Polymeric Desensitizer Fluororubber: A Good Binder to Improve the Thermal Stability and Mechanical Properties of 3,4-Dinitrofurazanfuroxan
Abstract
:1. Introduction
2. Simulation Details
2.1. Model Construction
2.2. MD Simulation
2.3. Materials and DSC Testing
3. Results and Discussion
3.1. Judgment of System Equilibrium and Equilibrium Structure
3.2. Thermal Stability
3.2.1. Trigger Bond Length
3.2.2. Cohesive Energy Density
3.3. Thermal Properties
3.4. Mechanical Properties
4. Conclusions
- (1)
- Both theoretical and experimental studies indicated that the addition of F2603 makes the most probable bond length (Lprob), the average bond length (Lave), and the maximum bond length (Lmax) of the DNTF (1 1 1) system become shorter and the CED become larger. Meantime, both the exothermic decomposition peak temperature and the activation energy of DNTF increased. Therefore, polymeric passivator F2603 contributes significantly to improving the thermal stability of DNTF.
- (2)
- As the temperature increases, the modulus of both systems decreases, which means the hardness and the brittleness decreases, while the elasticity and the plasticity increase. The DNTF (1 1 1)/F2603 composite system was found to have better ductility, toughness, and impact resistance than the DNTF (1 1 1) system based on the mechanical properties’ calculations, which indicates that F2603 can greatly improve the mechanical properties of DNTF (1 1 1).
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, C.M.; Bai, L.F.; Wei, L.Y.; Liu, R.Q.; Huang, S.L.; Zhang, C.; Tu, X.Q.; Yang, Z.J.; Gong, F.Y.; Zeng, C.C.; et al. Zirconium tungstate reinforced energetic composites with inhibited thermal expansion and reduced thermal stress. Chem. Eng. J. 2023, 461, 141986. [Google Scholar]
- Lin, C.; Huang, B.; Gong, F.; Yang, Z.; Liu, J.; Zhang, J.; Zeng, C.; Li, Y.; Li, J.; Guo, S. Core@ double-shell structured energetic composites with reduced sensitivity and enhanced mechanical properties. ACS Appl. Mater. Interfaces. 2019, 11, 30341–30351. [Google Scholar]
- Deng, S.C.; Luo, Y.J.; Qu, Y.Z.; Yang, X.R.; Yang, Z.J.; Zhao, X.; Liu, Y.D.; Nie, F.D. Improving the mechanical performances of polymer bonded explosives using monomer tuned polythioureas. Energ. Mater. Front. 2023, 4, 85–92. [Google Scholar]
- Anderson, E.K.; Chiquete, C.; Jackson, S.I.; Chicas, R.I.; Short, M. The comparative effect of HMX content on the detonation performance characterization of PBX 9012 and PBX 9501 high explosives. Combust. Flame 2021, 230, 111415. [Google Scholar] [CrossRef]
- Chen, F.; Wang, Y.; Song, S.W.; Tan, L.L.; Wei, M.Y.; Huang, C.; Chen, J.B.; Chen, S.T.; Huang, M.; Zhang, Q.H. Promising energetic melt-castable material with balanced properties. ACS Appl. Mater. Interfaces 2023, 15, 24408–24415. [Google Scholar] [PubMed]
- Liang, T.X.; Zhang, Y.K.; Ma, Z.L.; Guo, M.L.; Xiao, Z.L.; Zhang, J.X.; Dong, M.Y.; Fan, J.C.; Guo, J.C.; Liu, C.T. Energy characteristics and mechanical properties of cyclotrimethylenetrinitramine (RDX)-based insensitive high-energy propellant. J. Mater. Res. Technol. 2020, 9, 15313–15323. [Google Scholar]
- Kalsi, A.; Celin, S.M.; Sharma, S.; Sahai, S.; Sharma, J.G. Bioaugmentation for remediation of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) contaminated soil using a clay based bioformulation. J. Hazard. Mater. 2021, 420, 126575. [Google Scholar]
- Zhang, J.; Guo, W. Roles of Small Molecules in the Stability and Sensitivity of CL-20-Based Host–Guest Explosives under Electric Fields: A Reactive Molecular Dynamics Study. J. Phys. Chem. A 2022, 126, 286–295. [Google Scholar]
- Huang, J.; Peng, R.; Jin, B. Premature thermal decomposition behavior of 3,4-dinitrofurazanfuroxan with certain types of nitrogen-rich compounds. Def. Technol. 2023, 26, 102–110. [Google Scholar] [CrossRef]
- Huang, J.; Jin, B.; Peng, R.F.; Zhang, J.H.; Luo, L.Q.; Peng, H. Accelerated isothermal decomposition behavior derived from the interaction of 3,4-dinitrofurazanfuroxan (DNTF) with amino nitrogen-rich compounds. Thermochim. Acta 2023, 724, 179516. [Google Scholar]
- Yuan, J.M.; Qin, Y.; Liu, Y.; Sun, H.; Huang, R.S.; Wang, J.; Han, T.; Wu, R.Q. Friction Sensitivity Test Experiment and Desensitization Mechanism of Nitrocellulose-Coated DNTF Explosive Crystals. Coatings 2023, 13, 1721. [Google Scholar] [CrossRef]
- Zhang, J.R.; Bi, F.Q.; Zhai, L.J.; Huo, H.; Yang, Z.; Wang, B.Z. A comparative study of the structures, thermal stabilities and energetic performances of two energetic regioisomers: 3(4)-(4-aminofurazan-3-yl)-4(3)-(4-nitrofurazan-3-yl) furoxan. RSC Adv. 2020, 10, 31800–31807. [Google Scholar] [CrossRef]
- Song, X.Z.; Xing, X.L.; Zhao, S.X.; Ju, X.H. Molecular dynamics simulation on TKX-50/fluoropolymer. Modell. Simul. Mater. Sci. Eng. 2019, 28, 015004. [Google Scholar]
- Yan, F.Y.H.; Zhu, P.; Zhao, S.F.; Shi, J.Y.; Mu, Y.F.; Xia, H.M.; Shen, R.Q. Microfluidic strategy for coating and modification of polymer-bonded nano-HNS explosives. Chem. Eng. J. 2022, 428, 131096. [Google Scholar]
- Freye, C.E.; Bowden, P.R.; Teshima, M.; Devin, C.; Elizabeth, G.F.; Rosales, C.J. Characterization of detonation and partial detonation of PBX 9501, PBX 9502, and TATB. AIP Conf. Proc. 2020, 2272, 030010. [Google Scholar]
- Huang, K.; Yan, J.; Shen, R.L.; Wan, Y.L.; Li, Y.K.; Ge, H.; Yu, H.J.; Guo, L.C. Investigation on fracture behavior of polymer-bonded explosives under compression using a viscoelastic phase-field fracture method. Eng. Fract. Mech. 2022, 266, 108411. [Google Scholar]
- Wang, F.P.; Du, G.Y.; Liu, X.C.; Shao, M.Y.; Zhang, C.G.; Chen, L. Molecular dynamics application of cocrystal energetic materials: A review. Nanotechnol. Rev. 2022, 11, 2141–2153. [Google Scholar]
- Jing, B.; Zhang, Y.; Jin, S.H.; Shang, F.; Wang, X.; Chen, Y. Effect of toughener on desensitizer and 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (HNIW) based polymer bonded explosives (PBXs). Mater. Express 2017, 7, 529–535. [Google Scholar]
- Zhang, J.D.; Guo, W.; Yao, Y.G. Deep Potential Molecular Dynamics Study of Chapman–Jouguet Detonation Events of Energetic Materials. J. Phys. Chem. Lett. 2023, 14, 7141–7148. [Google Scholar]
- Xu, W.Z.; Liang, X.; Li, H.; Deng, J.; Guo, F.W.; Li, Y.X.; Yan, T.L.; Wang, J.Y. Experiment study on the influencing factors of mechanical response of HMX-based PBXs in the high-g deceleration environments. J. Energ. Mater. 2021, 39, 33–47. [Google Scholar]
- Liu, Y.; An, C.W.; Liu, N.; Wang, M.C.; Ye, B.Y.; Liao, D.J. Noncovalent interactions and crystal structure prediction of energetic materials. Molecules 2022, 27, 3755. [Google Scholar] [CrossRef]
- Sun, H. COMPASS: An ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J. Phys. Chem. B 1998, 102, 7338–7364. [Google Scholar] [CrossRef]
- Lv, L.; Yang, M.; Long, Y.; Chen, J. Molecular dynamics simulation of structural and mechanical features of a Polymer-bonded explosive interface under tensile deformation. Appl. Surf. Sci. 2021, 557, 149823. [Google Scholar] [CrossRef]
- Mosoabisane, M.F.; Luyt, A.S.; van Sittert, C.G. Comparative experimental and modelling study of the thermal and thermo-mechanical properties of LLDPE/wax blends. J. Polym. Res. 2022, 29, 296. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, M.; Gao, Y.; Cui, J.; Cao, B. Molecular dynamics study on viscosities of sub/supercritical n-decane, n-undecane and n-dodecane. J. Mol. Liq. 2021, 335, 116180. [Google Scholar] [CrossRef]
- Asche, T.S.; Behrens, P.; Schneider, A.M. Validation of the COMPASS force field for complex inorganic–organic hybrid polymers. J. Sol-Gel Sci. Technol. 2017, 81, 195–204. [Google Scholar] [CrossRef]
- Song, X.Z.; Xing, X.L.; Zhao, S.X.; Jua, X. Molecular dynamics simulation on TKX-50 based explosives. J. Chem. 2019, 3, 20–24. [Google Scholar] [CrossRef]
- Wang, S.H.; Ju, R.H.; Luo, Y.M.; Xiao, J.J.; Ma, H.X. Molecular Dynamics Simulation of the Compatibility of DNTF With Polymers. Chin. J. Energ. Mater. 2023, 31, 61–69. [Google Scholar]
- Andersen, H.C. Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys. 1980, 72, 2384–2393. [Google Scholar] [CrossRef]
- Berendsen, H.J.C.P.; Postma, J.P.M.; Gunsteren, W.F.V.; Haak, J.R. Molecular-Dynamics with Coupling to An External Bath. J. Chem. Phys. 1984, 81, 3684–3690. [Google Scholar] [CrossRef]
- Karasawa, N.; Goddard, W.A. Force fields, structures, and properties of poly(vinylidene fluoride) crystals. Macromolecules 1992, 25, 7268–7281. [Google Scholar] [CrossRef]
- Ewald, P.P.J. Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann. Phys. 1921, 369, 253–287. [Google Scholar]
- Lan, G.C.; Zhang, G.Y.; Chao, H.; Li, Z.H.; Wang, J.L.; Li, J. Ameliorating the performances of 3,4-bis (4′-nitrofurazano-3′-yl) furoxan (DNTF) by establishing tannic acid (TA) interface layer on DNTF surface. Chem. Eng. J. 2022, 434, 134513. [Google Scholar]
- Eslami, H.; Müller-Plathe, F. Self-Assembly Pathways of Triblock Janus Particles into 3D Open Lattices. Small 2024, 20, 2306337. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.Y.; Shu, Y.J.; Liu, N.; Lu, X.M.; Xu, M.H. Molecular dynamics simulations on epsilon-CL-20-based PBXs with added GAP and its derivative polymers. RSC Adv. 2018, 8, 4955–4962. [Google Scholar] [PubMed]
- Politzer, P.; Murray, J.S. Impact sensitivity and the maximum heat of detonation. J. Mol. Model. 2015, 21, 262. [Google Scholar]
- Stephen, A.D.; Kumaradhas, P.; Pawar, R.B. Charge density distribution, electrostatic properties, and impact sensitivity of the high energetic molecule TNB: A theoretical charge density study. Propellants Explos. Pyrotech. 2011, 36, 168–174. [Google Scholar]
- Li, S.S.; Xiao, J.J. Molecular dynamics simulations for effects of fluoropolymer binder content in CL-20/TNT based polymer-bonded explosives. Molecules 2021, 26, 4876. [Google Scholar] [CrossRef]
- Xiao, Y.Q.; Sun, T.; Li, S.S.; Xiao, J.J. Molecular Dynamics Simulation Studies of the CL-20/DNB Co-crystal Based PBX with HTPB. J. Phys. Conf. Ser. 2021, 1721, 012010. [Google Scholar]
- Sun, T.; Xiao, J.J.; Liu, Q.; Zhao, F.; Xiao, H.M. Comparative study on structure, energetic and mechanical properties of a ε-CL-20/HMX cocrystal and its composite with molecular dynamics simulation. J. Mater. Chem. A 2014, 2, 13898–13904. [Google Scholar]
- Liu, D.M.; Zhao, L.; Xiao, J.J.; Chen, J.; Ji, G.F.; Zhu, W.; Zhao, F.; Wu, Q.; Xiao, H.M. Sensitivity criterion and mechanical properties prediction of HMX and RDX crystals at different temperatures. Chem. Res. Chin. Univ. 2013, 11, 2558–2665. [Google Scholar]
- Wang, H.; Gao, J.; Tao, J.; Luo, Y.M.; Jiang, Q.L. Safety Performances and Molecular Dynamics Simulation of DNTF/HATO. Chin. J. Energ. Mater. 2019, 27, 897–901. [Google Scholar]
- Shu, Y.; Yi, Y.; Huo, J.C.; Liu, N.; Wang, K.; Lu, Y.Y.; Wang, X.C.; Wu, Z.K.; Shu, Y.J.; Zhang, S.W. Interactions between poly-(phthalazinone ether sulfone ketone)(PPESK) and TNT or TATB in polymer bonded explosives: A molecular dynamic simulation study. J. Mol. Model. 2017, 23, 334. [Google Scholar] [PubMed]
- Hang, G.Y.; Yu, W.L.; Wang, T.; Wang, J.T. Theoretical investigations into effects of adulteration crystal defect on properties of CL-20/TNT cocrystal explosive. Comput. Mater. Sci. 2019, 156, 77–83. [Google Scholar]
- Chen, S.W.; He, W.; Luo, C.J.; An, T.; Chen, J.; Yang, Y.Y.; Liu, P.J.; Yan, Q.L. Thermal behavior of graphene oxide and its stabilization effects on transition metal complexes of triaminoguanidine. J. Hazard. Mater. 2019, 368, 404–411. [Google Scholar]
- Pal, A.; Picu, C.R. Contribution of molecular flexibility to the elastic–plastic properties of molecular crystal α-RDX. Modell. Simul. Mater. Sci. Eng. 2016, 25, 015006. [Google Scholar]
- Weiner, J.H.; Milstein, F. Statistical Mechanics of Elasticity. J. Appl. Mech. 1984, 51, 707–708. [Google Scholar]
Lattice | a (Å) | b (Å) | c (Å) | α (°) | β (°) | γ (°) | ρ (g·cm−3) |
---|---|---|---|---|---|---|---|
Exp | 6.662 | 10.740 | 15.093 | 90 | 90 | 90 | 1.937 |
COMPASS | 6.632 | 10.965 | 14.962 | 90.00 | 90.00 | 90.00 | 1.870 |
Relative error/% | −0.45 | 2.1 | −0.87 | 0 | 0 | 0 | −3.5 |
Samples | β a (°C·min−1) | Tpi b (°C) | Ek c (kJ·mol−1) | logAk d (s−1) | rk e | Eo f (kJ·mol−1) | ro g | Ea h (kJ·mol−1) |
---|---|---|---|---|---|---|---|---|
DNTF | 5 | 278.4 | 107.9 | 7.83 | 0.96 | 111.6 | 0.97 | 109.8 |
10 | 285.5 | |||||||
15 | 300.9 | |||||||
20 | 306.7 | |||||||
DNTF/F2603 | 5 | 279.1 | 115.3 | 8.51 | 0.99 | 118.6 | 0.99 | 117.0 |
10 | 290.0 | |||||||
15 | 302.3 | |||||||
20 | 307.5 |
T (K) | G (GPa) | K/G | C12–C44 (GPa) | K (GPa) | E(GPa) | γ |
---|---|---|---|---|---|---|
298 | 2.54 | 1.66 | 2.97 | 4.21 | 6.63 | 0.30 |
323 | 2.33 | 1.70 | 2.84 | 3.98 | 6.10 | 0.31 |
348 | 2.15 | 1.75 | 2.37 | 3.77 | 5.63 | 0.31 |
373 | 2.01 | 1.85 | 2.34 | 3.73 | 5.29 | 0.31 |
398 | 1.86 | 1.96 | 2.32 | 3.65 | 4.91 | 0.32 |
T (K) | G (GPa) | K/G | C12–C44 (GPa) | K (GPa) | E (GPa) | γ |
---|---|---|---|---|---|---|
298 | 2.02 | 1.93 | 2.68 | 3.89 | 5.33 | 0.32 |
323 | 1.97 | 1.96 | 2.15 | 3.87 | 5.20 | 0.32 |
348 | 1.88 | 1.98 | 2.02 | 3.73 | 4.97 | 0.32 |
373 | 1.79 | 2.03 | 1.96 | 3.65 | 4.75 | 0.32 |
398 | 1.77 | 2.05 | 1.89 | 3.64 | 4.70 | 0.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Mu, X.; Luo, Y.; Ju, R.; Wang, X.; Ma, H.; Xiao, J. Polymeric Desensitizer Fluororubber: A Good Binder to Improve the Thermal Stability and Mechanical Properties of 3,4-Dinitrofurazanfuroxan. Molecules 2025, 30, 1665. https://doi.org/10.3390/molecules30081665
Wang S, Mu X, Luo Y, Ju R, Wang X, Ma H, Xiao J. Polymeric Desensitizer Fluororubber: A Good Binder to Improve the Thermal Stability and Mechanical Properties of 3,4-Dinitrofurazanfuroxan. Molecules. 2025; 30(8):1665. https://doi.org/10.3390/molecules30081665
Chicago/Turabian StyleWang, Shenghui, Xiaogang Mu, Yiming Luo, Ronghui Ju, Xuanjun Wang, Haixia Ma, and Jijun Xiao. 2025. "Polymeric Desensitizer Fluororubber: A Good Binder to Improve the Thermal Stability and Mechanical Properties of 3,4-Dinitrofurazanfuroxan" Molecules 30, no. 8: 1665. https://doi.org/10.3390/molecules30081665
APA StyleWang, S., Mu, X., Luo, Y., Ju, R., Wang, X., Ma, H., & Xiao, J. (2025). Polymeric Desensitizer Fluororubber: A Good Binder to Improve the Thermal Stability and Mechanical Properties of 3,4-Dinitrofurazanfuroxan. Molecules, 30(8), 1665. https://doi.org/10.3390/molecules30081665