Boron-Doped BiOBr Nanosheets with Enhanced Photocatalytic Activity for Sulfanilamide and Dyes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Microstructure and Chemical Composition
2.2. Photocatalytic Performance
2.3. Photocatalytic Measurements
2.4. Degradation Dye Test
2.5. Charge Transfer Mechanism
2.6. Free Radical Species Capture and Recycling Experiment
2.7. Photocatalytic Mechanism
3. Materials and Methods
3.1. Materials
3.2. Preparation of BiOBr Nanosheets
3.3. Preparation of B-Doped BiOBr Nanosheets
3.4. Characterizations
3.5. Photoelectrochemical Test
3.6. Photocatalytic Experiments
3.7. Determination of Point of Zero Charge
3.8. DFT (Density Functional Theory) Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, D.; Xu, Z.; Zhao, H.; Liu, T.; An, C.; Liu, J. Semimetal Bi/carbon fibers derived from electrospinning polyacrylonitrile and its visible light photocatalytic performance. J. Mater. Sci. 2020, 55, 10765–10772. [Google Scholar] [CrossRef]
- Bi, X.; Huang, Y.; Liu, X.; Yao, N.; Zhao, P.; Meng, X.; Astruc, D. Oxidative degradation of aqueous organic contaminants over shape-tunable MnO2 nanomaterials via peroxymonosulfate activation. Sep. Purif. Technol. 2021, 275, 119141. [Google Scholar] [CrossRef]
- Zhou, Q.; Wu, Y.; Chen, H.; Zhu, G.; Zhang, Y.; Liang, D.; Chen, G.; Tang, S. Preparation of Quercus mongolica leaf-derived porous carbon with a large specific surface area for highly effective removal of dye and antibiotic from water. Arab. J. Chem. 2022, 15, 104031. [Google Scholar] [CrossRef]
- Zhang, J.; Jin, Y.; Zhang, Y.; Zhang, J.; Liu, Z.; Cai, Y.; Zhang, S.; Fang, M.; Kong, M.; Tan, X. The effect of internal stress on the photocatalytic performance of the Zn doped BiOBr photocatalyst for tetracycline degradation. J. Taiwan Inst. Chem. Eng. 2023, 143, 104710. [Google Scholar] [CrossRef]
- Ahmed, S.; Aktar, S.; Zaman, S.; Jahan, R.A.; Bari, M.L. Use of natural bio-sorbent in removing dye, heavy metal and antibiotic-resistant bacteria from industrial wastewater. Appl. Water Sci. 2020, 10, 107. [Google Scholar] [CrossRef]
- Tichapondwa, S.M.; Newman, J.P.; Kubheka, O. Effect of TiO2 phase on the photocatalytic degradation of methylene blue dye. Phys. Chem. Earth Parts A/B/C 2020, 118–119, 102900. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, Y.; Wu, Z.; Wang, T.; Qiu, J.; Song, Z.; Li, Y. Enhancement of green upconversion luminescence of Yb3+/Tb3+ co-doped BiOBr nanosheets and its potential applications in photocatalysis. J. Solid State Chem. 2022, 308, 122897. [Google Scholar] [CrossRef]
- Liu, D.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. Surface Engineering of g-C3N4 by Stacked BiOBr Sheets Rich in Oxygen Vacancies for Boosting Photocatalytic Performance. Angew. Chem. Int. Ed. 2020, 59, 4519–4524. [Google Scholar] [CrossRef]
- Lv, J.; Dai, K.; Zhang, J.; Liu, Q.; Liang, C.; Zhu, G. Facile constructing novel 2D porous g-C3N4/BiOBr hybrid with enhanced visible-light-driven photocatalytic activity. Sep. Purif. Technol. 2017, 178, 6–17. [Google Scholar] [CrossRef]
- Gao, Z.; Yao, B.; Xu, T. Comparative study on photocatalytic material activity of BiOBr flower microspheres and sheet structure. Environ. Technol. 2019, 42, 1461–1471. [Google Scholar] [CrossRef]
- Shen, M.; Cai, X.; Cao, B.; Cao, J.; Xu, Y. Boron-doped ultrathin BiOBr nanosheet promotion for photocatalytic reduction of CO2 into CO. J. Alloys Compd. 2024, 981, 173727. [Google Scholar] [CrossRef]
- Wang, Z.; Chu, Z.; Dong, C.; Wang, Z.; Yao, S.; Gao, H.; Liu, Z.; Liu, Y.; Yang, B.; Zhang, H. Ultrathin BiOX (X = Cl, Br, I) nanosheets with exposed {001} facets for photocatalysis. ACS Appl. Nano Mater. 2020, 3, 1981–1991. [Google Scholar] [CrossRef]
- Li, L.; Liu, G.; Cao, S.; Dong, J.; Wang, B.; She, Y.; Xia, J.; Li, H. Targeting active sites nickel-porphyrin over BiOBr nanosheets with excellent charge separation for accelerated photoreduction reactions. Appl. Catal. B Environ. Energy 2025, 365, 124904. [Google Scholar] [CrossRef]
- Zhang, J.; Han, Q.; Zhu, J.; Wang, X. A facile and rapid room-temperature route to hierarchical bismuth oxyhalide solid solutions with composition-dependent photocatalytic activity. J. Colloid Interface Sci. 2016, 477, 25–33. [Google Scholar] [CrossRef]
- Shao, L.; Liu, Y.; Wang, L.; Xia, X.; Shen, X. Electronic structure tailoring of BiOBr (0 1 0) nanosheets by cobalt doping for enhanced visible-light photocatalytic activity. Appl. Surf. Sci. 2020, 502, 143895. [Google Scholar] [CrossRef]
- Arumugam, M.; Koutavarapu, R.; Seralathan, K.-K.; Praserthdam, S.; Praserthdam, P. Noble metals (Pd, Ag, Pt, and Au) doped bismuth oxybromide photocatalysts for improved visible light-driven catalytic activity for the degradation of phenol. Chemosphere 2023, 324, 138368. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, Z.; Liu, D.; Wang, W.; Zhao, Z.; Cui, F.; Li, G. Oxygen vacancy-rich ultrathin sulfur-doped bismuth oxybromide nanosheet as a highly efficient visible-light responsive photocatalyst for environmental remediation. Chem. Eng. J. 2019, 360, 838–847. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Chen, R.; Liu, Q.; Liu, J.; Yu, J.; Liu, P.; Duan, J.; Wang, J. Surface morphology properties and antifouling activity of Bi2WO6/boron-grafted polyurethane composite coatings realized via multiple synergy. J. Colloid Interface Sci. 2022, 626, 815–823. [Google Scholar] [CrossRef]
- Ruan, Q.; Luo, W.; Xie, J.; Wang, Y.; Liu, X.; Bai, Z.; Carmalt, C.J.; Tang, J. A nanojunction polymer photoelectrode for efficient charge transport and separation. Angew. Chem. Int. Ed. 2017, 56, 8221–8225. [Google Scholar] [CrossRef]
- Fu, Y.; Chang, C.; Chen, P.; Chu, X.; Zhu, L. Enhanced photocatalytic performance of boron doped Bi2WO6 nanosheets under simulated solar light irradiation. J. Hazard. Mater. 2013, 254–255, 185–192. [Google Scholar] [CrossRef]
- Wu, D.; Yue, S.; Wang, W.; An, T.; Li, G.; Yip, H.Y.; Zhao, H.; Wong, P.K. Boron doped BiOBr nanosheets with enhanced photocatalytic inactivation of Escherichia coli. Appl. Catal. B Environ. 2016, 192, 35–45. [Google Scholar] [CrossRef]
- Yuan, C.; Bao, H.; Ren, Y. Preparation and Photocatalytic Activity of BiOBr with High Exposure {102} Crystalline Surface. IOP Conf. Ser. Mater. Sci. Eng. 2019, 585, 012040. [Google Scholar] [CrossRef]
- Yu, C.; Wu, Z.; Liu, R.; Dionysiou, D.D.; Yang, K.; Wang, C.; Liu, H. Novel fluorinated Bi2MoO6 nanocrystals for efficient photocatalytic removal of water organic pollutants under different light source illumination. Appl. Catal. B Environ. 2017, 209, 1–11. [Google Scholar] [CrossRef]
- Medrano, V.G.B.; Celis, V.N.; Giraldo, R.I. Systematic analysis of the nitrogen adsorption-desorption isotherms recorded for a series of microporous–mesoporous amorphous aluminosilicates using classical methods. Mater. Sci. 2022; preprint. [Google Scholar]
- Wang, C.-Y.; Zeng, Q.; Zhu, G. Novel S-doped BiOBr nanosheets for the enhanced photocatalytic degradation of bisphenol A under visible light irradiation. Chemosphere 2021, 268, 647–658. [Google Scholar] [CrossRef]
- Xianyi, L.; Zhang, D.; Wang, J. Preparation, Structural, and Photocatalytic Properties of Boron-Doped Bismuth Oxybromide Nanoplatelets Combined with a First-Principle Study. Russ. J. Phys. Chem. A 2020, 94, 647–658. [Google Scholar] [CrossRef]
- Chen, X.; Chen, C.; Zang, J. Bi2MoO6 nanoflower-like microsphere photocatalyst modified by boron doped carbon quantum dots: Improving the photocatalytic degradation performance of BPA in all directions. J. Alloys Compd. 2023, 962, 171167. [Google Scholar] [CrossRef]
- Sin, J.-C.; Lim, C.-A.; Lam, S.-M.; Zeng, H.; Lin, H.; Li, H.; Mohamed, A.R. Fabrication of novel visible light-driven Nd-doped BiOBr nanosheets with enhanced photocatalytic performance for palm oil mill effluent degradation and Escherichia coli inactivation. J. Phys. Chem. Solids 2020, 140, 109382. [Google Scholar] [CrossRef]
- Yin, S.; Fan, W.; Di, J.; Wu, T.; Yan, J.; He, M.; Xia, J.; Li, H. La3+ doped BiOBr microsphere with enhanced visible light photocatalytic activity. Colloids Surf. A Physicochem. Eng. Asp. 2017, 513, 160–167. [Google Scholar] [CrossRef]
- Wu, J.; Xie, Y.; Ling, Y.; Si, J.; Li, X.; Wang, J.; Ye, H.; Zhao, J.; Li, S.; Zhao, Q.; et al. One-step synthesis and Gd3+ decoration of BiOBr microspheres consisting of nanosheets toward improving photocatalytic reduction of CO2 into hydrocarbon fuel. Chem. Eng. J. 2020, 400, 125944. [Google Scholar] [CrossRef]
- Sheng, H.; Wang, W.; Dai, R.; Ning, J.; Zhang, L.; Wu, Q.; Zhang, F.; Yan, J.; Zhang, W. New Insights into Cd2+/Fe3+ Co-Doped BiOBr for Enhancing the Photocatalysis Efficiency of Dye Decomposition under Visible-Light. Nanomaterials 2021, 11, 423. [Google Scholar] [CrossRef] [PubMed]
- López-Velázquez, K.; Guzmán-Mar, J.L.; Hernández-Ramírez, A.; González-Juárez, E.; Villanueva-Rodríguez, M. Synthesis of Fe–BiOBr–N by microwave-assisted solvothermal method: Characterization and evaluation of its photocatalytic properties. Mater. Sci. Semicond. Process. 2021, 123, 105499. [Google Scholar] [CrossRef]
- Mahdi, M.M.; Esmai, S. A Review of BiOBr-Based Photocatalysts for Wastewater Treatment. Int. J. Heat Technol. 2024, 42, 219–237. [Google Scholar] [CrossRef]
- Gembo, R.O.; Aoyi, O.; Majoni, S.; Etale, A.; Odisitse, S.; King’ondu, C.K. Synthesis of bismuth oxyhalide (BiOBr zI (1-z)) solid solutions for photodegradation of methylene blue dye. AAS Open Res. 2022, 4, 43. [Google Scholar] [CrossRef]
- Vadivel, S.; Keerthi, P.; Vanitha, M.; Muthukrishnaraj, A.; Balasubramanian, N. Solvothermal synthesis of Sm-doped BiOBr/RGO composite as an efficient photocatalytic material for methyl orange degradation. Mater. Lett. 2014, 128, 287–290. [Google Scholar] [CrossRef]
- Yu, Y.; Kuang, X.; Jin, X.; Chen, F.; Min, J.; Duan, H.; Li, J.; Wu, Z.; Cao, B. Synergistic effect of oxygen vacancies and doped sulfur over BiOBr for efficient visible photocatalytic removal of dyes. Appl. Surf. Sci. 2024, 649, 159169. [Google Scholar] [CrossRef]
- Parida, V.K.; Dhakad, R.; Chowdhury, S.; Gupta, A.K. Facile synthesis of a 2D/3D Z-scheme Cu-g-C3N4/BiOBr heterojunction for enhanced photocatalytic degradation of ciprofloxacin under visible light irradiation. J. Environ. Chem. Eng. 2023, 11, 111569. [Google Scholar] [CrossRef]
- Liu, T.; Wang, Y. Synergistic effect of iodine doping and platinum loading on boosting the visible light photocatalytic activity of BiOBr. Inorg. Chem. Commun. 2020, 114, 107846. [Google Scholar] [CrossRef]
- Duresa, L.W.; Kuo, D.-H.; Bekena, F.T.; Kebede, W.L. Simple room temperature synthesis of oxygen vacancy-rich and In-doped BiOBr nanosheet and its highly enhanced photocatalytic activity under visible-light irradiation. J. Phys. Chem. Solids 2021, 156, 110132. [Google Scholar] [CrossRef]
- Jiang, G.; Li, X.; Wei, Z.; Jiang, T.; Du, X.; Chen, W. Growth of N-doped BiOBr nanosheets on carbon fibers for photocatalytic degradation of organic pollutants under visible light irradiation. Powder Technol. 2014, 260, 84–89. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, F.; Wei, D.; Cai, Z.; Yu, C.; Wang, X. Facile synthesis of BiOCl/BiOBr heterojunctions via anion exchange reactions. J. Phys. Chem. Solids 2024, 186, 111793. [Google Scholar] [CrossRef]
- Wu, Y.; Ji, H.; Liu, Q.; Sun, Z.; Li, P.; Ding, P.; Guo, M.; Yi, X.; Xu, W.; Wang, C.-C. Visible light photocatalytic degradation of sulfanilamide enhanced by Mo doping of BiOBr nanoflowers. J. Hazard. Mater. 2022, 424, 127563. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Zeng, X.; Feng, F.; Li, Y.; Gong, X. Novel recyclable composite BiOBr/chitin-Fe3O4 with enhanced visible-light photocatalytic degradation of the antibacterial agent ciprofloxacin. Desalination Water Treat. 2023, 283, 196–208. [Google Scholar] [CrossRef]
- Zhang, J.; Lv, J.; Dai, K.; Liang, C.; Liu, Q. One-step growth of nanosheet-assembled BiOCl/BiOBr microspheres for highly efficient visible photocatalytic performance. Appl. Surf. Sci. 2018, 430, 639–646. [Google Scholar] [CrossRef]
- Qi, S.; Ma, N.; Zhang, R.; Zhang, Y.; Liu, X.; Xu, H. Preparation and photocatalytic properties of Zn0. 5Cd0. 5S/BiOBr heterojunction. Chem. Phys. Lett. 2022, 791, 139381. [Google Scholar] [CrossRef]
- Phuruangrat, A.; Rabiabdee, K.; Thongtem, S.; Thongtem, T. Synthesis and characterization of ag/biobr nanocomposites for photodegradation of methylene blue as model dye. Dig. J. Nanomater. Biostruct. (DJNB) 2019, 14, 351–356. [Google Scholar]
- Guo, Y.; Wen, H.; Zhong, T.; Huang, H.; Lin, Z. Core-shell-like BiOBr@ BiOBr homojunction for enhanced photocatalysis. Colloids Surf. A Physicochem. Eng. Asp. 2022, 644, 128829. [Google Scholar] [CrossRef]
- Zhang, M.; Duo, F.; Lan, J.; Li, L.; Zhou, J.; Chu, L.; Wang, C. Decoration engineering induced MoS2QDs/BiOBr heterostructures for significantly enhancing visible light photocatalytic capability for the organic dyes and antibiotics removal. Appl. Surf. Sci. 2022, 583, 152544. [Google Scholar] [CrossRef]
Photocatalysts | Light Source | Catalyst Dosage | Removal | Active Species | Ref. |
---|---|---|---|---|---|
1B-AB | 200 W cold light xenon lamp | 100 mg | 6 h, 76%10 ppm SN 2 h, 92%20 ppm MG 2 h, 80%20 ppm MO | ·O2−·OH | This work |
3% Mo-BiOBr | 300 W xenon lamp | 300 mg | 2 h, 80%10 ppm SN | ·O2−·OH | [42] |
BiOBr/chitin -Fe3O4 | 300 W xenon lamp | 200 mg | 3 h, 79%10 ppm SN | ·O2−·OH | [43] |
40% BiOCl/BiOBr | UV LED light | 1000 mg | 6 h, 93%10 ppm MB | h+·O2− | [44] |
70-ZCS/BiOBr | 500 W xenon lamp | 100 mg | 4 h, 99%20 ppm MB | ·O2−·OH | [45] |
10% Ag/BiOBr | Visible light | 100 mg | 5 h, 95%3 ppm MB | ·O2−·OH | [46] |
1:2 NS@MP | 300 W xenon lamp | 100 mg | 5 h, 65%20 ppm BPA | ·O2− | [47] |
MoS2 QDs/BiOBr | 500 W xenon lamp | 40 mg | 1 h, 99%20 ppm RhB 6 h, 87%10 ppm CIP | h+·O2− | [48] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Z.; Wang, Y.; Shao, Z.; Xie, L.; Zhang, L.; Xu, K.; Chai, X. Boron-Doped BiOBr Nanosheets with Enhanced Photocatalytic Activity for Sulfanilamide and Dyes. Molecules 2025, 30, 1735. https://doi.org/10.3390/molecules30081735
Wei Z, Wang Y, Shao Z, Xie L, Zhang L, Xu K, Chai X. Boron-Doped BiOBr Nanosheets with Enhanced Photocatalytic Activity for Sulfanilamide and Dyes. Molecules. 2025; 30(8):1735. https://doi.org/10.3390/molecules30081735
Chicago/Turabian StyleWei, Zimu, Ying Wang, Zonghan Shao, Linkun Xie, Lianpeng Zhang, Kaimeng Xu, and Xijuan Chai. 2025. "Boron-Doped BiOBr Nanosheets with Enhanced Photocatalytic Activity for Sulfanilamide and Dyes" Molecules 30, no. 8: 1735. https://doi.org/10.3390/molecules30081735
APA StyleWei, Z., Wang, Y., Shao, Z., Xie, L., Zhang, L., Xu, K., & Chai, X. (2025). Boron-Doped BiOBr Nanosheets with Enhanced Photocatalytic Activity for Sulfanilamide and Dyes. Molecules, 30(8), 1735. https://doi.org/10.3390/molecules30081735