Optimization of Deep Eutectic Solvent-Based Ultrasound-Assisted Extraction of Bioactive Compounds from Maca Leaves Using the Taguchi Method
Abstract
:1. Introduction
2. Results and Discussion
2.1. Total Saponin and Polyphenol Contents
2.2. Analysis of Main Effect on Bioactive Compounds Recovery
2.3. Analysis of Variance (ANOVA) Results
2.4. Confirmation Test Results
2.5. Comparison of Bioactive Properties of Maca Leaf Extracts
3. Material and Methods
3.1. Plant Materials and Chemical Reagents
3.2. Deep Eutectic Solvent Preparation
3.3. Optimization of Extraction Conditions
3.3.1. Optimization Parameters Using Orthogonal Experiment Design
3.3.2. Determination of Total Saponin Content
3.3.3. Determination of Total Polyphenol Content
3.4. Comparison of Bioactive Properties of Maca Leaf Extracts
3.4.1. Preparation of Maca Leaf Extracts
3.4.2. Determination of Total Saponin and Polyphenol Contents
3.4.3. Determination of Phenolic Compounds via HPLC
3.4.4. Measurement of Antioxidant Activity
3.5. Statistical Analysis for Validation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Quiros, C.F.; Epperson, A.; Hu, J.; Holle, M. Physiological Studies and Determination of Chromosome Number in Maca, Lepidium meyenii (Brassicaceae). Econ. Bot. 1996, 50, 216–223. [Google Scholar] [CrossRef]
- del Carpio, N.U.; Alvarado-Corella, D.; Quiñones-Laveriano, D.M.; Araya-Sibaja, A.; Vega-Baudrit, J.; Monagas-Juan, M.; Navarro-Hoyos, M.; Villar-López, M. Exploring the Chemical and Pharmacological Variability of Lepidium meyenii: A Comprehensive Review of the Effects of Maca. Front. Pharmacol. 2024, 15, 1360422. [Google Scholar]
- Wang, S.; Zhu, F. Chemical Composition and Health Effects of Maca (Lepidium meyenii). Food Chem. 2019, 288, 422–443. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.K.; Chang, Y.H. Process Optimization of Methanol Extract from Maca Leaves and Its Physicochemical Properties. J. Korean Soc. Food Sci. Nutr. 2018, 47, 543–549. [Google Scholar] [CrossRef]
- Lee, Y.K.; Chang, Y.H. Physicochemical and Antioxidant Properties of Methanol Extract from Maca (Lepidium meyenii Walp.) Leaves and Roots. Food Sci. Technol. 2019, 39, 278–286. [Google Scholar]
- Lee, Y.K.; Chang, Y.H. Microencapsulation of a Maca Leaf Polyphenol Extract in Mixture of Maltodextrin and Neutral Polysaccharides Extracted from Maca Roots. Int. J. Bio. Macromol. 2020, 150, 546–558. [Google Scholar]
- Jin, W.; Chen, X.; Huo, Q.; Cui, Y.; Yu, Z.; Yu, L. Aerial Parts of Maca (Lepidium meyenii Walp.) as Functional Vegetables with Gastrointestinal Prokinetic Efficacy in vivo. Food Funct. 2018, 9, 3456–3465. [Google Scholar] [CrossRef]
- Putnik, P.; Kovačević, D.B.; Jambrak, A.R.; Barba, F.J.; Cravotto, G.; Binello, A.; Lorenzo, J.M.; Shpigelman, A. Innovative “Green” and Novel Strategies for the Extraction of Bioactive Added Value Compounds from Citrus Wastes—A Review. Molecules 2017, 22, 680. [Google Scholar] [CrossRef]
- Kumar, K.; Srivastav, S.; Sharanagat, V. Ultrasound Assisted Extraction (UAE) of Bioactive Compounds from Fruit and Vegetable Processing By-products: A Review. Ulrason. Sonochem. 2020, 70, 105325. [Google Scholar] [CrossRef]
- Zdanowicz, M.; Wilpiszewska, K.; Spychaj, T. Deep Eutectic Solvents for Polysaccharides Processing. A Review. Carbohydr. Polym. 2018, 200, 361–380. [Google Scholar] [CrossRef]
- Cunha, S.C.; Fernandes, J.O. Extraction Techniques with Deep Eutectic Solvents. TrAC, Trends Anal. Chem. 2018, 105, 225–239. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, M. Optimization of Deep Eutectic Solvent-Based Ultrasound-Assisted Extraction of Polysaccharides from Dioscorea opposite Thunb. Int. J. Biol. Macromol. 2017, 95, 675–681. [Google Scholar] [PubMed]
- Tang, W.; Wu, Y.; Wang, M.; Row, K.H.; Qiu, H.; Zhou, J.L. Emerging Application of Extraction Phase of Ionic and Non-ionic Deep Eutectic Solvents Toward Natural Herbal Medicine. TrAC Trends Anal. Chem. 2023, 165, 117137. [Google Scholar]
- Ali, M.C.; Chen, J.; Zhang, H.; Li, Z.; Zhao, L.; Qiu, H. Effective Extraction of Flavonoids from Lycium barbarum L. Fruits by Deep Eutectic Solvents-Based Ultrasound-Assisted Extraction. Talanta 2019, 203, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Dou, Y.; Yan, N.; Li, N.; Zhang, H.; Tan, J. Optimizing Ultrasound-Assisted Deep Eutectic Solvent Extraction of Bioactive Compounds from Chinese Wild Rice. Molecules 2019, 24, 2718. [Google Scholar] [CrossRef]
- Kim, E.J.; Kim, C.Y.; Yoon, K.Y. Application of Taguchi Method to Optimize Deep Eutectic Solvent-Based Ultrasound-Assisted Extraction of Polysaccharides from Maca and Its Biological Activity. Food Bioproc. Tech. 2025, 18, 27092720. [Google Scholar]
- Liu, Y.; Li, Z.; Xu, H.; Han, Y. Extraction of Saponin from Camellia oleifera Abel Cake by a Combination Method of Alkali Solution and Acid Isolation. J. Chem. 2016, 2016, 1–8. [Google Scholar]
- Salacheep, S.; Kasemsiri, P.; Pongsa, U.; Okhawili, M.; Chindaprasirt, P.; Hiziroglu, S. Optimization of Ultrasound-Assisted Extraction of Anthocyanins and Bioactive Compounds from Butterfly Pea Petals using Taguchi Method and Grey Relational Analysis. J. Food Sci. Technol. 2020, 57, 3720–3730. [Google Scholar]
- Lu, W.; Liu, S. Choline Chloride–Based Deep Eutectic Solvents (Ch-DESs) as Promising Green Solvents for Phenolic Compounds Extraction from Bioresources: State-of-the-Art, Prospects, and Challenges. Biomass Convers. Biorefin. 2022, 12, 2949–2962. [Google Scholar] [CrossRef]
- Duan, L.; Dou, L.; Guo, L.; Li, P.; Liu, E. Comprehensive Evaluation of Deep Eutectic Solvents in Extraction of Bioactive Natural Products. ACS Sustain. Chem. Eng. 2016, 4, 2405–2411. [Google Scholar]
- Chen, Y.; Yu, D.; Chen, W.; Fu, L.; Mu, T. Water Absorption by Deep Eutectic Solvents. Phy. Chem. Chem. Phys. 2019, 21, 2601–2610. [Google Scholar]
- Tang, Y.; He, X.; Sun, J.; Liu, G.; Li, C.; Li, L.; Sheng, J.; Zhou, Z.; Xin, M.; Ling, D. Comprehensive Evaluation on Tailor-made Deep Eutectic Solvents (DESs) in Extracting Tea Saponins from Seed Pomace of Camellia oleifera. Abel. Food Chem. 2020, 342, 128243. [Google Scholar] [PubMed]
- Wang, Y.; Hou, Y.; Wu, W.; Liu, D.; Ji, Y.; Ren, S. Roles of a Hydrogen Bond Donor and a Hydrogen Bond Acceptor in the Etraction of Toluene from n-Heptane Using Deep Eutectic Solvents. Green Chem. 2016, 18, 3089–3097. [Google Scholar] [CrossRef]
- Oztop, M.H.; Sahin, S.; Sumnu, G. Optimization of Microwave Frying of Potato Slices by Using Taguchi Technique. J. Food Eng. 2007, 79, 83–91. [Google Scholar] [CrossRef]
- Negi, J.S.; Negi, P.S.; Pant, G.J.; Rawat, M.; Negi, S.K. Naturally Occurring Saponins: Chemistry and Biology. J. Poisonous. Med. Plants. Res. 2013, 1, 1–6. [Google Scholar]
- Yang, G.Y.; Song, J.N.; Chang, Y.Q.; Wang, L.; Zheng, Y.G.; Zhang, D.; Guo, L. Natural Deep Eutectic Solvents for the Extraction of Bioactive Steroidal Saponins from Dioscoreae Nipponicae Rhizoma. Molecules 2021, 26, 2079. [Google Scholar]
- Dai, Y.; Witkamp, G.J.; Verpoorte, R.; Choi, Y.H. Tailoring Properties of Natural Deep Eutectic Solvents with Water to Facilitate Their Applications. Food Chem. 2015, 187, 14–19. [Google Scholar]
- Campos, D.; Chirinos, R.; Barreto, O.; Noratto, G.R. Optimized Methodology for the Simultaneous Extraction of Glucosinolates, Phenolic Compounds and Antioxidant Capacity from Maca (Lepidium meyenii). Ind. Crops Prod. 2013, 49, 747–754. [Google Scholar]
- Sandoval, M.; Okuhama, N.N.; Angeles, F.M.; Melchor, V.V.; Condezo, L.A.; Lao, J.; Miller, M.J. Antioxidant Activity of the Cruciferous Vegetable Maca (Lepidium meyenii). Food Chem. 2002, 79, 207–213. [Google Scholar] [CrossRef]
- Yilmaz, Y. Novel Uses of Catechins in Foods. Trends Food Sci. Technol. 2006, 17, 64–71. [Google Scholar]
- Lu, Z.; Nie, G.; Belton, P.S.; Tang, H.; Zhao, B. Structure–Activity Relationship Analysis of Antioxidant Ability and Neuroprotective Effect of Gallic Acid Derivatives. Neurochem. In. 2006, 48, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.M.; Avneet, G.; Siddhraj, S.S.; Asdaq, S. Gallic Acid: Pharmacogical Promising Lead Molecule: A Review. Int. J. Pharmacogn. Pharm. Res. 2018, 10, 132–138. [Google Scholar]
- Barbieri, J.B.; Goltz, C.; Cavalheiro, F.B.; Toci, A.T.; Igarashi-Mafra, L.; Mafra, M.R. Deep Eutectic Solvents Applied in the Extraction and Stabilization of Rosemary (Rosmarinus officinalis L.) phenolic compounds. Ind. Crops Prod. 2020, 144, 112049. [Google Scholar] [CrossRef]
- Cai, Y.Q.; Gao, H.; Song, L.M.; Tao, F.Y.; Ji, X.Y.; Yu, Y.; Cao, Y.Q.; Tang, S.J.; Yue, P. Optimization of Green Deep Eutectic Solvent (DES) Extraction of Chenopodium quinoa Willd. Husks Saponins by Response Surface Methodology and Their Antioxidant Activities. RSC Adv. 2023, 13, 29408. [Google Scholar] [CrossRef]
- Folin, O.; Denis, W. On Phosphotungstic-Phosphomolybdic Compounds as Color Reagents. J. Biol. Chem. 1912, 12, 239–243. [Google Scholar] [CrossRef]
- Nour, V.; Trandafir, I.; Cosmulescu, S. HPLC Determination of Phenolic Acids, Flavonoids and Juglone in Walnut Leaves. J. Chromatogr. Sci. 2012, 51, 883–890. [Google Scholar] [CrossRef]
- Lee, S.H.; Yoon, K.Y. Physicochemical Properties, Bioactive Ingredients, and Antioxidant Activity of Cheonggukjang Added with Brewer’s Spent Grain. Food Sci. Preserv. 2024, 31, 683–692. [Google Scholar] [CrossRef]
- Lee, J.J.; Yoon, K.Y. Antioxidant, Antidiabetic and Anti-inflammatory Activities of Bitter Melon Extracts Obtained by Ultrasonic-Assisted Extraction. Korean J. Food Preserv. 2022, 29, 777–789. [Google Scholar] [CrossRef]
Run No. | Factors | Responses | S/N Ratios | |||||
---|---|---|---|---|---|---|---|---|
Liquid–Solid Ratio (mL/g) | Water Content (%) | Extraction Time (min) | Ultrasonic Power (W) | TSC (mg OAE/g DW) | TPC (mg GAE/g DW) | TSC | TPC | |
1 | 20 | 10 | 10 | 180 | 16.43 ± 0.28 | 3.12 ± 0.18 | 24.31 | 9.84 |
2 | 20 | 20 | 20 | 240 | 21.69 ± 1.27 | 3.10 ± 0.09 | 26.69 | 9.82 |
3 | 20 | 30 | 30 | 300 | 27.60 ± 0.11 | 4.43 ± 0.07 | 28.82 | 12.93 |
4 | 30 | 10 | 20 | 300 | 24.85 ± 0.60 | 4.74 ± 0.70 | 27.90 | 13.27 |
5 | 30 | 20 | 30 | 180 | 27.95 ±1.28 | 4.53 ± 0.27 | 28.91 | 13.08 |
6 | 30 | 30 | 10 | 240 | 30.26 ± 2.19 | 4.87 ± 0.74 | 29.56 | 13.50 |
7 | 40 | 10 | 30 | 240 | 27.84 ± 2.53 | 6.05 ± 0.17 | 28.80 | 15.63 |
8 | 40 | 20 | 10 | 300 | 31.98 ± 2.05 | 6.32 ± 0.32 | 30.05 | 15.99 |
9 | 40 | 30 | 20 | 180 | 33.43 ± 3.48 | 6.31 ± 0.24 | 30.37 | 15.99 |
K1 (TSC) | 21.91 | 23.04 | 26.23 | 25.94 | ||||
K2 (TSC) | 27.69 | 27.21 | 26.65 | 26.59 | ||||
K3 (TSC) | 31.08 | 30.43 | 27.79 | 28.14 | ||||
Delta value (TSC) | 9.17 | 7.39 | 1.56 | 2.20 | ||||
K1 (TPC) | 3.55 | 4.64 | 4.77 | 4.65 | ||||
K2 (TPC) | 4.71 | 4.65 | 4.72 | 4.67 | ||||
K3 (TPC) | 6.23 | 5.21 | 5.00 | 5.16 | ||||
Delta value (TPC) | 2.68 | 0.57 | 0.28 | 0.51 |
Factor | Degree of Freedom | Sum of Square | Mean of Square | F-Ratio | p-Value | Contribution (%) |
---|---|---|---|---|---|---|
Total saponin content | ||||||
Liquid–solid ratio | 2 | 775.325 | 387.662 | 111.814 | <0.001 | 51.85 |
Water content | 2 | 494.352 | 247.176 | 71.294 | <0.001 | 33.06 |
Extraction time | 2 | 23.620 | 11.810 | 3.406 | 0.042 | 1.58 |
Ultrasonic power | 2 | 46.080 | 23.040 | 6.646 | 0.003 | 3.08 |
Error | 45 | 156.016 | 3.467 | 10.43 | ||
Total | 53 | 1495.393 | 100 | |||
R2 | 98.24% | |||||
R2 (adj) | 96.48% | |||||
Total polyphenol content | ||||||
Liquid–solid ratio | 2 | 65.018 | 32.509 | 218.623 | <0.001 | 81.95 |
Water content | 2 | 3.780 | 1.890 | 12.710 | <0.001 | 4.76 |
Extraction time | 2 | 0.837 | 0.418 | 2.813 | 0.071 | 1.06 |
Ultrasonic power | 2 | 3.007 | 1.504 | 10.111 | <0.001 | 3.79 |
Error | 45 | 6.692 | 0.149 | 8.44 | ||
Total | 53 | 79.334 | 100 | |||
R2 | 96.89% | |||||
R2(adj) | 97.78% |
Response | Predicted Value | Predicted Confidence Interval at 95% Confidence Level | Experimental Value | Difference |
---|---|---|---|---|
Total saponin content (mg OAE/g DW) | 37.07 | 34.64–39.49 | 38.02 ± 0.45 | 0.95 |
Total polyphenol content (mg GAE/g DW) | 6.82 | 6.07–7.57 | 6.78 ± 0.12 | 0.04 |
DES-Based UAE | HWE | ||
---|---|---|---|
Total saponin content (mg OAE/g) | 718.89 ± 0.95 * | 707.50 ± 2.18 | |
Total polyphenol content (mg GAE/g) | 260.19 ± 1.00 * | 224.90 ± 1.65 | |
Phenolic compounds (mg/g) | Catechin | 102.58 ± 1.93 * | 88.73 ± 0.25 |
Epicatechin | 7.96 ± 0.13 * | 7.29 ± 0.14 | |
Gallic acid | 17.82 ± 0.32 * | 15.77 ± 0.25 | |
Cinnamic acid | 8.24 ± 0.05 * | 6.89 ± 0.10 | |
Ferulic acid | 6.96 ± 0.04 * | 5.25 ± 0.05 | |
Caffeic acid | 3.89 ± 0.06 * | 3.61 ± 0.15 | |
p-Coumaric acid | 1.22 ± 0.02 * | 0.97 ± 0.06 | |
Protocatechuic acid | 6.92 ± 0.03 * | 5.43 ± 0.21 | |
Naringin | 4.78 ± 0.06 * | 3.28 ± 0.11 | |
IC50 value (mg/mL) | DPPH radical scavenging activity | 0.95 ± 0.01 * | 1.15 ± 0.03 |
ABTS radical scavenging activity | 0.83 ± 0.04 * | 1.82 ± 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, E.J.; Yoon, K.Y. Optimization of Deep Eutectic Solvent-Based Ultrasound-Assisted Extraction of Bioactive Compounds from Maca Leaves Using the Taguchi Method. Molecules 2025, 30, 1635. https://doi.org/10.3390/molecules30071635
Lee EJ, Yoon KY. Optimization of Deep Eutectic Solvent-Based Ultrasound-Assisted Extraction of Bioactive Compounds from Maca Leaves Using the Taguchi Method. Molecules. 2025; 30(7):1635. https://doi.org/10.3390/molecules30071635
Chicago/Turabian StyleLee, Eun Ji, and Kyung Young Yoon. 2025. "Optimization of Deep Eutectic Solvent-Based Ultrasound-Assisted Extraction of Bioactive Compounds from Maca Leaves Using the Taguchi Method" Molecules 30, no. 7: 1635. https://doi.org/10.3390/molecules30071635
APA StyleLee, E. J., & Yoon, K. Y. (2025). Optimization of Deep Eutectic Solvent-Based Ultrasound-Assisted Extraction of Bioactive Compounds from Maca Leaves Using the Taguchi Method. Molecules, 30(7), 1635. https://doi.org/10.3390/molecules30071635