Haemaphysalis longicornis and Carvacrol as Acaricide: Efficacy and Mechanism of Action
Abstract
:1. Introduction
2. Results and Discussion
2.1. Acaricidal Activities of O. vulgare Oils
2.2. Chemical Composition of O. vulgare Oils
2.3. Isolation and Identification of the Active Component
2.4. Acaricidal Activities of Active Components Against H. longicornis
2.5. AChE Activity of Carvacrol Against H. longicornis Nymphs
2.6. Detoxifying Enzyme Activity
3. Materials and Methods
3.1. Chemicals and Sample Preparation
3.2. GC/MS Analysis
3.3. Isolation and Identification
3.4. Target Arachnids
3.5. Acaricidal Toxicity Bioassays and Data Analysis
3.6. In Vitro and In Vivo AChE Activity
3.7. Detoxifying Enzyme Activity Method
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barker, S.C.; Walker, A.R. Ticks of Australia. The species that infest domestic animals and humans. Zootaxa 2014, 3816, 1–144. [Google Scholar] [CrossRef]
- Massinissa, S.M.; Farah, A.S.; Piers, M.; Bernadette, M. The WHO R&D Blueprint: 2018 review of emerging infectious diseases requiring urgent research and development efforts. Antivir. Res. 2018, 159, 63–67. [Google Scholar] [CrossRef]
- Liu, Q.; He, B.; Huang, S.Y.; Wei, F.; Zhu, X.Q. Severe fever with thrombocytopenia syndrome, an emerging tick-borne zoonosis. Lancet Infect. Dis. 2014, 14, 763–772. [Google Scholar] [CrossRef]
- Park, S.W.; Song, B.G.; Shin, E.H.; Yun, S.M.; Han, M.G.; Park, M.Y.; Park, C.; Ryou, J. Prevalence of severe fever with thrombocytopenia syndrome virus in Haemaphysalis longicornis ticks in South Korea. Ticks Tick-Borne Dis. 2014, 5, 975–977. [Google Scholar] [CrossRef] [PubMed]
- Van Leeuwen, T.; Vontas, J.; Tsagkarakou, A.; Dermauw, W.; Tirry, L. Acaricide resistance mechanisms in the two–spotted spider mite Tetranychus urticae and other important Acari: A review. Insect Biochem. Mol. Biol. 2010, 40, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G.; Scheffer, J.J. Factors affecting secondary metabolite production in plants: Volatile components and essential oils. Flavor. Fragr. J. 2008, 23, 213–226. [Google Scholar] [CrossRef]
- Kumar, R.; Sharma, A.K.; Kakkar, P.; Kumar, M. Oxidative stress and mitochondrial dysfunction as therapeutic targets in various diseases: Potential role of thymoquinone. Free Radic. Biol. Med. 2020, 152, 75–86. [Google Scholar] [CrossRef]
- Kostyukovsky, M.; Rafaeli, A.; Gileadi, C.; Demchenko, N.; Shaaya, E. Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: Possible mode of action against insect pests. Pest Manag. Sci. 2002, 58, 1101–1106. [Google Scholar] [CrossRef]
- Tabari, M.A.; Youssefi, M.R.; Maggi, F.; Benelli, G. Toxic and repellent activity of selected essential oils and their main components against Haemaphysalis longicornis. Ticks Tick-Borne Dis. 2017, 8, 319–325. [Google Scholar] [CrossRef]
- Askin, H.; Karaman, M.; Ayar, A. Effects of thymol and carvacrol on acetylcholinesterase from Drosophila melanogaster. Acta Phys. Pol. A 2017, 132, 720–722. [Google Scholar] [CrossRef]
- Kwon, H.W.; Lee, J.; Ko, D.; Lee, D.; Clark, J.M. Insecticidal activity and neurotoxic effects of thymol and carvacrol derived from Origanum vulgare against Drosophila melanogaster. Pestic. Biochem. Physiol. 2016, 132, 96–103. [Google Scholar] [CrossRef]
- Pavela, R. Essential oils for the control of insect pests and vectors: A review. Ind. Crops Prod. 2015, 67, 82–92. [Google Scholar] [CrossRef]
- Benelli, G.; Flamini, G.; Canale, A.; Molfetta, I.; Cioni, P. Toxicity of some essential oil components against the Asian tiger mosquito Aedes albopictus and the housefly Musca domestica. Parasitol. Res. 2017, 116, 2805–2812. [Google Scholar]
- Abbas, R.Z.; Zaman, M.A.; Colwell, D.D.; Gilleard, J.; Iqbal, Z. Acaricide resistance in Haemaphysalis longicornis and other tick species: A global issue. Parasitol. Res. 2014, 113, 547–559. [Google Scholar]
- Benelli, G.; Pavela, R. Beyond mosquitoes—Essential oil toxicity and oviposition deterrency against bloodsucking parasites affecting humans. Ind. Crops Prod. 2018, 117, 382–392. [Google Scholar] [CrossRef]
- Santos, E.G.G.; Bezerra, W.A.S.; Temeyer, K.B.; Leó, A.A.P.; Costa-Junior, L.M.; Soares, A.M.S. Effects of essential oils on native and recombinant acetylcholinesterases of Rhipicephalus microplus. Braz. J. Vet. Parasitol. 2021, 30, e002221. [Google Scholar] [CrossRef]
- López, M.D.; Pascual-Villalobos, M.J. Mode of inhibition of acetylcholinesterase by monoterpenoids and implications for pest control. Ind. Crops Prod. 2010, 31, 284–288. [Google Scholar] [CrossRef]
- Oboh, G.; Ademosun, A.O.; Olumuyiwa, T.A.; Olasehinde, T.A.; Ademiluyi, A.O.; Adeyemo, A.C. Insecticidal activity of essential oil from orange peels (Citrus sinensis) against Tribolium confusum, Callosobruchus maculatus and Sitophilus oryzae and its inhibitory effects on acetylcholinesterase and Na+/K+-ATPase activities. Phytoparasitica 2017, 45, 501–508. [Google Scholar] [CrossRef]
- Abou-Taleb, H.K.; Mohamed, M.I.; Shawir, M.S.; Abdelgaleil, S.A. Insecticidal properties of essential oils against Tribolium castaneum (Herbst) and their inhibitory effects on acetylcholinesterase and adenosine triphosphatases. Nat. Prod. Res. 2016, 30, 710–714. [Google Scholar] [CrossRef]
- Novato, T.P.; Milhomem, M.N.; Marchesini, P.B.C.; Coutinho, A.L.; Silva, I.S.; de Souza Perinotto, W.M.; de Azevedo Prata, M.C.; Ferreira, L.L.; Lopes, W.D.Z.; Costa-Júnior, L.M.; et al. Acaricidal activity of carvacrol and thymol on acaricide-resistant Rhipicephalus microplus (Acari: Ixodidae) populations and combination with cypermethrin: Is there cross-resistance and synergism? Vet. Parasitol. 2022, 310, 109787. [Google Scholar] [CrossRef]
- Kumrungsee, N.; Pluempanupat, W.; Koul, O.; Bullangpoti, V. Toxicity of essential oil compounds against diamondback moth, Plutella xylostella, and their impact on detoxification enzyme activities. J. Pest Sci. 2014, 87, 721–729. [Google Scholar] [CrossRef]
- Chang, K.S.; Kim, H.C.; Klein, T.A.; Ju, Y.R. Insecticide resistance and cytochrome-P450 activation in unfed and blood-fed laboratory and field populations of Culex pipiens pallens. J. Pest Sci. 2017, 90, 759–771. [Google Scholar] [CrossRef]
- Wang, L.L.; Lu, X.P.; Meng, L.W.; Huang, Y.; Wei, D.; Jiang, H.B.; Smagghe, G.; Wang, J.J. Functional characterization of an α-esterase gene involving malathion detoxification in Bactrocera dorsalis (Hendel). Pest Biochem. Physiol. 2016, 130, 44–51. [Google Scholar] [CrossRef]
- Huang, Y.; Lin, M.; Jia, M.; Hu, J.; Zhu, L. Chemical composition and larvicidal activity against Aedes mosquitoes of essential oils from Arisaema fargesii. Pest Manag. Sci. 2020, 76, 534–542. [Google Scholar] [CrossRef]
- Horky, P.; Skalickova, S.; Smerkova, K.; Skladanka, J. Essential oils as a feed additive: Pharmacokinetics and potential toxicity in monogastric animals. Animals 2019, 9, 352. [Google Scholar] [CrossRef]
- Pavela, R.; Morshedloo, M.; Mumivand, H.; Khorsand, G.; Karami, A.; Maggi, F.; Desneux, N.; Benelli, G. Phenolic monoterpene-rich essential oils from Apiaceae and Lamiaceae species: Insecticidal activity and safety evaluation on non-target earthworms. Entomol. Gen. 2020, 40, 421–435. [Google Scholar] [CrossRef]
- Verdú, J.R.; Cortez, V.; Rosa-García, R.; Ortiz, A.J.; García-Prieto, U.; Lumaret, J.P.; Romero, C.G.; Sánchez-Piñero, F. Nontoxic effects of thymol, carvacrol, cinnamaldehyde, and garlic oil on dung beetles: A potential alternative to ecotoxic anthelmintics. PLoS ONE 2023, 18, e0295753. [Google Scholar] [CrossRef]
- Konig, I.F.M.; Chaves Reis, A.; Braga, M.A.; De Sousa Melo, D.; Aparecida Oliveira, E.; Maria Seles Dorneles, E.; Thomasi, S.S.; Neodini Remedio, R.; Marcussi, S. Comparative toxicological evaluation of carvacrol, acetylcarvacrol anda fipronil-based pesticide in human blood cells. Drug Chem. Toxicol. 2024, 47, 203–212. [Google Scholar] [CrossRef]
- Godara, R.; Katoch, R.; Yadav, A.; Ahanger, R.R.; Bhutyal, A.D.S.; Verma, P.K.; Katoch, M.; Dutta, S.; Nisa, F.; Singh, N.K. In vitro acaricidal activity of ethanolic and aqueous floral extracts of Calendula officinalis against synthetic pyrethroid resistant Rhipicephalus (Boophilus) microplus. Exp. Appl. Acarol. 2015, 67, 147–157. [Google Scholar] [CrossRef]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Hemingway, J.; Ranson, H. Insecticide resistance in insect vectors of human disease. Annu. Rev. Entomol. 2000, 45, 371–391. [Google Scholar] [CrossRef] [PubMed]
- Kao, C.H.; Hung, C.F.; Sun, C.N. Parathion and methyl parathion resistance in diamondback moth (Lepidoptera: Plutellidae) larvae. J. Econ. Entomol. 1989, 82, 1299–1304. [Google Scholar] [CrossRef]
- William, G.B.; Janet, C. Heme peroxidase activity measured in single mosquitoes identifies individuals expressing an elevated oxidase for insecticide resistance. J. Am. Mosq. Control Assoc. 1997, 13, 233. [Google Scholar]
Essential Oils | Life Stage | LC50 (95% CL) (μg/cm3) | LC90 (95% CL) (μg/cm3) | Slope ± SE | R2 Value | χ2 Value (df, p) | p Value b | RT c |
---|---|---|---|---|---|---|---|---|
Germany oil | Larvae | 3.53 (2.89–4.41) | 7.15 (5.11–11.18) | 4.98 ± 0.52 | 0.915 | 0.59 (4, 0.78) | - | 4.4 |
Nymph | 12.32 (9.87–15.15) | 24.14 (20.15–31.01) | 3.87 ± 0.51 | 0.942 | 1.02 (3, 0.61) | - | 2.3 | |
Adult | 18.14 (15.44–23.01) | 40.74 (35.29–49.15) | 3.19 ± 0.44 | 0.953 | 1.54 (3, 0.49) | - | 2.7 | |
Albania oil | Larvae | 4.49 (3.67–5.38) | 10.14 (8.14–14.95) | 4.21 ± 0.68 | 0.934 | 0.69 (4, 0.71) | 0.032 | 3.4 |
Nymph | 13.86 (11.95–16.89) | 32.18 (27.15–41.19) | 4.01 ± 0.59 | 0.961 | 1.56 (3, 0.62) | 0.045 | 2.1 | |
Adult | 21.02 (18.06–25.34) | 44.16 (39.18–55.57) | 4.99 ± 0.51 | 0.958 | 2.41 (3, 0.69) | 0.048 | 2.3 | |
Iran oil | Larvae | 5.27 (4.58–6.11) | 14.21 (9.68–20.26) | 5.19 ± 0.71 | 0.917 | 0.76 (4, 0.68) | 0.024 | 2.9 |
Nymph | 15.02 (12.27–19.27) | 36.54 (30.12–43.28) | 5.12 ± 0.63 | 0.924 | 1.14 (3, 0.59) | 0.029 | 1.9 | |
Adult | 25.29 (19.64–31.24) | 48.19 (40.16–59.28) | 3.97 ± 0.59 | 0.964 | 1.97 (3, 0.49) | 0.035 | 2.0 | |
Diethyltoluamide d | Larvae | 15.34 (13.42–17.41) | 39.39 (37.25–42.91) | 4.14 ± 0.63 | 0.894 | 2.91 (3, 0.54) | <0.001 | 1.0 |
Nymph | 28.61 (26.27–31.54) | 54.29 (50.71–57.89) | 3.91 ± 0.61 | 0.872 | 2.81 (4, 0.59) | <0.001 | 1.0 | |
Adult | 49.21 (46.41–52.15) | 72.46 (65.09–83.04) | 5.01 ± 0.73 | 0.863 | 5.29 (4, 0.41) | <0.001 | 1.0 |
Chemical | Classification | Retention Time (min) | Retention Index | Relative (%) | |||||
---|---|---|---|---|---|---|---|---|---|
Germany | Albania | Iran | |||||||
α-Terpinene | Monoterpene Hydrocarbons | 6.28 | 1018 | 0.30 | 0.3% | 0.46 | 0.5% | 2.41 | 2.5% |
Cymene | Monoterpene Hydrocarbons | 6.42 | 1026 | 4.94 | 5.0% | 5.59 | 5.6% | 6.34 | 6.5% |
γ-Terpinene | Monoterpene Hydrocarbons | 7.06 | 1062 | 2.77 | 2.8% | 3.33 | 3.4% | 5.36 | 5.5% |
Borneol | Monoterpene Alcohols | 10.03 | 1108 | 0.49 | 0.5% | ||||
Linalool | Monoterpene Alcohols | 10.14 | 1115 | 2.36 | 2.4% | 2.98 | 3.0% | 4.98 | 5.1% |
Thymol | Phenols | 11.38 | 1302 | 4.72 | 4.8% | 5.74 | 5.8% | 8.68 | 8.9% |
Carvacrol | Phenols | 11.66 | 1310 | 83.38 | 83.9% | 79.66 | 80.1% | 63.86 | 65.6% |
Thymoquinone | Quinones | 12.15 | 1359 | 0.23 | 0.2% | ||||
Caryophyllene | Sesquiterpenes | 13.09 | 1420 | 0.41 | 0.4% | 1.75 | 1.8% | 5.52 | 5.7% |
Compounds | LC50 (95% CI) b | LC90 (95% CI) b | Slop ± SE | p Value c | χ2 (df, p) | RT50 d |
---|---|---|---|---|---|---|
α-Terpinene | − | − | − | ns f | − | − |
Cymene | − | − | − | ns | − | − |
γ-Terpinene | − | − | − | ns | − | − |
Borneol | − | − | − | ns | − | − |
Linalool | − | − | − | ns | − | − |
Thymol | 10.37 (8.59–12.24) | 17.95 (14.49–23.65) | 5.19 ± 0.68 | <0.05 | 1.22 (4, 0.76) | 2.8 |
Carvacrol | 8.21 (7.19–9.94) | 14.68 (11.87–20.56) | 5.31 ± 0.79 | <0.01 | 1.09 (4, 0.74) | 3.5 |
Thymoquinone | 4.98 (3.56–6.24) | 9.67 (7.56–14.21) | 4.68 ± 0.79 | <0.01 | 1.68 (3, 0.57) | 5.8 |
Caryophyllene | − | − | − | ns | − | − |
Permethrin e | 18.24 (15.29–24.67) | 31.57 (25.64–43.51) | 4.17 ± 0.72 | <0.01 | 2.17 (4, 0.81) | 1.6 |
Diethyltoluamide e | 28.61 (26.27–31.54) | 54.29 (50.71–57.89) | 3.91 ± 0.61 | <0.01 | 2.81 (4, 0.59) | 1.0 |
Compounds | LC50 (95% CI) b (μg/cm3) | LC90 (95% CI) b (μg/cm3) | Slop ± SE | χ2 (df, p) | RT50 c | |
---|---|---|---|---|---|---|
Thymol | Larvae | 5.26 * (4.14–6.85) | 9.31 (7.19–11.63) | 3.98 ± 0.52 | 4.36 (4, 0.52) | 2.9 |
Nymphs | 10.37 * (8.59–12.24) | 17.95 (14.49–23.65) | 5.19 ± 0.68 | 1.22 (4, 0.76) | 2.8 | |
Adults | 17.92 * (13.95–22.64) | 28.14 (24.95–32.63) | 3.65 ± 0.38 | 2.56 (3, 0.52) | 2.7 | |
Carvacrol | Larvae | 3.47 * (2.14–4.92) | 7.61 (5.25–9.87) | 2.67 ± 0.35 | 4.31 (3, 0.31) | 4.4 |
Nymphs | 8.21 * (7.19–9.94) | 14.68 (11.87–20.56) | 5.31 ± 0.79 | 1.089 (4, 0.74) | 3.5 | |
Adults | 15.27 * (11.19–19.98) | 24.17 (21.27–28.66) | 4.28 ± 0.62 | 2.96 (4, 0.56) | 3.2 | |
Permethrin d | Larvae | 10.24 * (8.13–14.47) | 21.15 (16.38–30.29) | 4.96 ± 0.81 | 3.14 (3, 0.59) | 1.5 |
Nymphs | 18.24 * (15.29–24.67) | 31.57 (25.64–43.51) | 4.17 ± 0.72 | 2.17 (4, 0.81) | 1.6 | |
Adults | 33.72 (23.64–45.54) | 62.87 (49.28–79.64) | 5.68 ± 0.76 | 3.59 (4, 0.77) | 1.4 | |
Diethyltoluamide d | Larvae | 15.31 * (12.21–19.32) | 39.57 (35.08–45.22) | 3.69 ± 0.53 | 3.21 (3, 0.56) | 1.0 |
Nymphs | 28.61 * (26.27–31.54) | 54.29 (50.71–57.89) | 3.91 ± 0.61 | 2.81 (4, 0.59) | 1.0 | |
Adults | 48.58 * (43.25–55.59) | 78.64 (62.52–89.43) | 4.65 ± 0.74 | 5.67 (4, 0.48) | 1.0 |
Sample | Conc. (mg/mL) | AChE Activity (nmol/min/mg Protein ± SE) | Inhibition (%) | p-Value | |
---|---|---|---|---|---|
Carvacrol | In vitro | 30 | 9.23 ± 0.45 | 85.4 | <0.05 a |
20 | 21.47 ± 0.86 | 65.9 | <0.05 | ||
10 | 29.89 ± 0.82 | 52.6 | <0.05 | ||
5.0 | 32.87 ± 0.58 | 47.9 | <0.05 | ||
2.5 | 41.13 ± 0.85 | 34.8 | <0.05 | ||
In vivo | LC50 (8.21) | 68.25 ± 1.32 | 25.9 | <0.01 b |
Treatment (mg/mL) | GST (µmol/min/mg Protein ± SE) | α-Esterase | β-Esterase | P450s (nmol/min/mg Protein ± SE) |
---|---|---|---|---|
(nmol/min/mg Protein ± SE) | ||||
Control | 1.60 ± 0.07 | 730.2 ± 22.1 | 595.6 ± 18.6 | 2.83 ± 0.06 |
LC50 (8.21) | 1.54 ± 0.06 | 549.4 ± 26.7 * | 425.4 ± 21.3 * | 1.49 ± 0.08 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, N.-H.; Lee, S.; Chung, N.; Lee, H.-S. Haemaphysalis longicornis and Carvacrol as Acaricide: Efficacy and Mechanism of Action. Molecules 2025, 30, 1518. https://doi.org/10.3390/molecules30071518
Lee N-H, Lee S, Chung N, Lee H-S. Haemaphysalis longicornis and Carvacrol as Acaricide: Efficacy and Mechanism of Action. Molecules. 2025; 30(7):1518. https://doi.org/10.3390/molecules30071518
Chicago/Turabian StyleLee, Na-Hyun, Sangmin Lee, Namhyun Chung, and Hoi-Seon Lee. 2025. "Haemaphysalis longicornis and Carvacrol as Acaricide: Efficacy and Mechanism of Action" Molecules 30, no. 7: 1518. https://doi.org/10.3390/molecules30071518
APA StyleLee, N.-H., Lee, S., Chung, N., & Lee, H.-S. (2025). Haemaphysalis longicornis and Carvacrol as Acaricide: Efficacy and Mechanism of Action. Molecules, 30(7), 1518. https://doi.org/10.3390/molecules30071518