Solvent Regulation in Layered Zn-MOFs for C2H2/CO2 and CO2/CH4 Separation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Crystal Structure
2.2. Structure Characterization
2.3. Gas Adsorption and Separation
3. Materials and Methods
3.1. Materials and Instruments
3.2. Synthesis of Ligand
3.3. Synthesis of MOFs
3.4. Single-Crystal X-Ray Diffraction
3.5. Gas Adsorption Measurements
3.6. Isosteric Heat of Adsorption
3.7. IAST Selectivity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sokolov, S.; Seeburg, D.; Wohlrab, S.; Friedel, M.; Nitzsche, J.; Kondratenko, E.V. An Approach Using Oxidative Coupling of Methane for Converting Biogas and Acid Natural Gas into High-Calorific Fuels. Ind. Eng. Chem. Res. 2018, 58, 2454–2459. [Google Scholar] [CrossRef]
- Mao, C.; Feng, Y.; Wang, X.; Ren, G. Review on research achievements of biogas from anaerobic digestion. Renew. Sust. Energ. Rev. 2015, 45, 540–555. [Google Scholar] [CrossRef]
- Lu, Y.Y.; Zhang, H.D.; Zhou, Z.; Ge, Z.L.; Chen, C.J.; Hou, Y.D.; Ye, M.L. Current Status and Effective Suggestions for Efficient Exploitation of Coalbed Methane in China: A Review. Energy Fuels 2021, 35, 9102–9123. [Google Scholar] [CrossRef]
- Babar, M.; Bustam, M.A.; Ali, A.; Shah Maulud, A.; Shafiq, U.; Mukhtar, A.; Shah, S.N.; Maqsood, K.; Mellon, N.; Shariff, A.M. Thermodynamic data for cryogenic carbon dioxide capture from natural gas: A review. Cryogenics 2019, 102, 85–104. [Google Scholar] [CrossRef]
- Yusuf, M.; Kumar, R.; Ali Khan, M.; Ahmed, M.J.; Otero, M.; Muthu Prabhu, S.; Son, M.; Hwang, J.-H.; Hyoung Lee, W.; Jeon, B.-H. Metal-organic framework-based composites for biogas and natural gas uptake: An overview of adsorption and storage mechanisms of gaseous fuels. Chem. Eng. J. 2023, 478, 147302. [Google Scholar] [CrossRef]
- Yang, H.; Xue, L.; Yang, X.; Xu, H.; Gao, J. Advances in metal-organic frameworks for efficient separation and purification of natural gas. Chin. J. Struct. Chem. 2023, 42, 100034. [Google Scholar] [CrossRef]
- Adil, K.; Belmabkhout, Y.; Pillai, R.S.; Cadiau, A.; Bhatt, P.M.; Assen, A.H.; Maurin, G.; Eddaoudi, M. Gas/vapour separation using ultra-microporous metal–organic frameworks: Insights into the structure/separation relationship. Chem. Soc. Rev. 2017, 46, 3402–3430. [Google Scholar] [CrossRef]
- Zhu, X.; Ke, T.; Zhou, J.; Song, Y.; Xu, Q.; Zhang, Z.; Bao, Z.; Yang, Y.; Ren, Q.; Yang, Q. Vertex Strategy in Layered 2D MOFs: Simultaneous Improvement of Thermodynamics and Kinetics for Record C2H2/CO2 Separation Performance. J. Am. Chem. Soc. 2023, 145, 9254–9263. [Google Scholar] [CrossRef]
- Wang, J.W.; Fan, S.C.; Li, H.P.; Bu, X.; Xue, Y.Y.; Zhai, Q.G. De-Linker-Enabled Exceptional Volumetric Acetylene Storage Capacity and Benchmark C2H2/C2H4 and C2H2/CO2 Separations in Metal–Organic Frameworks. Angew. Chem. Int. Ed. 2023, 62, e202217839. [Google Scholar] [CrossRef]
- Liu, S.; Han, X.; Chai, Y.; Wu, G.; Li, W.; Li, J.; da Silva, I.; Manuel, P.; Cheng, Y.; Daemen, L.L.; et al. Efficient Separation of Acetylene and Carbon Dioxide in a Decorated Zeolite. Angew. Chem. Int. Ed. 2021, 60, 6526–6532. [Google Scholar] [CrossRef]
- Li, Q.; Qiu, C.; An, F.; Wang, H.; Wang, Q.; Xiao, A.; Wang, L.; Zhu, L. Effective separation of acetylene from carbon dioxide via commensurate adsorption in a microporous metal-organic framework. Sep. Purif. Technol. 2023, 324, 124557. [Google Scholar] [CrossRef]
- Jiang, Z.; Wang, W.; Xue, W.; Zhu, H.; Zheng, M.; Huang, H.; Zhong, C. Construction of π back donation active site in metal-organic framework for dense packing of C2H2 and efficient C2H2/CO2 separation. Sep. Purif. Technol. 2023, 322, 124345. [Google Scholar] [CrossRef]
- State of the Art: CCS Technologies 2023. Available online: https://www.globalccsinstitute.com/resources/publications-reports-research/state-of-the-art-ccs-technologies-2023/ (accessed on 28 August 2023).
- Xu, S.; Liu, R.-S.; Zhang, M.-Y.; Lu, A.-H. Designed synthesis of porous carbons for the separation of light hydrocarbons. Chin. J. Chem. Eng. 2022, 42, 130–150. [Google Scholar] [CrossRef]
- Fan, W.; Yuan, S.; Wang, W.; Feng, L.; Liu, X.; Zhang, X.; Wang, X.; Kang, Z.; Dai, F.; Yuan, D.; et al. Optimizing Multivariate Metal–Organic Frameworks for Efficient C2H2/CO2 Separation. J. Am. Chem. Soc. 2020, 142, 8728–8737. [Google Scholar] [CrossRef]
- Zhao, Y.-L.; Zhang, X.; Li, M.-Z.; Li, J.-R. Non-CO2 greenhouse gas separation using advanced porous materials. Chem. Soc. Rev. 2024, 53, 2056–2098. [Google Scholar] [CrossRef]
- Ebadi Amooghin, A.; Sanaeepur, H.; Ghomi, M.; Luque, R.; Garcia, H.; Chen, B. Flexible–robust MOFs/HOFs for challenging gas separations. Coordin. Chem. Rev. 2024, 505, 215660. [Google Scholar] [CrossRef]
- Khan, N.A.; Hassan, M.; Lee, H.J.; Jhung, S.H. Highly porous polyaniline- or polypyrrole-derived carbons: Preparation, characterization, and applications in adsorption. Chem. Eng. J. 2023, 474, 145472. [Google Scholar] [CrossRef]
- Wang, X.; Song, C. Developing High-Capacity Solid “Molecular Basket” Sorbents for Selective CO2 Capture and Separation. Acc. Chem. Res. 2023, 56, 3358–3368. [Google Scholar] [CrossRef]
- Boer, D.G.; Langerak, J.; Pescarmona, P.P. Zeolites as Selective Adsorbents for CO2 Separation. ACS Appl. Energy Mater. 2023, 6, 2634–2656. [Google Scholar] [CrossRef]
- Elhenawy, S.E.M.; Khraisheh, M.; AlMomani, F.; Walker, G. Metal-Organic Frameworks as a Platform for CO2 Capture and Chemical Processes: Adsorption, Membrane Separation, Catalytic-Conversion, and Electrochemical Reduction of CO2. Catalysts 2020, 10, 1293. [Google Scholar] [CrossRef]
- Goncalves, R.B.; Collados, C.C.; Malliakas, C.D.; Wang, Z.; Thommes, M.; Snurr, R.Q.; Hupp, J.T. Chemically Reversible CO2 Uptake by Dendrimer-Impregnated Metal–Organic Frameworks. Langmuir 2024, 40, 9299–9309. [Google Scholar] [CrossRef] [PubMed]
- El Yazeed, W.S.A.; Mansour, B.N.H.; Ibrahim, A.A.; Ahmed, A.I.; Salama, R.S.; El-Shinawi, H. Activated carbon encapsulated Aluminum metal–organic frameworks as an active and recyclable adsorbent for removal of different dyes and lead from aqueous solution. Inorg. Chem. Commun. 2025, 171, 113558. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, H.; Li, S.; Guo, S.; Shen, L.; Zhou, T.; Zhong, H.; Wu, L.; Meng, Q.; Zhang, Y. Oxygen-Vacancy-Enhanced Peroxidase-like Activity of Reduced Co3O4 Nanocomposites for the Colorimetric Detection of H2O2 and Glucose. Inorg. Chem. 2020, 59, 3152–3159. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Li, S.; Wu, C.; Li, T. Surface-Seal Encapsulation of a Homogeneous Catalyst in a Mesoporous Metal–Organic Framework. J. Am. Chem. Soc. 2022, 144, 685–689. [Google Scholar] [CrossRef]
- Lu, J.; Wang, S.; Ding, C.; Lv, W.; Zeng, Y.; Liu, N.; Wang, H.; Meng, Q.; Liu, Q. Metal organic frameworks derived CoSe2@N-Doped-carbon-nanorods as highly efficient electrocatalysts for oxygen evolution reaction. J. Alloys Compd. 2019, 778, 134–140. [Google Scholar] [CrossRef]
- Bonneau, M.; Lavenn, C.; Zheng, J.-J.; Legrand, A.; Ogawa, T.; Sugimoto, K.; Coudert, F.-X.; Reau, R.; Sakaki, S.; Otake, K.-I.; et al. Tunable acetylene sorption by flexible catenated metal–organic frameworks. Nat. Chem. 2022, 14, 816–822. [Google Scholar] [CrossRef]
- Wang, X.; Xu, M.; Fan, W.; Sun, D. Fe-Based Metal-Organic Frameworks: From Various Synthesis, Diverse Structures to Multifunctional Applications. Chin. J. Chem. 2023, 41, 3772–3791. [Google Scholar] [CrossRef]
- Meng, Q.; Xin, X.; Zhang, L.; Dai, F.; Wang, R.; Sun, D. A multifunctional Eu MOF as a fluorescent pH sensor and exhibiting highly solvent-dependent adsorption and degradation of rhodamine B. J. Mater. Chem. A 2015, 3, 24016–24021. [Google Scholar] [CrossRef]
- Gao, X.; Yan, W.-H.; Hu, B.-Y.; Huang, Y.-X.; Zheng, S.-M. Porous Metal–Organic Frameworks for Light Hydrocarbon Separation. Molecules 2023, 28, 6337. [Google Scholar] [CrossRef]
- Wang, G.D.; Krishna, R.; Li, Y.Z.; Shi, W.J.; Hou, L.; Wang, Y.Y.; Zhu, Z. Boosting Ethane/Ethylene Separation by MOFs through the Amino-Functionalization of Pores. Angew. Chem. Int. Ed. 2022, 61, e202213015. [Google Scholar] [CrossRef]
- Knebel, A.; Caro, J. Metal–organic frameworks and covalent organic frameworks as disruptive membrane materials for energy-efficient gas separation. Nat. Nanotechnol. 2022, 17, 911–923. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, H.; Li, Y.; Yang, X.; Gao, F.; Wang, X.; Kang, Z.; Fan, W.; Sun, D. Metal-organic frameworks for C2H2/CO2 separation: Recent development. Coordin. Chem. Rev. 2023, 482, 215093. [Google Scholar] [CrossRef]
- Zhang, Q.; Han, G.-N.; Lian, X.; Yang, S.-Q.; Hu, T.-L. Customizing Pore System in a Microporous Metal–Organic Framework for Efficient C2H2 Separation from CO2 and C2H4. Molecules 2022, 27, 5929. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, J.; Wang, H.; Zhou, M.; Ke, G.; Zhang, L.; Wu, J.; Gao, Z.; Lu, D. A comprehensive transformer-based approach for high-accuracy gas adsorption predictions in metal-organic frameworks. Nat. Commun. 2024, 15, 1904. [Google Scholar] [CrossRef]
- Li, Y.; Bai, Y.; Wang, Z.; Gong, Q.; Li, M.; Bo, Y.; Xu, H.; Jiang, G.; Chi, K. Exquisitely Constructing a Robust MOF with Dual Pore Sizes for Efficient CO2 Capture. Molecules 2023, 28, 6276. [Google Scholar] [CrossRef]
- Ma, M.; Zhou, A.; Hong, T.; Jia, X.; Liu, M. Tailored porous structure and CO2 adsorption capacity of Mg-MOF-74 via solvent polarity regulation. Chem. Eng. J. 2023, 476, 146845. [Google Scholar] [CrossRef]
- Leszczyński, M.K.; Justyniak, I.; Gontarczyk, K.; Lewiński, J. Solvent Templating and Structural Dynamics of Fluorinated 2D Cu-Carboxylate MOFs Derived from the Diffusion-Controlled Process. Inorg. Chem. 2020, 59, 4389–4396. [Google Scholar] [CrossRef]
- Heo, C.Y.; Díaz-Ramírez, M.L.; Park, S.H.; Kang, M.; Hong, C.S.; Jeong, N.C. Solvent-Driven Dynamics: Crafting Tailored Transformations of Cu(II)-Based MOFs. ACS Appl. Mater. Interfaces 2024, 16, 9068–9077. [Google Scholar] [CrossRef]
- Han, Y.; Jiang, Y.; Hu, J.; Wang, L.; Zhang, Y. Efficient C2H2/CO2 and C2H2/C2H2 separations in a novel fluorinated metal–organic framework. Sep. Purif. Technol. 2024, 332, 125777. [Google Scholar] [CrossRef]
- Sun, W.; Jin, Y.; Wu, Y.; Lou, W.; Yuan, Y.; Duttwyler, S.; Wang, L.; Zhang, Y. A new boron cluster anion pillared metal organic framework with ligand inclusion and its selective acetylene capture properties. Inorg. Chem. Front. 2022, 9, 5140–5147. [Google Scholar] [CrossRef]
- Xue, Y.Y.; Bai, X.Y.; Zhang, J.; Wang, Y.; Li, S.N.; Jiang, Y.C.; Hu, M.C.; Zhai, Q.G. Precise Pore Space Partitions Combined with High-Density Hydrogen-Bonding Acceptors within Metal–Organic Frameworks for Highly Efficient Acetylene Storage and Separation. Angew. Chem. Int. Ed. 2021, 60, 10122–10128. [Google Scholar] [CrossRef] [PubMed]
- Jia, T.; Gu, Y.; Li, F. Progress and potential of metal-organic frameworks (MOFs) for gas storage and separation: A review. J. Environ. Chem. Eng. 2022, 10, 108300. [Google Scholar] [CrossRef]
- Li, H.; Liu, C.; Chen, C.; Di, Z.; Yuan, D.; Pang, J.; Wei, W.; Wu, M.; Hong, M. An Unprecedented Pillar-Cage Fluorinated Hybrid Porous Framework with Highly Efficient Acetylene Storage and Separation. Angew. Chem. Int. Ed. 2021, 60, 7547–7552. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Shi, K.; Zhai, L.; Wang, Z.; Wang, H.; Zhao, Y.; Wang, J. Constructing multiple sites of metal-organic frameworks for efficient adsorption and selective separation of CO2. Sep. Purif. Technol. 2023, 307, 122725. [Google Scholar] [CrossRef]
- Lv, D.; Shi, R.; Chen, Y.; Chen, Y.; Wu, H.; Zhou, X.; Xi, H.; Li, Z.; Xia, Q. Selective Adsorptive Separation of CO2/CH4 and CO2/N2 by a Water Resistant Zirconium–Porphyrin Metal–Organic Framework. Ind. Eng. Chem. Res. 2018, 57, 12215–12224. [Google Scholar] [CrossRef]
- Tu, S.; Yu, L.; Liu, J.; Lin, D.; Wu, Y.; Li, Z.; Wang, H.; Xia, Q. Efficient CO2 Capture under Humid Conditions on a Novel Amide-Functionalized Fe-soc Metal–Organic Framework. ACS Appl. Mater. Interfaces 2023, 15, 12240–12247. [Google Scholar] [CrossRef]
- Angeli, G.K.; Sartsidou, C.; Vlachaki, S.; Spanopoulos, I.; Tsangarakis, C.; Kourtellaris, A.; Klontzas, E.; Froudakis, G.E.; Tasiopoulos, A.; Trikalitis, P.N. Reticular Chemistry and the Discovery of a New Family of Rare Earth (4, 8)-Connected Metal-Organic Frameworks with csq Topology Based on RE4(μ3-O)2(COO)8 Clusters. ACS Appl. Mater. Interfaces 2017, 9, 44560–44566. [Google Scholar] [CrossRef]
Compound | UPC-96 | UPC-97 |
---|---|---|
CCDC | 2413283 | 2413284 |
Formula | C22H22NO6Zn | C88H84N4O20Zn2 |
Formula weight | 461.77 | 1648.33 |
Temperature/K | 294.5 (7) | 295.0 (5) |
Crystal system | monoclinic | triclinic |
Space group | P21/c | P−1 |
a/Å | 13.0452 (5) | 14.6040 (4) |
b/Å | 9.7574 (4) | 16.7263 (5) |
c/Å | 17.2190 (7) | 16.9432 (5) |
α/° | 90 | 92.660 (3) |
β/° | 90.930 (4) | 92.832 (2) |
γ/° | 90 | 104.788 (3) |
Volume/Å3 | 2191.46 (16) | 3989.3 (2) |
Z | 4 | 2 |
ρ g/cm3 | 1.400 | 1.372 |
μ/mm−1 | 1.876 | 1.370 |
F(000) | 956.0 | 1720.0 |
2θ range for data collection | 6.776 to 141.326 | 7.184 to 133.196 |
Index ranges | −14 ≤ h ≤ 15 | −9 ≤ h ≤ 17 |
−11 ≤ k ≤ 9 | −19 ≤ k ≤ 19 | |
−21 ≤ l ≤ 18 | −20 ≤ l ≤ 19 | |
Reflections collected | 8076 | 25199 |
Rint | 0.0649 | 0.1916 |
Data/restraints/parameters | 4080/511/278 | 13641/0/1047 |
Goodness-of-fit on F2 | 1.609 | 1.310 |
Final R indexes [I ≥2σ (I)] | R1 = 0.1342 | R1 = 0.1340 |
wR2 = 0.3930 | wR2 = 0.3055 | |
Final R indexes [all data] | R1 = 0.1507 | R1 = 0.1779 |
wR2 = 0.4105 | wR2 = 0.3339 | |
Largest diff. peak/hole/eÅ−3 | 1.96/−1.33 | 1.43/−1.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Chang, X.; Qin, C.; Wang, X.; Xu, M.; Fan, W.; Meng, Q.; Sun, D. Solvent Regulation in Layered Zn-MOFs for C2H2/CO2 and CO2/CH4 Separation. Molecules 2025, 30, 1171. https://doi.org/10.3390/molecules30051171
Zhao X, Chang X, Qin C, Wang X, Xu M, Fan W, Meng Q, Sun D. Solvent Regulation in Layered Zn-MOFs for C2H2/CO2 and CO2/CH4 Separation. Molecules. 2025; 30(5):1171. https://doi.org/10.3390/molecules30051171
Chicago/Turabian StyleZhao, Xingyao, Xiaotong Chang, Caixian Qin, Xiaokang Wang, Mingming Xu, Weidong Fan, Qingguo Meng, and Daofeng Sun. 2025. "Solvent Regulation in Layered Zn-MOFs for C2H2/CO2 and CO2/CH4 Separation" Molecules 30, no. 5: 1171. https://doi.org/10.3390/molecules30051171
APA StyleZhao, X., Chang, X., Qin, C., Wang, X., Xu, M., Fan, W., Meng, Q., & Sun, D. (2025). Solvent Regulation in Layered Zn-MOFs for C2H2/CO2 and CO2/CH4 Separation. Molecules, 30(5), 1171. https://doi.org/10.3390/molecules30051171