Selective Activity of Chrysin-6-C-Fucopyranoside from Cyclanthera pedata Toward Peroxisome Proliferator-Activated Receptor Gamma
Abstract
:1. Introduction
2. Results
2.1. Isolation of Chrysin-6-C-Fucopyranoside (1) and Isovitexin (2) from Caigua Leaves
2.2. Chrysin-6-C-Fucopyranoside (1) Activate PPARγ, but Not PPARα, PPARβ/δ, and TRP Ion Channel Receptors
- PPARα, PPARγ, or PPARβ/δ (ligand binding domain –LBD)/GAL4 (dimerization binding domain –DBD);
- UAS enhancer MH100;
- Renilla and treated the next day with compound 1 or 2 at a concentration ranging from 0.1 to 30 µM.
3. Discussion
4. Materials and Methods
4.1. Extraction and Isolation of Flavone Glycosides
4.1.1. General Experimental Procedures
4.1.2. Plant Material
4.1.3. Extraction and Isolation
4.2. PPARs Assays. Cell Culture, Transfection, and Luciferase Assay
- CMX-Gal4-hPPARα;
- TK-MH100 × 4-Luc containing the UAS enhancer;
- Renilla Luciferase (pRL, Promega, Cat. E2231).
4.3. Cell Viability Assay
4.4. TRP Channels Assay
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AITC | Allyl isothiocyanate |
ANOVA | Analysis of variance |
DBD | Dimerization binding domain |
DMSO | Dimethyl sulfoxide |
DMEM | Dulbecco’s modified Eagle medium |
EC50 | Half-maximal effective concentration |
ELISA | Enzyme-linked immunosorbent assay |
FBS | Fetal bovine serum |
Fluo4-AM | Methyl ester of fluo-4 acetoxymethyl ester |
HEK-293 | Human embryonic kidney 293 cells |
LBD | Ligand binding domain |
LUC | Luciferase |
MEM | Minimum essential media |
MTT | 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide |
PPAR | Peroxisome proliferator-activated receptor |
PPARα | Peroxisome proliferator-activated receptor alpha |
PPARβ/δ | Peroxisome proliferator-activated receptor beta/delta |
PPARγ | Peroxisome proliferator-activated receptor gamma |
pRL | Renilla luciferase plasmid |
SE | Standard error |
SEM | Standard error of the mean |
TK-MH100 × 4-LUC | Thymidine kinase promoter with four multimerized MH100 enhancer elements |
TRP | Transient receptor potential cation channel |
TRPA1 | Transient receptor potential subfamily A member 1 |
TRPM8 | Transient receptor potential subfamily M member 8 |
TRPV1 | Transient receptor potential subfamily V member 1 |
UAS | Upstream activating sequence |
λEX | Excitation wavelength |
λEM | Emission wavelength |
Appendix A
Treatment | Vehicle | Compound 1 | ||||
---|---|---|---|---|---|---|
0.1 μM | 1 μM | 3 μM | 10 μM | 30 μM | ||
Replicate 1 | 1.03 | 1.09 | 1.27 | 3.61 | 5.19 | 5.66 |
Replicate 2 | 0.98 | 0.82 | 0.94 | 2.45 | 3.92 | 4.79 |
Replicate 3 | 0.98 | 1.04 | 1.19 | 2.88 | 6.25 | 4.36 |
Mean ± SD | 1.00 ± 0.03 | 0.98 ± 0.14 | 1.13 ± 0.17 | 2.98 ± 0.59 | 5.12 ± 1.16 | 4.94 ± 0.67 |
References
- Fougerat, A.; Bruse, J.; Polizzi, A.; Montagner, A.; Guillou, H.; Wahli, W. Lipid sensing by PPARα: Role in controlling hepatocyte gene regulatory networks and the metabolic response to fasting. Prog. Lipid Res. 2024, 96. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.-Y.; Shi, S.-R.; Ma, C.-N.; Lin, Y.-P.; Song, W.-G.; Guo, S.-D. Natural products in atherosclerosis therapy by targeting PPARs: A review focusing on lipid metabolism and inflammation. Front. Cardiovasc. Med. 2024, 11, 1372055. [Google Scholar] [CrossRef] [PubMed]
- Montaigne, D.; Butruille, L.; Staels, B. PPAR control of metabolism and cardiovascular functions. Nat. Rev. Cardiol. 2021, 18, 809–823. [Google Scholar] [CrossRef]
- Wang, L.; Waltenberger, B.; Pferschy-Wenzig, E.-M.; Blunder, M.; Liu, X.; Malainer, C.; Blazevic, T.; Schwaiger, S.; Rollinger, J.M.; Heiss, E.H.; et al. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): A review. Biochem. Pharmacol. 2014, 92, 73–89. [Google Scholar] [CrossRef]
- Iannotti, F.A.; Vitale, R.M. The Endocannabinoid System and PPARs: Focus on Their Signalling Crosstalk, Action and Transcriptional Regulation. Cells 2021, 10, 586. [Google Scholar] [CrossRef]
- Dubois, V.; Eeckhoute, J.; Lefebvre, P.; Staels, B. Distinct but complementary contributions of PPAR isotypes to energy homeostasis. J. Clin. Investig. 2017, 127, 1202–1214. [Google Scholar] [CrossRef]
- Bermejo, A.; Barrachina, I.; El Aouad, N.; Franck, X.; Chahboune, N.; Andreu, I.; Figadère, B.; Vila, L.; Hennuyer, N.; Staels, B.; et al. Synthesis of benzopyran derivatives as PPARα and/or PPARγ activators. Bioorganic Med. Chem. 2019, 27, 115162. [Google Scholar] [CrossRef]
- Wagner, N.; Wagner, K.-D. The Role of PPARs in Disease. Cells 2020, 9, 2367. [Google Scholar] [CrossRef]
- Martin, H. Role of PPAR-gamma in inflammation. Prospects for therapeutic intervention by food components. Mutat. Res. Mol. Mech. Mutagen. 2010, 690, 57–63. [Google Scholar] [CrossRef]
- Ciavarella, C.; Motta, I.; Valente, S.; Pasquinelli, G. Pharmacological (or Synthetic) and Nutritional Agonists of PPAR-γ as Candidates for Cytokine Storm Modulation in COVID-19 Disease. Molecules 2020, 25, 2076. [Google Scholar] [CrossRef]
- Wu, F.; Bu, S.; Wang, H. Role of TRP Channels in Metabolism-Related Diseases. Int. J. Mol. Sci. 2024, 25, 692. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Ma, Y.; Ye, X.; Zhang, N.; Pan, L.; Wang, B. TRP (transient receptor potential) ion channel family: Structures, biological functions and therapeutic interventions for diseases. Signal Transduct. Target. Ther. 2023, 8, 1–38. [Google Scholar] [CrossRef]
- Zsombok, A.; Derbenev, A.V. TRP Channels as Therapeutic Targets in Diabetes and Obesity. Pharmaceuticals 2016, 9, 50. [Google Scholar] [CrossRef] [PubMed]
- Uchida, K.; Dezaki, K.; Yoneshiro, T.; Watanabe, T.; Yamazaki, J.; Saito, M.; Yada, T.; Tominaga, M.; Iwasaki, Y. Involvement of thermosensitive TRP channels in energy metabolism. J. Physiol. Sci. 2017, 67, 549–560. [Google Scholar] [CrossRef]
- Zuccolo, M.; Pedrali, D.; Leoni, V.; Borgonovo, G.; Bassoli, A.; Giorgi, A.; Giupponi, L. Characterization of an Italian landrace of Cyclanthera pedata (L.) Schrad. of herbal and horticultural interest. Genet. Resour. Crop. Evol. 2023, 70, 1455–1469. [Google Scholar] [CrossRef]
- Giupponi, L.; Pilu, R.; Scarafoni, A.; Giorgi, A. Plant agro-biodiversity needs protection, study and promotion: Results of research conducted in Lombardy region (Northern Italy). Biodivers. Conserv. 2019, 29, 409–430. [Google Scholar] [CrossRef]
- Peruana, I.d.I.d.l.A.; Vargas-Arana, G.; Rengifo-Salgado, E.; Simirgiotis, M.J.; de Chile, U.A. Antidiabetic potential of medicinal plants from the Peruvian Amazon: A review. Boletin Latinoam. Y Del Caribe de Plantas Med. Y Aromat. 2023, 22, 277–300. [Google Scholar] [CrossRef]
- Ranilla, L.G.; Kwon, Y.-I.; Apostolidis, E.; Shetty, K. Phenolic compounds, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America. Bioresour. Technol. 2010, 101, 4676–4689. [Google Scholar] [CrossRef]
- Rivas, M.; Vignale, D.; Ordo~Nez, R.M.; Zampini, I.C.; Alberto, M.R.; Sayago, J.E.; Isla, M.I. Nutritional, Antioxidant and Anti-Inflammatory Properties of Cyclanthera pedata, an Andinean Fruit and Products Derived from Them. Food Nutr. Sci. 2013, 04, 55–61. [Google Scholar] [CrossRef]
- Gonzales, G.F.; Góñez, C.; Villena, A. Serum Lipid and Lipoprotein Levels in Postmenopausal Women: Short-Course Effect of Caigua. Menopause 1995, 2, 225–234. [Google Scholar] [CrossRef]
- Zuccolo, M.; Bassoli, A.; Borgonovo, G.; Giupponi, L.; Giorgi, A. Flavone glycosides from a Cyclanthera pedata landrace of Camonica Valley (Northern Italy). Nat. Prod. Res. 2024, 1–9. [Google Scholar] [CrossRef]
- Montoro, P.; Carbone, V.; De Simone, F.; Pizza, C.; De Tommasi, N. Studies on the Constituents of Cyclanthera pedata Fruits: Isolation and Structure Elucidation of New Flavonoid Glycosides and Their Antioxidant Activity. J. Agric. Food Chem. 2001, 49, 5156–5160. [Google Scholar] [CrossRef]
- Salam, N.K.; Huang, T.H.; Kota, B.P.; Kim, M.S.; Li, Y.; Hibbs, D.E. Novel PPAR-gamma Agonists Identified from a Natural Product Library: A Virtual Screening, Induced-Fit Docking and Biological Assay Study. Chem. Biol. Drug Des. 2007, 71, 57–70. [Google Scholar] [CrossRef]
- Quang, T.H.; Ngan, N.T.T.; Van Minh, C.; Van Kiem, P.; Tai, B.H.; Nhiem, N.X.; Thao, N.P.; Luyen, B.T.T.; Yang, S.Y.; Kim, Y.H. Anti-Inflammatory and PPAR Transactivational Properties of Flavonoids from the Roots of Sophora flavescens. Phytotherapy Res. 2012, 27, 1300–1307. [Google Scholar] [CrossRef]
- Rani, N.; Arya, D.S. Chrysin rescues rat myocardium from ischemia-reperfusion injury via PPAR-γ/Nrf2 activation. Eur. J. Pharmacol. 2020, 883, 173389. [Google Scholar] [CrossRef]
- An, S.; Ko, H.; Jang, H.; Park, I.G.; Ahn, S.; Hwang, S.Y.; Gong, J.; Oh, S.; Kwak, S.Y.; Lee, Y.; et al. Prenylated Chrysin Derivatives as Partial PPARγ Agonists with Adiponectin Secretion-Inducing Activity. ACS Med. Chem. Lett. 2023, 14, 425–431. [Google Scholar] [CrossRef]
- Matin, A.; Gavande, N.; Kim, M.S.; Yang, N.X.; Salam, N.K.; Hanrahan, J.R.; Roubin, R.H.; Hibbs, D.E. 7-Hydroxy-benzopyran-4-one Derivatives: A Novel Pharmacophore of Peroxisome Proliferator-Activated Receptor α and -γ (PPARα and γ) Dual Agonists. J. Med. Chem. 2009, 52, 6835–6850. [Google Scholar] [CrossRef]
- Liang, Y.-C.; Tsai, S.-H.; Tsai, D.-C.; Lin-Shiau, S.-Y.; Lin, J.-K. Suppression of inducible cyclooxygenase and nitric oxide synthase through activation of peroxisome proliferator-activated receptor-γ by flavonoids in mouse macrophages. FEBS Lett. 2001, 496, 12–18. [Google Scholar] [CrossRef]
- Zhou, Y.; Guo, Y.; Zhu, Y.; Sun, Y.; Li, W.; Li, Z.; Wei, L. Dual PPARγ/α agonist oroxyloside suppresses cell cycle progression by glycolipid metabolism switch-mediated increase of reactive oxygen species levels. Free. Radic. Biol. Med. 2021, 167, 205–217. [Google Scholar] [CrossRef]
- Zoete, V.; Grosdidier, A.; Michielin, O. Peroxisome proliferator-activated receptor structures: Ligand specificity, molecular switch and interactions with regulators. Biochim. Et Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2007, 1771, 915–925. [Google Scholar] [CrossRef]
- Frigerio, J.; Tedesco, E.; Benetti, F.; Insolia, V.; Nicotra, G.; Mezzasalma, V.; Pagliari, S.; Labra, M.; Campone, L. Anticholesterolemic Activity of Three Vegetal Extracts (Artichoke, Caigua, and Fenugreek) and Their Unique Blend. Front. Pharmacol. 2021, 12. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment or Statistical Computing. R Foundation for Statistical Computing. Available online: http://www.r-project.org/ (accessed on 30 September 2023).
Compound 1 | Compound 2 | |||
---|---|---|---|---|
δH | δc | δH | δc | |
2 | -- | 166.5 | -- | 163.3 |
3 | 6.58 (s) | 106.3 | 6.63 (s) | 102.6 |
4 | -- | 185.0 | -- | 181.7 |
5 | -- | 163.0 | -- | 165.3 |
6 | -- | 110.3 | -- | 108.9 |
7 | -- | 166.0 | -- | 161.3 |
8 | 6.78 (s) | 96.2 | 6.52 (s) | 93.8 |
9 | -- | 161.7 | -- | 161.1 |
10 | -- | 107.0 | -- | 102.9 |
1′ | -- | 131.0 | -- | 121.0 |
2′ | 8.03 (d, J = 8.0 Hz) 1 | 128.3 1 | 6.96 (d, J = 8.4 Hz) 3 | 128.3 3 |
3′ | 7.61 (m, J = 8.0 Hz) 2 | 133.3 2 | 7.88 (d, J = 8.5 Hz) 4 | 116.0 4 |
4′ | 7.60 (m) | 130.2 | -- | 160.6 |
5′ | 7.61 (m, J = 8.0 Hz) 2 | 133.3 2 | 7.88 (m, J = 8.5 Hz) 4 | 116.0 4 |
6′ | 8.03 (d, J = 8.0 Hz) 1 | 128.3 1 | 6.96 (d, J = 8.4 Hz) 3 | 128.3 3 |
1″ | 4.96 (bs) | 76.2 | 4.93 (d, J = 9.8 Hz) | 73.1 |
2″ | 4.73 (m) | 72.6 | 4.17 (m) | 70.5 |
3″ | 3.65 (dd, J = 8.9; 3.6 Hz) | 83.5 | 3.51 (m) | 78.9 |
4″ | 3.79 (m) | 73.5 | 3.48 (m) | 70.2 |
5″ | 3.85 (m) | 81.0 | 3.42 (m) | 81.4 |
6″ | 1.28 (d, J = 6.5 Hz) | 17.6 | 3.87 (m) 3.74 (m) | 61.4 |
HRESIMS | m/z 401.1111 [M + H]+ (calcd for C21H20O8, 400.1158) | m/z 432.01017 [M]+ (calcd for C21H20O10, 432.1056) |
Entry | Compound | EC50 (μM) | |
---|---|---|---|
1 | Chrysin-6-C-fucopyranoside (1) | 2.3 ± 0.3 | Present work |
2 | Pseudobaptigenin | 2.9 ± 0.8 | [23] |
3 | Esperidin | 6.6 ± 1.2 | |
4 | Apigenin | 7.9 ± 1.4 | |
5 | Chrysin | 9.8 ± 3.3 | |
6 | Biochanin A | 9.6 ± 1.1 | |
7 | Genistein | 16.7 ± 0.8 | |
8 | (2R)-3α,7,4′-trihydroxy-5-methoxy-8-(γ,γ-dimethylallyl)-flavanone | 10.5 ± 2.0 | [24] |
9 | Norkurarinone | 6.6 ± 1.1 | |
10 | Kuraridin | 15.7 ± 1.0 | |
11 | Formononetin | 1.6 ± 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuccolo, M.; Bassoli, A.; Borgonovo, G.; Giupponi, L.; Giorgi, A.; Moriello, A.S.; Iannotti, F.A. Selective Activity of Chrysin-6-C-Fucopyranoside from Cyclanthera pedata Toward Peroxisome Proliferator-Activated Receptor Gamma. Molecules 2025, 30, 1626. https://doi.org/10.3390/molecules30071626
Zuccolo M, Bassoli A, Borgonovo G, Giupponi L, Giorgi A, Moriello AS, Iannotti FA. Selective Activity of Chrysin-6-C-Fucopyranoside from Cyclanthera pedata Toward Peroxisome Proliferator-Activated Receptor Gamma. Molecules. 2025; 30(7):1626. https://doi.org/10.3390/molecules30071626
Chicago/Turabian StyleZuccolo, Marco, Angela Bassoli, Gigliola Borgonovo, Luca Giupponi, Annamaria Giorgi, Aniello Schiano Moriello, and Fabio Arturo Iannotti. 2025. "Selective Activity of Chrysin-6-C-Fucopyranoside from Cyclanthera pedata Toward Peroxisome Proliferator-Activated Receptor Gamma" Molecules 30, no. 7: 1626. https://doi.org/10.3390/molecules30071626
APA StyleZuccolo, M., Bassoli, A., Borgonovo, G., Giupponi, L., Giorgi, A., Moriello, A. S., & Iannotti, F. A. (2025). Selective Activity of Chrysin-6-C-Fucopyranoside from Cyclanthera pedata Toward Peroxisome Proliferator-Activated Receptor Gamma. Molecules, 30(7), 1626. https://doi.org/10.3390/molecules30071626