raja, P.; Fusch, C. Rapid Measurement of Macronutrients in Breast Milk: How Reliable Are Infrared Milk Analyzers? Clin. Nutr. 2015, 34, 465–476. [Google Scholar] [CrossRef]
- Siroěić, A.P.; Krehula, L.K.; Kataněić, Z.; Hrnjak-Murgić, Z. Characterization of Casein Fractions-Comparison of Commercial Casein and Casein Extracted from Cow’s Milk. Chem. Biochem. Eng. Q. 2016, 30, 501–509. [Google Scholar] [CrossRef]
- De Poi, R.; De Dominicis, E.; Gritti, E.; Fiorese, F.; Saner, S.; Polverino De Laureto, P. Development of an LC-MS Method for the Identification of β-Casein Genetic Variants in Bovine Milk. Food Anal. Method. 2020, 13, 2177–2187. [Google Scholar] [CrossRef]
- Guo, D.; Deng, X.; Gu, S.; Chen, N.; Zhang, X.; Wang, S. Online Trypsin Digestion Coupled with LC-MS/MS for Detecting of A1 and A2 Types of β-Casein Proteins in Pasteurized Milk Using Biomarker Peptides. J. Food Sci. Technol. 2022, 59, 2983–2991. [Google Scholar] [CrossRef]
- Le, T.T.; Deeth, H.C.; Larsen, L.B. Proteomics of Major Bovine Milk Proteins: Novel Insights. Int. Dairy J. 2017, 67, 2–15. [Google Scholar] [CrossRef]
- Felfoul, I.; Jardin, J.; Gaucheron, F.; Attia, H.; Ayadi, M.A. Proteomic Profiling of Camel and Cow Milk Proteins under Heat Treatment. Food Chem. 2017, 216, 161–169. [Google Scholar] [CrossRef]
- Bernardi, N.; Benetti, G.; Haouet, N.M.; Sergi, M.; Grotta, L.; Marchetti, S.; Castellani, F.; Martino, G. A Rapid High-Performance Liquid Chromatography-Tandem Mass Spectrometry Assay for Unambiguous Detection of Different Milk Species Employed in Cheese Manufacturing. J. Dairy Sci. 2015, 98, 8405–8413. [Google Scholar] [CrossRef]
- Ning, J.; Yang, M.; Liu, W.; Luo, X.; Yue, X. Proteomics and Peptidomics As a Tool to Compare the Proteins and Endogenous Peptides in Human, Cow, and Donkey Milk. J. Agric. Food Chem. 2023, 71, 16435–16451. [Google Scholar] [CrossRef]
- Yang, M.; Song, D.; Cao, X.; Wu, R.; Liu, B.; Ye, W.; Wu, J.; Yue, X. Comparative Proteomic Analysis of Milk-Derived Exosomes in Human and Bovine Colostrum and Mature Milk Samples by ITRAQ-Coupled LC-MS/MS. Food Res. Int. 2017, 92, 17–25. [Google Scholar] [CrossRef]
- Rysova, L.; Cejnar, P.; Hanus, O.; Legarova, V.; Havlik, J.; Nejeschlebova, H.; Nemeckova, I.; Jedelska, R.; Bozik, M. Use of MALDI-TOF MS Technology to Evaluate Adulteration of Small Ruminant Milk with Raw Bovine Milk. J. Dairy Sci. 2022, 105, 4882–4894. [Google Scholar] [CrossRef]
- Sassi, M.; Arena, S.; Scaloni, A. MALDI-TOF-MS Platform for Integrated Proteomic and Peptidomic Profiling of Milk Samples Allows Rapid Detection of Food Adulterations. J. Agric. Food Chem. 2015, 63, 6157–6171. [Google Scholar] [CrossRef]
- Lu, Y.; Dai, J.; Zhang, S.; Qiao, J.; Lian, H.; Mao, L. Identification of Characteristic Peptides of Casein in Cow Milk Based on MALDI-TOF MS for Direct Adulteration Detection of Goat Milk. Foods 2023, 12, 1519. [Google Scholar] [CrossRef]
- Billa, P.A.; Faulconnier, Y.; Larsen, T.; Leroux, C.; Pires, J.A.A. Milk Metabolites as Noninvasive Indicators of Nutritional Status of Mid-Lactation Holstein and Montbéliarde Cows. J. Dairy Sci. 2020, 103, 3133–3146. [Google Scholar] [CrossRef]
- Guetouache, M.; Guessas, B.; Medjekal, S. Composition and nutritional value of raw milk. Issues Biol. Sci. Pharm. Res. 2014, 2, 115–122. [Google Scholar] [CrossRef]
- Stergiadis, S.; Qin, N.; Faludi, G.; Beauclercq, S.; Pitt, J.; Desnica, N.; Pétursdóttir, Á.H.; Newton, E.E.; Angelidis, A.E.; Givens, I.; et al. Mineral Concentrations in Bovine Milk from Farms with Contrasting Grazing Management. Foods 2021, 10, 2733. [Google Scholar] [CrossRef]
- Zamberlin, Š.; Antunac, N.; Havranek, J.; Samaržija, D. Mineral Elements in Milk and Dairy. Mljekarstvo 2012, 62, 111–125. [Google Scholar]
- Doeun, D.; Davaatseren, M.; Chung, M.S. Biogenic Amines in Foods. Food Sci. Biotechnol. 2017, 26, 1463–1474. [Google Scholar] [CrossRef]
- Wójcik, W.; Łukasiewicz, M.; Puppel, K. Biogenic Amines: Formation, Action and Toxicity—A Review. J. Sci. Food Agric. 2021, 101, 2634–2640. [Google Scholar] [CrossRef]
- del Rio, B.; Fernandez, M.; Redruello, B.; Ladero, V.; Alvarez, M.A. New Insights into the Toxicological Effects of Dietary Biogenic Amines. Food Chem. 2024, 435, 137558. [Google Scholar] [CrossRef]
- Che, L.; Hu, L.; Liu, Y.; Yan, C.; Peng, X.; Xu, Q.; Wang, R.; Cheng, Y.; Chen, H.; Fang, Z.; et al. Dietary Nucleotides Supplementation Improves the Intestinal Development and Immune Function of Neonates with Intra-Uterine Growth Restriction in a Pig Model. PLoS ONE 2016, 11, e0157314. [Google Scholar] [CrossRef]
- Schlimme, E.; Martin, D.; Meisel, H. Nucleosides and Nucleotides: Natural Bioactive Substances in Milk and Colostrum. Br. J. Nutr. 2000, 84, 59–68. [Google Scholar] [CrossRef]
- Bertelli, A.; Biagi, M.; Corsini, M.; Baini, G.; Cappellucci, G.; Miraldi, E. Polyphenols: From Theory to Practice. Foods 2021, 10, 2595. [Google Scholar] [CrossRef]
- Abbas, M.; Saeed, F.; Anjum, F.M.; Afzaal, M.; Tufail, T.; Bashir, M.S.; Ishtiaq, A.; Hussain, S.; Suleria, H.A.R. Natural Polyphenols: An Overview. Int. J. Food Prop. 2017, 20, 1689–1699. [Google Scholar] [CrossRef]
- Ianni, A.; Martino, G. Dietary Grape Pomace Supplementation in Dairy Cows: Effect on Nutritional Quality of Milk and Its Derived Dairy Products. Foods 2020, 9, 168. [Google Scholar] [CrossRef]
- Di Trana, A.; Bonanno, A.; Cecchini, S.; Giorgio, D.; Di Grigoli, A.; Claps, S. Effects of Sulla Forage (Sulla coronarium L.) on the Oxidative Status and Milk Polyphenol Content in Goats. J. Dairy Sci. 2015, 98, 37–46. [Google Scholar] [CrossRef]
- Valenti, B.; Luciano, G.; Morbidini, L.; Rossetti, U.; Codini, M.; Avondo, M.; Priolo, A.; Bella, M.; Natalello, A.; Pauselli, M. Dietary Pomegranate Pulp: Effect on Ewe Milk Quality during Late Lactation. Animals 2019, 9, 283. [Google Scholar] [CrossRef]
- Chedea, V.S.; Pelmus, R.S.; Lazar, C.; Pistol, G.C.; Calin, L.G.; Toma, S.M.; Dragomir, C.; Taranu, I. Effects of a Diet Containing Dried Grape Pomace on Blood Metabolites and Milk Composition of Dairy Cows. J. Sci. Food Agric. 2017, 97, 2516–2523. [Google Scholar] [CrossRef] [PubMed]
- Klimczak, I.; Gliszczyńska-Świgło, A. Comparison of UPLC and HPLC Methods for Determination of Vitamin C. Food Chem. 2015, 175, 100–105. [Google Scholar] [CrossRef]
- Barba, F.J.; Esteve, M.J.; Frígola, A. Determination of Vitamins E (α-, γ- and δ-Tocopherol) and D (Cholecalciferol and Ergocalciferol) by Liquid Chromatography in Milk, Fruit Juice and Vegetable Beverage. Eur. Food Res. Technol. 2011, 232, 829–836. [Google Scholar] [CrossRef]
- Plozza, T.; Craige Trenerry, V.; Caridi, D. The Simultaneous Determination of Vitamins A, e and β-Carotene in Bovine Milk by High Performance Liquid Chromatography-Ion Trap Mass Spectrometry (HPLC-MS n). Food Chem. 2012, 134, 559–563. [Google Scholar] [CrossRef]
- Trenerry, V.C.; Plozza, T.; Caridi, D.; Murphy, S. The Determination of Vitamin D3 in Bovine Milk by Liquid Chromatography Mass Spectrometry. Food Chem. 2011, 125, 1314–1319. [Google Scholar] [CrossRef]
- Yang, F.Q.; Li, D.Q.; Feng, K.; Hu, D.J.; Li, S.P. Determination of Nucleotides, Nucleosides and Their Transformation Products in Cordyceps by Ion-Pairing Reversed-Phase Liquid Chromatography-Mass Spectrometry. J. Chromatogr. A 2010, 1217, 5501–5510. [Google Scholar] [CrossRef] [PubMed]
- Poitevin, E. Official Methods for the Determination of Minerals and Trace Elements in Infant Formula and Milk Products: A Review. J. AOAC Int. 2016, 99, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Karasakal, A. Determination of Trace and Major Elements in Vegan Milk and Oils by ICP-OES After Microwave Digestion. Biol. Trace Elem. Res. 2020, 197, 683. [Google Scholar] [CrossRef] [PubMed]
- Santos, D.C.M.B.; Carvalho, L.S.B.; Lima, D.C.; Leão, D.J.; Teixeira, L.S.G.; Korn, M.G.A. Determination of Micronutrient Minerals in Coconut Milk by ICP OES after Ultrasound-Assisted Extraction Procedure. J. Food Compos. Anal. 2014, 34, 75–80. [Google Scholar] [CrossRef]
- Alexander, P.; Ali, F.B.; Lawrance, L. Determination of Micro and Macro Minerals and Some Biochemical Parameters in Fresh Cow Milk from Different Locations in Maiduguri Metropolis, Borno State, Nigeria. Asian Food Sci. J. 2018, 3, 1–7. [Google Scholar] [CrossRef]
- Gentili, A.; Caretti, F.; Bellante, S.; Ventura, S.; Canepari, S.; Curini, R. Comprehensive Profiling of Carotenoids and Fat-Soluble Vitamins in Milk from Different Animal Species by LC-DAD-MS/MS Hyphenation. J. Agric. Food Chem. 2013, 61, 1628–1639. [Google Scholar] [CrossRef]
- Jäpelt, R.B.; Jakobsen, J. Analysis of Vitamin K1 in Fruits and Vegetables Using Accelerated Solvent Extraction and Liquid Chromatography Tandem Mass Spectrometry with Atmospheric Pressure Chemical Ionization. Food Chem. 2016, 192, 402–408. [Google Scholar] [CrossRef]
- Yang, F.Q.; Guan, J.; Li, S.P. Fast Simultaneous Determination of 14 Nucleosides and Nucleobases in Cultured Cordyceps Using Ultra-Performance Liquid Chromatography. Talanta 2007, 73, 269–273. [Google Scholar] [CrossRef]
- Moniente, M.; Botello-Morte, L.; García-Gonzalo, D.; Virto, R.; Pagán, R.; Ferreira, V.; Ontañón, I. Combination of SPE and Fluorescent Detection of AQC-Derivatives for the Determination at Sub-Mg/L Levels of Biogenic Amines in Dairy Products. Food Res. Int. 2023, 165, 112448. [Google Scholar] [CrossRef]
- Molaei, R.; Tajik, H.; Moradi, M. Magnetic Solid Phase Extraction Based on Mesoporous Silica-Coated Iron Oxide Nanoparticles for Simultaneous Determination of Biogenic Amines in an Iranian Traditional Dairy Product; Kashk. Food Control 2019, 101, 1–8. [Google Scholar] [CrossRef]
- Gobbi, L.; Ciano, S.; Rapa, M.; Ruggieri, R. Biogenic Amines Determination in “Plant Milks”. Beverages 2019, 5, 40. [Google Scholar] [CrossRef]
- Fikarová, K.; Machián, D.; Yıldırım, S.; Solich, P.; Horstkotte, B. Automated Centrifugation-Less Milk Deproteinization and Homogenous Liquid-Liquid Extraction of Sulfonamides for Online Liquid Chromatography. Anal. Chim. Acta 2022, 1233, 340507. [Google Scholar] [CrossRef]
- Chiavelli, L.U.R.; Godoy, A.C.; Silveira, R.D.; Santos, P.D.S.; Lopes, T.A.M.; Santos, O.O.; Visentainer, J.V. Optimization of Milk Sample Cleanup Using Response Surface Methodology. Food Anal. Methods 2020, 13, 166–175. [Google Scholar] [CrossRef]
- Arena, S.; Salzano, A.M.; Scaloni, A. Identification of Protein Markers for the Occurrence of Defrosted Material in Milk through a MALDI-TOF-MS Profiling Approach. J. Proteom. 2016, 147, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Casado, N.; Perestrelo, R.; Silva, C.L.; Sierra, I.; Câmara, J.S. Comparison of High-Throughput Microextraction Techniques, MEPS and μ-SPEed, for the Determination of Polyphenols in Baby Food by Ultrahigh Pressure Liquid Chromatography. Food Chem. 2019, 292, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Mirnaghi, F.S.; Mousavi, F.; Rocha, S.M.; Pawliszyn, J. Automated Determination of Phenolic Compounds in Wine, Berry, and Grape Samples Using 96-Blade Solid Phase Microextraction System Coupled with Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. A 2013, 1276, 12–19. [Google Scholar] [CrossRef]
- Casado, N.; Perestrelo, R.; Silva, C.L.; Sierra, I.; Câmara, J.S. An Improved and Miniaturized Analytical Strategy Based on μ-QuEChERS for Isolation of Polyphenols. A Powerful Approach for Quality Control of Baby Foods. Microchem. J. 2018, 139, 110–118. [Google Scholar] [CrossRef]
- Nalewajko-Sieliwoniuk, E.; Hryniewicka, M.; Jankowska, D.; Kojło, A.; Kamianowska, M.; Szczepański, M. Dispersive Liquid–Liquid Microextraction Coupled to Liquid Chromatography Tandem Mass Spectrometry for the Determination of Phenolic Compounds in Human Milk. Food Chem. 2020, 327, 126996. [Google Scholar] [CrossRef]
- Xiao, J. Recent Advances on the Stability of Dietary Polyphenols. Efood 2022, 3, e21. [Google Scholar] [CrossRef]
- Ferreyra, S.; Bottini, R.; Fontana, A. Temperature and Light Conditions Affect Stability of Phenolic Compounds of Stored Grape Cane Extracts. Food Chem. 2023, 405, 134718. [Google Scholar] [CrossRef]
- Gao, J.L.; Leung, K.S.Y.; Wang, Y.T.; Lai, C.M.; Li, S.P.; Hu, L.F.; Lu, G.H.; Jiang, Z.H.; Yu, Z.L. Qualitative and Quantitative Analyses of Nucleosides and Nucleobases in Ganoderma Spp. by HPLC-DAD-MS. J. Pharm. Biomed. Anal. 2007, 44, 807–811. [Google Scholar] [CrossRef]
- da Silva, T.L.; Aguiar-Oliveira, E.; Mazalli, M.R.; Kamimura, E.S.; Maldonado, R.R. Comparison between Titrimetric and Spectrophotometric Methods for Quantification of Vitamin C. Food Chem. 2017, 224, 92–96. [Google Scholar] [CrossRef]
- Matić, P.; Sabljić, M.; Jakobek, L. Validation of Spectrophotometric Methods for the Determination of Total Polyphenol and Total Flavonoid Content. J. AOAC Int. 2017, 100, 1795–1803. [Google Scholar] [CrossRef] [PubMed]
- Ertan, K.; Bayana, D.; Gökçe, Ö.; Alatossava, T.; Yılmaz, Y.; Gürsoy, O. Türkiye’de Satışa Sunulan UHT ve Pastörize İnek Sütü Örneklerinin Toplam Antioksidan Kapasitesi ve Fenolik Madde İçeriği. Akad. Gıda 2017, 15, 103–108. [Google Scholar] [CrossRef]
- Aleixandre-Tudo, J.L.; Buica, A.; Nieuwoudt, H.; Aleixandre, J.L.; Du Toit, W. Spectrophotometric Analysis of Phenolic Compounds in Grapes and Wines. J. Agric. Food Chem. 2017, 65, 4009–4026. [Google Scholar] [CrossRef]
- Da Silva, L.A.L.; Pezzini, B.R.; Soares, L. Spectrophotometric Determination of the Total Flavonoid Content in Ocimum Basilicum L. (Lamiaceae) Leaves. Pharmacogn. Mag. 2015, 11, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Garehbaghi, S.; Adam, V.; Přibyl, J.; Richtera, L.; Ashrafi, A.M. An Enzyme Cascade Biosensor Based on Multiwalled Carbon Nanotube-RuO2 Nanocomposite for Selective Amperometric Determination of Lactose in Milk Samples. Microchem. J. 2024, 204, 111138. [Google Scholar] [CrossRef]
- Motshakeri, M.; Travas-Sejdic, J.; Phillips, A.R.J.; Kilmartin, P.A. Rapid Electroanalysis of Uric Acid and Ascorbic Acid Using a Poly(3,4-Ethylenedioxythiophene)-Modified Sensor with Application to Milk. Electrochim. Acta 2018, 265, 184–193. [Google Scholar] [CrossRef]
- Carbone, M.E.; Ciriello, R.; Guerrieri, A.; Salvi, A.M. XPS Investigation on the Chemical Structure of a Very Thin, Insulating, Fi Lm Synthesized on Platinum by Electropolymerization of o-Aminophenol (OAP) in Aqueous Solution at Neutral PH. Surf. Interface Anal. 2014, 46, 1081–1085. [Google Scholar] [CrossRef]
- Hira, S.A.; Nallal, M.; Rajendran, K.; Song, S.; Park, S.; Lee, J.M.; Joo, S.H.; Park, K.H. Ultrasensitive Detection of Hydrogen Peroxide and Dopamine Using Copolymer-Grafted Metal-Organic Framework Based Electrochemical Sensor. Anal. Chim. Acta 2020, 1118, 26–35. [Google Scholar] [CrossRef]
- Motshakeri, M.; Sharma, M.; Phillips, A.R.J.; Kilmartin, P.A. Electrochemical Methods for the Analysis of Milk. J. Agric. Food Chem. 2022, 70, 2427–2449. [Google Scholar] [CrossRef] [PubMed]
- Norouzirad, R.; González-Montaña, J.R.; Martínez-Pastor, F.; Hosseini, H.; Shahrouzian, A.; Khabazkhoob, M.; Ali Malayeri, F.; Moallem Bandani, H.; Paknejad, M.; Foroughi-nia, B.; et al. Lead and Cadmium Levels in Raw Bovine Milk and Dietary Risk Assessment in Areas near Petroleum Extraction Industries. Sci. Total Environ. 2018, 635, 308–314. [Google Scholar] [CrossRef]
- Masotti, F.; Cattaneo, S.; Stuknytė, M.; Pica, V.; De Noni, I. Analytical Advances in the Determination of Calcium in Bovine Milk, Dairy Products and Milk-Based Infant Formulas. Trends Food Sci. Technol. 2020, 103, 348–360. [Google Scholar] [CrossRef]
- Oreste, E.Q.; de Souza, A.O.; Pereira, C.C.; Lisboa, M.T.; Cidade, M.J.A.; Vieira, M.A.; Cadore, S.; Ribeiro, A.S. Evaluation of Sample Preparation Methods for the Determination of Ca, Cu, Fe, K, and Na in Milk Powder Samples by ICP-OES. Food Anal. Methods 2016, 9, 777–784. [Google Scholar] [CrossRef]
- Kazi, A.M. Mineral analysis of milk through atomic absorption spectroscopy and their biological role in human life. Int. J. Adv. Chem. Eng. Biol. Sci. 2016, 2, 113–115. [Google Scholar] [CrossRef]
- Chen, L.; Li, X.; Li, Z.; Deng, L. Analysis of 17 Elements in Cow, Goat, Buffalo, Yak, and Camel Milk by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). RSC Adv. 2020, 10, 6736–6742. [Google Scholar] [CrossRef]
- Manousi, N.; Zachariadis, G.A. A Simple and Rapid Analytical Method for the Determination of Nutrient and Toxic Elements in Nut-Based Milk Alternative Beverages by ICP-OES. Food Anal. Chem. 2021, 14, 1315–1321. [Google Scholar] [CrossRef]
- Yuan, N.; Chi, X.; Ye, Q.; Liu, H.; Zheng, N. Analysis of Volatile Organic Compounds in Milk during Heat Treatment Based on E-Nose, E-Tongue and HS-SPME-GC-MS. Foods 2023, 12, 1071. [Google Scholar] [CrossRef]
- Chi, X.; Zhang, Y.; Zheng, N.; Wang, J.; Liu, H. HS-GC-IMS and HS-SPME/GC-MS Coupled with E-Nose and E-Tongue Reveal the Flavors of Raw Milk from Different Regions of China. Curr. Res. Food Sci. 2024, 8, 100673. [Google Scholar] [CrossRef]
- Huang, Y.; Cao, H.; Pan, M.; Wang, C.; Sun, B.; Ai, N. Unraveling Volatilomics Profiles of Milk Products from Diverse Regions in China. Food Res. Int. 2024, 179, 114006. [Google Scholar] [CrossRef]
- Gill, B.D.; Saldo, S.C.; McGrail, I.J.; Wood, J.E.; Indyk, H.E. Rapid Method for the Determination of Thiamine and Pantothenic Acid in Infant Formula and Milk-Based Nutritional Products by Liquid Chromatography-Tandem Mass Spectrometry. J. AOAC Int. 2020, 103, 812–817. [Google Scholar] [CrossRef] [PubMed]
- Byun, B.Y.; Mah, J.H. Occurrence of Biogenic Amines in Miso, Japanese Traditional Fermented Soybean Paste. J. Food Sci. 2012, 77, T216–T223. [Google Scholar] [CrossRef]
- Studzińska, S.; Zalesińska, E. Development of an Ultra High Performance Liquid Chromatography Method for the Separation and Determination of Nucleotides and Nucleosides in Extracts from Infant Milk Formulas and Human Milk Samples. J. Food Compos. Anal. 2023, 115, 104949. [Google Scholar] [CrossRef]
- Viñas, P.; Bravo-Bravo, M.; López-García, I.; Hernández-Córdoba, M. An Evaluation of Cis- and Trans-Retinol Contents in Juices Using Dispersive Liquid-Liquid Microextraction Coupled to Liquid Chromatography with Fluorimetric Detection. Talanta 2013, 103, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Grabarics, M.; Csernák, O.; Balogh, R.; Béni, S. Analytical Characterization of Human Milk Oligosaccharides–Potential Applications in Pharmaceutical Analysis. J. Pharm. Biomed. Anal. 2017, 146, 168–178. [Google Scholar] [CrossRef]
- Charlwood, J.; Tolson, D.; Dwek, M.; Camilleri, P. A Detailed Analysis of Neutral and Acidic Carbohydrates in Human Milk. Anal. Biochem. 1999, 273, 261–277. [Google Scholar] [CrossRef]
- Chamlagain, B.; Edelmann, M.; Kariluoto, S.; Ollilainen, V.; Piironen, V. Ultra-High Performance Liquid Chromatographic and Mass Spectrometric Analysis of Active Vitamin B12 in Cells of Propionibacterium and Fermented Cereal Matrices. Food Chem. 2015, 166, 630–638. [Google Scholar] [CrossRef]
- Angulo, M.F.; Flores, M.; Aranda, M.; Henriquez-Aedo, K. Fast and Selective Method for Biogenic Amines Determination in Wines and Beers by Ultra High-Performance Liquid Chromatography. Food Chem. 2020, 309, 125689. [Google Scholar] [CrossRef]
- Austin, S.; Bénet, T. Quantitative Determination of Non-Lactose Milk Oligosaccharides. Anal. Chim. Acta 2018, 1010, 86–96. [Google Scholar] [CrossRef]
- Aguiar, J.; Gonçalves, J.L.; Alves, V.L.; Câmara, J.S. Chemical Fingerprint of Free Polyphenols and Antioxidant Activity in Dietary Fruits and Vegetables Using a Non-Targeted Approach Based on Quechers Ultrasound-Assisted Extraction Combined with UHPLC-PDA. Antioxidants 2020, 9, 305. [Google Scholar] [CrossRef]
- Wu, R.; Chen, J.; Zhang, L.; Wang, X.; Yang, Y.; Ren, X. LC/MS-Based Metabolomics to Evaluate the Milk Composition of Human, Horse, Goat and Cow from China. Eur. Food Res. Technol. 2021, 247, 663–675. [Google Scholar] [CrossRef]
- Mechelke, M.; Herlet, J.; Benz, J.P.; Schwarz, W.H.; Zverlov, V.V.; Liebl, W.; Kornberger, P. HPAEC-PAD for Oligosaccharide Analysis—Novel Insights into Analyte Sensitivity and Response Stability. Anal. Bioanal. Chem. 2017, 409, 7169–7181. [Google Scholar] [CrossRef]
- Kunz, C.; Meyer, C.; Collado, M.C.; Geiger, L.; García-Mantrana, I.; Bertua-Ríos, B.; Martínez-Costa, C.; Borsch, C.; Rudloff, S. Influence of Gestational Age, Secretor, and Lewis Blood Group Status on the Oligosaccharide Content of Human Milk. J. Pediatr. Gastroenterol. Nutr. 2017, 64, 789–798. [Google Scholar] [CrossRef]
- Melfi, M.T.; Nardiello, D.; Cicco, N.; Candido, V.; Centonze, D. Simultaneous Determination of Water- and Fat-Soluble Vitamins, Lycopene and Beta-Carotene in Tomato Samples and Pharmaceutical Formulations: Double Injection Single Run by Reverse-Phase Liquid Chromatography with UV Detection. J. Food Compos. Anal. 2018, 70, 9–17. [Google Scholar] [CrossRef]
- Fracassetti, D.; Limbo, S.; D’Incecco, P.; Tirelli, A.; Pellegrino, L. Development of a HPLC Method for the Simultaneous Analysis of Riboflavin and Other Flavin Compounds in Liquid Milk and Milk Products. Eur. Food Res. Technol. 2018, 244, 1545–1554. [Google Scholar] [CrossRef]
- Irakli, M.N.; Samanidou, V.F.; Papadoyannis, I.N. Optimization and Validation of the Reversed-Phase High-Performance Liquid Chromatography with Fluorescence Detection Method for the Separation of Tocopherol and Tocotrienol Isomers in Cereals, Employing a Novel Sorbent Material. J. Agric. Food Chem. 2012, 60, 2076–2082. [Google Scholar] [CrossRef] [PubMed]
- Moniente, M.; Botello-Morte, L.; García-Gonzalo, D.; Pagán, R.; Ontañón, I. Analytical Strategies for the Determination of Biogenic Amines in Dairy Products. Compr. Rev. Food Sci. Food Saf. 2022, 21, 3612–3646. [Google Scholar] [CrossRef]
- Spizzirri, U.G.; Puoci, F.; Iemma, F.; Restuccia, D. Biogenic Amines Profile and Concentration in Commercial Milks for Infants and Young Children. Food Addit. Contam. Part. A 2019, 36, 337–349. [Google Scholar] [CrossRef]
- Casado, N.; Morante-Zarcero, S.; Pérez-Quintanilla, D.; Câmara, J.S.; Sierra, I. Dispersive Solid-Phase Extraction of Polyphenols from Juice and Smoothie Samples Using Hybrid Mesostructured Silica Followed by Ultra-High-Performance Liquid Chromatography-Ion-Trap Tandem Mass Spectrometry. J. Agric. Food Chem. 2019, 67, 955–967. [Google Scholar] [CrossRef]
- Gentili, A.; Caretti, F.; D’Ascenzo, G.; Marchese, S.; Perret, D.; Di Corcia, D.; Rocca, L.M. Simultaneous Determination of Water-Soluble Vitamins in Selected Food Matrices by Liquid Chromatography/Electrospray Ionization Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 2008, 22, 2029–2043. [Google Scholar] [CrossRef]
- Jones, K.S.; Meadows, S.R.; Billing, G.; Koulman, A.; Prentice, A. The Validation of an LC-MS/MS Method for the Quantification of Vitamin D Metabolites in Human Milk and Their Biological Variability in Gambian Women. J. Steroid Biochem. Mol. Biol. 2025, 245, 106633. [Google Scholar] [CrossRef]
- Shetty, S.A.; Young, M.F.; Taneja, S.; Rangiah, K. Quantification of B-Vitamins from Different Fresh Milk Samples Using Ultra-High Performance Liquid Chromatography Mass Spectrometry/Selected Reaction Monitoring Methods. J. Chromatogr. A 2020, 1609, 460452. [Google Scholar] [CrossRef] [PubMed]
- Xiao, G.; Xiao, H.; Zhu, Y.; You, Y. Determination of Nucleotides in Chinese Human Milk by High-Performance Liquid Chromatography-Tandem Mass Spectrometry. Dairy Sci. Technol. 2014, 94, 591–602. [Google Scholar] [CrossRef]
- Urpi-Sarda, M.; Ramiro-Puig, E.; Khan, N.; Ramos-Romero, S.; Llorach, R.; Castell, M.; Gonzalez-Manzano, S.; Santos-Buelga, C.; Andres-Lacueva, C. Distribution of Epicatechin Metabolites in Lymphoid Tissues and Testes of Young Rats with a Cocoa-Enriched Diet. Br. J. Nutr. 2010, 103, 1393–1397. [Google Scholar] [CrossRef]
- Rocchetti, G.; Becchi, P.P.; Salis, L.; Lucini, L. Impact of Pasture-Based Diets on the Untargeted Metabolomics Profile of Sarda Sheep Milk. Foods 2023, 12, 143. [Google Scholar] [CrossRef] [PubMed]
- López-fernández, O.; Domínguez, R.; Pateiro, M.; Munekata, P.E.S.; Rocchetti, G.; Lorenzo, J.M. Determination of Polyphenols Using Liquid Chromatography–Tandem Mass Spectrometry Technique (LC–MS/MS): A Review. Antioxidants 2020, 9, 479. [Google Scholar] [CrossRef]
- Karunanithi, D.; Radhakrishna, A.; Sivaraman, K.P.; Biju, V.M.N. Quantitative Determination of Melatonin in Milk by LC-MS/MS. J. Food Sci. Technol. 2014, 51, 805–812. [Google Scholar] [CrossRef]
- Salek, R.M.; Steinbeck, C.; Viant, M.R.; Goodacre, R.; Dunn, W.B. The Role of Reporting Standards for Metabolite Annotation and Identification in Metabolomic Studies. Gigascience 2013, 2. [Google Scholar] [CrossRef]
- Manis, C.; Scano, P.; Nudda, A.; Carta, S.; Pulina, G.; Caboni, P. LC-QTOF/MS Untargeted Metabolomics of Sheep Milk under Cocoa Husks Enriched Diet. Dairy 2021, 2, 112–121. [Google Scholar] [CrossRef]
- Riuzzi, G.; Tata, A.; Massaro, A.; Bisutti, V.; Lanza, I.; Contiero, B.; Bragolusi, M.; Miano, B.; Negro, A.; Gottardo, F.; et al. Authentication of Forage-Based Milk by Mid-Level Data Fusion of (+/−) DART-HRMS Signatures. Int. Dairy J. 2021, 112, 104859. [Google Scholar] [CrossRef]
- Venter, A.; Nefliu, M.; Cooks, R.G. Ambient Desorption Ionization Mass Spectrometry. Trends Anal. Chem. 2008, 27, 284–290. [Google Scholar] [CrossRef]
- Gross, J.H. Direct Analysis in Real Time—A Critical Review on DART-MS. Anal. Bioanal. Chem. 2014, 406, 63–80. [Google Scholar] [CrossRef] [PubMed]
- Volný, M.; Venter, A.; Smith, S.A.; Pazzi, M.; Cooks, R.G. Surface Effects and Electrochemical Cell Capacitance in Desorption Electrospray Ionization. Analyst 2008, 133, 525–531. [Google Scholar] [CrossRef]
- Bereman, M.S.; Muddiman, D.C. Detection of Attomole Amounts of Analyte by Desorption Electrospray Ionization Mass Spectrometry (DESI-MS) Determined Using Fluorescence Spectroscopy. J. Am. Soc. Mass. Spectrom. 2007, 18, 1093–1096. [Google Scholar] [CrossRef]
- Costa, A.B.; Cooks, R.G. Simulation of Atmospheric Transport and Droplet-Thin Film Collisions in Desorption Electrospray Ionization. Chem. Commun. 2007, 38, 3915–3917. [Google Scholar] [CrossRef]
- Hong, Y.; Birse, N.; Elliott, C.T.; Quinn, B.; Montgomery, H.; Wu, D. Identification of Milk from Different Animal and Plant Sources by Desorption Electrospray Ionisation High-Resolution Mass Spectrometry (DESI-MS). Sci. Food 2022, 6, 14. [Google Scholar] [CrossRef]
- Tata, A.; Massaro, A.; Riuzzi, G.; Lanza, I.; Bragolusi, M.; Negro, A.; Novelli, E.; Piro, R.; Gottardo, F.; Segato, S. Ambient Mass Spectrometry for Rapid Authentication of Milk from Alpine or Lowland Forage. Sci. Rep. 2022, 12, 7360. [Google Scholar] [CrossRef]
BCFA * | Content (mg/Three Daily Servings) |
---|---|
iso-13:0 | 5–7 |
anteiso-13:0 | 15–19 |
iso-14:0 | 18–48 |
iso-15:0 | 29–97 |
anteiso-15:0 | 81–206 |
iso-16:0 | 38–100 |
iso-17:0 | 58–123 |
anteiso-17:0 | 24–169 |
iso-18:0 | 2–20 |
Advantages | Drawbacks | Used Chromatographic Columns | Applications | Refs. | |
---|---|---|---|---|---|
GC-MS |
|
| Bis-cianopropyl-cianopropylphenyl polysiloxane length 30 m to 100 m | Saturated FAMEs from C8:0 to C22:0 and unsaturated isomers | [64,65,68] |
LC-MS |
|
|
|
| [75,77,79,80,81] |
Element | LOD ICP-OES (mg/kg) | LOQ ICP-OES (mg/kg) | Upper Limit of Range ICP-OES (mg/kg) |
---|---|---|---|
LOD ICP-MS (mg/kg) | LOQ ICP-MS (mg/kg) | Upper Limit of Range ICP-MS (mg/kg) | |
Al | 1.08 | 0.56 | 125 |
0.03 | 0.1 | 100 | |
Ca | 0.56 | 1.68 | 125 |
0.89 | 2.67 | 1000 | |
Cd | 0.18 | 0.55 | 125 |
0.0001 | 0.0003 | 2 | |
Cr | 0.06 | 0.17 | 125 |
0.001 | 0.003 | 50 | |
Cu | 0.05 | 0.15 | 125 |
0.012 | 0.036 | 200 | |
Fe | 0.14 | 0.46 | 125 |
0.093 | 0.279 | 500 | |
Mg | 0.05 | 0.14 | 125 |
0.077 | 0.231 | 1000 | |
Mn | 0.03 | 0.1 | 125 |
0.009 | 0.027 | 200 | |
Ni | 0.67 | 2.01 | 125 |
0.008 | 0.024 | 50 | |
Pb | 0.25 | 0.75 | 125 |
0.003 | 0.009 | 5 | |
Zn | 0.24 | 0.72 | 125 |
0.072 | 0.216 | 1000 |
Analytes | λmax (nm) |
---|---|
Protocatechuic acid | 259 |
(+)-Catechin | 278 |
Gentisic acid | 327 |
Vanillic acid | 261 |
Syringaldehyde | 308 |
p-Coumaric acid | 309 |
Ferulic acid | 323 |
m-Coumaric acid | 278 |
o-Coumaric acid | 276 |
Cinnamic acid | 277 |
Quercetin | 372 |
Kaempferol | 366 |
Retinol (Vitamin A) | 323 |
Vitamin B1 | 260 |
Vitamin C | 290 |
Vitamin B7 | 210 |
Vitamin B6 | 210 |
Vitamin B12 | 445 |
Qualifier Transition (m/z) | Quantifier Transition (m/z) | |
---|---|---|
Vitamin A | 269/83 | 269/93 |
Vitamin B1 | 265/144 | 265/122 |
Vitamin B3 | 124/78 | 124/80 |
Vitamin B5 | 220/184 | 220/202 |
Vitamin B6 | 170/134 | 170/152 |
Vitamin B8 | 245/123 | 245/227 |
Vitamin B9 | 442/176 | 442/295 |
Vitamin B12 | 678/359 | 678/147 |
Vitamin D2 | 572/298 | 572/298 |
Vitamin D3 | 560/298 | 560/298 |
Vitamin E | 431/83 | 431/165 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acquavia, M.A.; Villone, A.; Rubino, R.; Bianco, G. A Comprehensive Review of Milk Components: Recent Developments on Extraction and Analysis Methods. Molecules 2025, 30, 1994. https://doi.org/10.3390/molecules30091994
Acquavia MA, Villone A, Rubino R, Bianco G. A Comprehensive Review of Milk Components: Recent Developments on Extraction and Analysis Methods. Molecules. 2025; 30(9):1994. https://doi.org/10.3390/molecules30091994
Chicago/Turabian StyleAcquavia, Maria Assunta, Antonio Villone, Roberto Rubino, and Giuliana Bianco. 2025. "A Comprehensive Review of Milk Components: Recent Developments on Extraction and Analysis Methods" Molecules 30, no. 9: 1994. https://doi.org/10.3390/molecules30091994
APA StyleAcquavia, M. A., Villone, A., Rubino, R., & Bianco, G. (2025). A Comprehensive Review of Milk Components: Recent Developments on Extraction and Analysis Methods. Molecules, 30(9), 1994. https://doi.org/10.3390/molecules30091994