Structural Rearrangement in Cyclic Cu(II) Pyridyltriazole Complexes: Oxidation of Dabco to Oxalate and CO2 Conversion to Carbonate
Abstract
:1. Introduction
2. Results and Discussion
2.1. Interactions of Supramolecular Complexes with Dabco in Air
2.2. Spectroscopic Monitoring of the Interaction Between Supramolecules and Dabco
2.3. Role of Water in Carbonate/Oxalate Formation
2.4. Spectroscopic Characterization
2.5. Sources of Carbonate and Oxalate
2.6. Release of Carbonate Ion from Complex [3]4+
2.7. Synthesis of Cu(I) Complex of ortho-Xylylenebis(Pyridyltriazole) (o-xpt) and Its Reactivity with CO2-Enriched Air
3. Materials and Methods
3.1. General Procedures
3.2. Experimental Procedures
3.3. X-Ray Crystallography
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, J.; Chen, L.; Cui, H.; Zhang, J.; Zhang, L.; Su, C.-Y. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev. 2014, 43, 611–661. [Google Scholar] [CrossRef] [PubMed]
- Kan, L.; Zhang, L.; Dong, L.-Z.; Wang, X.-H.; Li, R.-H.; Guo, C.; Li, X.; Yan, Y.; Li, S.-L.; Lan, Y.-Q. Bridging the Homogeneous and Heterogeneous Catalysis by Supramolecular Metal-Organic Cages with Varied Packing Modes. Adv. Mater. 2024, 36, 2310061. [Google Scholar] [CrossRef] [PubMed]
- Pullen, S.; Clever, G.H. Catalysis in confined space: Relationship between metal-organic frameworks and discrete coordination cages. Monogr. Supramol. Chem. 2021, 31, 247–281. [Google Scholar] [CrossRef]
- Tong, H.-Y.; Liang, J.; Wu, Q.-J.; Zou, Y.-H.; Huang, Y.-B.; Cao, R. Soluble imidazolium-functionalized coordination cages for efficient homogeneous catalysis of CO2 cycloaddition reactions. Chem. Commun. 2021, 57, 2140–2143. [Google Scholar] [CrossRef]
- Yang, X.; Sun, J.-K.; Kitta, M.; Pang, H.; Xu, Q. Encapsulating highly catalytically active metal nanoclusters inside porous organic cages. Nat. Catal. 2018, 1, 214–220. [Google Scholar] [CrossRef]
- Ngai, C.; da Camara, B.; Woods, C.Z.; Hooley, R.J. Size- and Shape-Selective Catalysis with a Functionalized Self-Assembled Cage Host. J. Org. Chem. 2021, 86, 12862–12871. [Google Scholar] [CrossRef]
- Chang, X.; Lin, S.; Wang, G.; Shang, C.; Wang, Z.; Liu, K.; Fang, Y.; Stang, P.J. Self-Assembled Perylene Bisimide-Cored Trigonal Prism as an Electron-Deficient Host for C60 and C70 Driven by “Like Dissolves Like”. J. Am. Chem. Soc. 2020, 142, 15950–15960. [Google Scholar] [CrossRef]
- Fan, W.; Peh, S.B.; Zhang, Z.; Yuan, H.; Yang, Z.; Wang, Y.; Chai, K.; Sun, D.; Zhao, D. Tetrazole-Functionalized Zirconium Metal-Organic Cages for Efficient C2H2/C2H4 and C2H2/CO2 Separations. Angew. Chem. Int. Ed. 2021, 60, 17338–17343. [Google Scholar] [CrossRef]
- Lai, Y.-L.; Su, J.; Wu, L.-X.; Luo, D.; Wang, X.-Z.; Zhou, X.-C.; Zhou, C.-W.; Zhou, X.-P.; Li, D. Selective separation of pyrene from mixed polycyclic aromatic hydrocarbons by a hexahedral metal-organic cage. Chin. Chem. Lett. 2024, 35, 108326. [Google Scholar] [CrossRef]
- Nguyen, B.-N.T.; Thoburn, J.D.; Grommet, A.B.; Howe, D.J.; Ronson, T.K.; Ryan, H.P.; Bolliger, J.L.; Nitschke, J.R. Coordination cages selectively transport molecular cargoes across liquid membranes. J. Am. Chem. Soc. 2021, 143, 12175–12180. [Google Scholar] [CrossRef]
- Zhang, D.; Ronson, T.K.; Zou, Y.-Q.; Nitschke, J.R. Metal-organic cages for molecular separations. Nat. Rev. Chem. 2021, 5, 168–182. [Google Scholar] [CrossRef] [PubMed]
- Asad, M.; Imran Anwar, M.; Abbas, A.; Younas, A.; Hussain, S.; Gao, R.; Li, L.-K.; Shahid, M.; Khan, S. AIE based luminescent porous materials as cutting-edge tool for environmental monitoring: State of the art advances and perspectives. Coord. Chem. Rev. 2022, 463, 214539. [Google Scholar] [CrossRef]
- Dey, N.; Haynes, C.J.E. Supramolecular Coordination Complexes as Optical Biosensors. ChemPlusChem 2021, 86, 418–433. [Google Scholar] [CrossRef] [PubMed]
- Meng, Z.; Yang, F.; Wang, X.; Shan, W.-L.; Liu, D.; Zhang, L.; Yuan, G. Trefoil-Shaped Metal-Organic Cages as Fluorescent Chemosensors for Multiple Detection of Fe3+, Cr2O72−, and Antibiotics. Inorg. Chem. 2023, 62, 1297–1305. [Google Scholar] [CrossRef]
- Zhu, C.-Y.; Pan, M.; Su, C.-Y. Metal-Organic Cages for Biomedical Applications. Isr. J. Chem. 2019, 59, 209–219. [Google Scholar] [CrossRef]
- Chakrabarty, R.; Mukherjee, P.S.; Stang, P.J. Supramolecular Coordination: Self-Assembly of Finite Two- and Three-Dimensional Ensembles. Chem. Rev. 2011, 111, 6810–6918. [Google Scholar] [CrossRef]
- Cook, T.R.; Stang, P.J. Recent Developments in the Preparation and Chemistry of Metallacycles and Metallacages via Coordination. Chem. Rev. 2015, 115, 7001–7045. [Google Scholar] [CrossRef]
- Cook, T.R.; Zheng, Y.-R.; Stang, P.J. Metal–Organic Frameworks and Self-Assembled Supramolecular Coordination Complexes: Comparing and Contrasting the Design, Synthesis, and Functionality of Metal–Organic Materials. Chem. Rev. 2013, 113, 734–777. [Google Scholar] [CrossRef]
- Pokharel, U.R.; Fronczek, F.R.; Maverick, A.W. Cyclic pyridyltriazole–Cu (II) dimers as supramolecular hosts. Dalton Trans. 2013, 42, 14064–14067. [Google Scholar] [CrossRef]
- Wood, D.M.; Meng, W.; Ronson, T.K.; Stefankiewicz, A.R.; Sanders, J.K.M.; Nitschke, J.R. Guest-Induced Transformation of a Porphyrin-Edged FeII4L6 Capsule into a CuIFeII2L4 Fullerene Receptor. Angew. Chem. Int. Ed. 2015, 54, 3988–3992. [Google Scholar] [CrossRef]
- Cherutoi, J.K.; Sandifer, J.D.; Pokharel, U.R.; Fronczek, F.R.; Pakhomova, S.; Maverick, A.W. Externally and Internally Functionalized Copper(II) β-Diketonate Molecular Squares. Inorg. Chem. 2015, 54, 7791–7802. [Google Scholar] [CrossRef] [PubMed]
- Turega, S.; Whitehead, M.; Hall, B.R.; Meijer, A.J.H.M.; Hunter, C.A.; Ward, M.D. Shape-, Size-, and Functional Group-Selective Binding of Small Organic Guests in a Paramagnetic Coordination Cage. Inorg. Chem. 2013, 52, 1122–1132. [Google Scholar] [CrossRef] [PubMed]
- Walther, A.; Regeni, I.; Holstein, J.J.; Clever, G.H. Guest-Induced Reversible Transformation between an Azulene-Based Pd2L4 Lantern-Shaped Cage and a Pd4L8 Tetrahedron. J. Am. Chem. Soc. 2023, 145, 25365–25371. [Google Scholar] [CrossRef]
- Percástegui, E.G. Guest-Induced Transformations in Metal-Organic Cages. Eur. J. Inorg. Chem. 2021, 2021, 4425–4438. [Google Scholar] [CrossRef]
- Bravin, C.; Badetti, E.; Scaramuzzo, F.A.; Licini, G.; Zonta, C. Triggering Assembly and Disassembly of a Supramolecular Cage. J. Am. Chem. Soc. 2017, 139, 6456–6460. [Google Scholar] [CrossRef]
- Begato, F.; Licini, G.; Zonta, C. Programmed guest confinement via hierarchical cage to cage transformations. Chem. Sci. 2023, 14, 8147–8151. [Google Scholar] [CrossRef]
- Chakraborty, N.; Mitra, A.K. Versatility of DABCO as a Reagent in Organic Synthesis: A Review. Org. Biomol. Chem. 2023, 21, 6830–6880. [Google Scholar] [CrossRef]
- Kupietz, K.; Trouvé, J.; Roisnel, T.; Kahlal, S.; Gramage-Doria, R. A Highly Sterically Congested Bis-Zinc-Porphyrin Containing a Single Buta-1,3-diyne Linkage: From a Serendipitous Finding to Supramolecular Encapsulation. Eur. J. Org. Chem. 2023, 26, e202300621. [Google Scholar] [CrossRef]
- Samanta, S.K.; Samanta, D.; Bats, J.W.; Schmittel, M. DABCO as a Dynamic Hinge between Cofacial Porphyrin Panels and Its Tumbling inside a Supramolecular Cavity. J. Org. Chem. 2011, 76, 7466–7473. [Google Scholar] [CrossRef]
- Maverick, A.W.; Buckingham, S.C.; Yao, Q.; Bradbury, J.R.; Stanley, G.G. Intramolecular coordination of bidentate Lewis bases to a cofacial binuclear copper(II) complex. J. Am. Chem. Soc. 1986, 108, 7430–7431. [Google Scholar] [CrossRef]
- Fasano, F.; Bolgar, P.; Iadevaia, G.; Hunter, C.A. Supramolecular template-directed synthesis of triazole oligomers. Chem. Sci. 2022, 13, 13085–13093. [Google Scholar] [CrossRef] [PubMed]
- Kleij, A.W.; Kuil, M.; Lutz, M.; Tooke, D.M.; Spek, A.L.; Kamer, P.C.J.; van Leeuwen, P.W.N.M.; Reek, J.N.H. Supramolecular zinc(II) salphen motifs: Reversible dimerization and templated dimeric structures. Inorg. Chim. Acta 2006, 359, 1807–1814. [Google Scholar] [CrossRef]
- Knope, K.E.; Cahill, C.L. Hydrothermal Synthesis of a Novel Uranium Oxalate/Glycolate via In-Situ Ligand Formation. Inorg. Chem. 2007, 46, 6607–6612. [Google Scholar] [CrossRef]
- Pokharel, U.R.; Maverick, A.W.; Fronczek, F.R. Fronczek CCDC 987918: Experimental Crystal Structure Determination. 2014. Available online: https://www.ccdc.cam.ac.uk/structures/search?id=doi:10.5517/cc1250bl&sid=DataCite (accessed on 17 March 2025). [CrossRef]
- Mao, Z.-W.; Liehr, G.; van Eldik, R. Structural and mechanistic information on the reaction of bicarbonate with Cu(II) and Zn(II) complexes of tris(2-aminoethyl)amine. Identification of intermediate and product species. J. Chem. Soc. Dalton Trans. 2001, 1593–1600. [Google Scholar] [CrossRef]
- Antonelli, D.M.; Cowie, M. Unusual mixed-metal carbonate-bridged complexes via oxidation of a carbonyl ligand in [RhM(CO)4(Ph2PCH2PPh2)2] (M = Mn, Re) and [IrRe(CO)5(Ph2PCH2PPh2)2]. Organometallics 1991, 10, 2173–2177. [Google Scholar] [CrossRef]
- Sadique, A.R.; Brennessel, W.W.; Holland, P.L. Reduction of CO2 to CO using low-coordinate iron: Formation of a four-coordinate iron dicarbonyl complex and a bridging carbonate complex. Inorg. Chem. 2008, 47, 784–786. [Google Scholar] [CrossRef]
- Lozano, A.A.; Sáez, M.; Pérez, J.; García, L.; Lezama, L.; Rojo, T.; López, G.; García, G.; Santana, M.D. Structure and magnetic properties of carbonate-bridged five-coordinate nickel(II) complexes controlled by solvent effect. Dalton Trans. 2006, 3906–3911. [Google Scholar] [CrossRef]
- Sakamoto, S.; Yamauchi, S.; Hagiwara, H.; Matsumoto, N.; Sunatsuki, Y.; Re, N. Carbonate-bridged tetranuclear NiII2GdIII2 complex generated by atmospheric CO2 fixation. Inorg. Chem. Commun. 2012, 26, 20–23. [Google Scholar] [CrossRef]
- Sołtys-Brzostek, K.; Terlecki, M.; Sokołowski, K.; Lewiński, J. Chemical fixation and conversion of CO2 into cyclic and cage-type metal carbonates. Coord. Chem. Rev. 2017, 334, 199–231. [Google Scholar] [CrossRef]
- Dussart, Y.; Harding, C.; Dalgaard, P.; McKenzie, C.; Kadirvelraj, R.; McKee, V.; Nelson, J. Cascade chemistry in azacryptand cages: Bridging carbonates and methylcarbonates. J. Chem. Soc. Dalton Trans. 2002, 1704–1713. [Google Scholar] [CrossRef]
- Fondo, M.; García-Deibe, A.M.; Bermejo, M.R.; Sanmartín, J.; Llamas-Saiz, A.L. Spontaneous carbon dioxide fixation: A µ4-carbonate bridged tetranuclear zinc(II) complex of a heptadentate Schiff base. J. Chem. Soc. Dalton Trans. 2002, 4746–4750. [Google Scholar] [CrossRef]
- Wikstrom, J.P.; Filatov, A.S.; Mikhalyova, E.A.; Shatruk, M.; Foxman, B.M.; Rybak-Akimova, E.V. Carbonate formation within a nickel dimer: Synthesis of a coordinatively unsaturated bis(μ-hydroxo)dinickel complex and its reactivity toward carbon dioxide. Dalton Trans. 2010, 39, 2504–2514. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, P.; Drew, M.G.; Estrader, M.; Ghosh, A. Coordination-driven self-assembly of a novel carbonato-bridged heteromolecular neutral nickel (II) triangle by atmospheric CO2 fixation. Inorg. Chem. 2008, 47, 7784–7791. [Google Scholar] [CrossRef]
- Escuer, A.; Vicente, R.; Kumar, S.B.; Solans, X.; Font-Bardia, M.; Caneschi, A. A Novel Pentadentate Coordination Mode for the Carbonato Bridge: Synthesis, Crystal Structure, and Magnetic Behavior of (μ3-CO3)[Ni3(Medpt)3(NCS)4], a New Trinuclear Nickel(II) Carbonato-Bridged Complex with Strong Antiferromagnetic Coupling. Inorg. Chem. 1996, 35, 3094. [Google Scholar] [CrossRef]
- Evans, W.J.; Seibel, C.A.; Ziller, J.W. Organosamarium-mediated transformations of CO2 and COS: Monoinsertion and disproportionation reactions and the reductive coupling of CO2 to [O2CCO2]2−. Inorg. Chem. 1998, 37, 770–776. [Google Scholar] [CrossRef]
- Evans, W.J.; Lorenz, S.E.; Ziller, J.W. Investigating Metal Size Effects in the Ln2(μ-η2: η2-N2) Reduction System: Reductive Reactivity with Complexes of the Largest and Smallest Trivalent Lanthanide Ions, La3+ and Lu3+. Inorg. Chem. 2009, 48, 2001–2009. [Google Scholar] [CrossRef]
- Tanaka, K.; Kushi, Y.; Tsuge, K.; Toyohara, K.; Nishioka, T.; Isobe, K. Catalytic generation of oxalate through a coupling reaction of two CO2 molecules activated on [(Ir(η5-C5Me5)2)(Ir(η4-C5Me5)CH2CN)(μ3-S)2]. Inorg. Chem. 1998, 37, 120–126. [Google Scholar] [CrossRef]
- Stibrany, R.T.; Schugar, H.J.; Potenza, J.A. A copper(II)-oxalate compound resulting from the fixation of carbon dioxide: μ-oxalato-bis[bis(1-benzyl-1H-pyrazole)(trifluoromethanesulfonato)copper(II)]. Acta Crystallogr. Sect. E Crystallogr. Commun. 2005, 61, M1904–M1906. [Google Scholar] [CrossRef]
- Farrugia, L.J.; Lopinski, S.; Lovatt, P.A.; Peacock, R.D. Fixing carbon dioxide with copper: Crystal structure of [LCu(μ-C2O4)CuL][Ph4B]2 (L = N,N′,N′′-triallyl-1,4,7-triazacyclononane). Inorg. Chem. 2001, 40, 558–559. [Google Scholar] [CrossRef]
- Wong, W.K.; Zhang, L.L.; Xue, F.; Mak, C.W. Synthesis and X-ray crystal structure of an unexpected neutral oxalate-bridged ytterbium(III) porphyrinate dimer. J. Chem. Soc. Dalton Trans. 2000, 2245–2246. [Google Scholar] [CrossRef]
- Khamespanah, F.; Marx, M.; Crochet, D.B.; Pokharel, U.R.; Fronczek, F.R.; Maverick, A.W.; Beller, M. Oxalate production via oxidation of ascorbate rather than reduction of carbon dioxide. Nat. Commun. 2021, 12, 1997. [Google Scholar] [CrossRef] [PubMed]
- Crowley, J.D.; Bandeen, P.H. A multicomponent CuAAC “click” approach to a library of hybrid polydentate 2-pyridyl-1,2,3-triazole ligands: New building blocks for the generation of metallosupramolecular architectures. Dalton Trans. 2010, 39, 612–623. [Google Scholar] [CrossRef] [PubMed]
- McCarney, E.P.; Hawes, C.S.; Blasco, S.; Gunnlaugsson, T. Synthesis and structural studies of 1,4-di(2-pyridyl)-1,2,3-triazole dpt and its transition metal complexes; a versatile and subtly unsymmetric ligand. Dalton Trans. 2016, 45, 10209–10221. [Google Scholar] [CrossRef] [PubMed]
- Fleischel, O.; Wu, N.; Petitjean, A. Click-triazole: Coordination of 2-(1,2,3-triazol-4-yl)-pyridine to cations of traditional tetrahedral geometry (Cu(I), Ag(I)). Chem. Commun. 2010, 46, 8454–8456. [Google Scholar] [CrossRef]
- Findlay, J.A.; McAdam, C.J.; Sutton, J.J.; Preston, D.; Gordon, K.C.; Crowley, J.D. Metallosupramolecular Architectures Formed with Ferrocene-Linked Bis-Bidentate Ligands: Synthesis, Structures, and Electrochemical Studies. Inorg. Chem. 2018, 57, 3602–3614. [Google Scholar] [CrossRef]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2016, 72, 171–179. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Phase annealing in SHELX-90: Direct methods for larger structures. Acta Crystallogr. Sect. A Found. Adv. 1990, 46, 467–473. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Spek, A.L. PLATON SQUEEZE: A tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 9–18. [Google Scholar] [CrossRef]
Compound | [3](PF6)4 | [3]2[4](PF6)10 |
---|---|---|
Chemical formula | C67H54Cu3N24O3(PF6)4·8CH3CN | 2[C67H54Cu3N24O3(PF6)4]·C46H36Cu2N16O4(PF6)2·13.2C3H7NO |
Mr | 2342.27 | 6286.48 |
Deposition number | 2422201 | 2422202 |
Crystal system, space group | Monoclinic, C2/c | Triclinic, P |
Temperature (K) | 100.0 (5) | 90.0 (5) |
a, b, c (Å) | 24.980 (2), 16.581 (2), 25.075 (2) | 14.0459 (12), 14.8950 (15), 31.686 (3) |
α (deg) | 90 | 93.007 (7) |
β (deg) | 108.560 (8) | 101.480 (6) |
γ (deg) | 90 | 102.415 (6) |
V (Å3) | 9845.9 (17) | 6313.1 (10) |
Z | 4 | 1 |
Radiation type | Mo Kα | Cu Kα |
µ (mm−1) | 0.82 | 2.42 |
Crystal size (mm) | 0.13 × 0.11 × 0.09 | 0.19 × 0.08 × 0.04 |
Tmin, Tmax | 0.901, 0.930 | 0.656, 0.909 |
No. of measured, independent, and observed [I > 2σ(I)] reflections | 34,413, 10,126, 6908 | 46,744, 21,356, 7056 |
Rint | 0.074 | 0.109 |
(sin θ/λ)max (Å−1) | 0.628 | 0.588 |
R[I > 2σ(I)], wR(F2), S | 0.047, 0.124, 0.98 | 0.085, 0.238, 0.79 |
No. of parameters | 579 | 1495 |
No. of restraints | 0 | 526 |
∆ρmax, ∆ρmin (e Å−3) | 0.42, −0.42 | 0.55, −0.42 |
Compound | 5 | 6 |
---|---|---|
Chemical formula | C22H18CuN8(PF6)·2(C3H7NO) | C69H58Cu4N24O6(PF6)4·0.5C3H7NO·0.5C4H10O·CH3CN·0.48H2O |
Mr | 749.15 | 2276.74 |
Deposition number | 2422203 | 2422204 |
Crystal system, space group | Monoclinic, P21/c | Triclinic, P |
Temperature (K) | 100.0 (5) | 90.0 (5) |
a, b, c (Å) | 17.7197 (17), 7.9426 (8), 24.116 (3) | 19.4804 (10), 20.2673 (10), 22.6368 (11) |
α (deg) | 90 | 87.796 (2) |
β (deg) | 108.252 (5) | 88.026 (2) |
γ (deg) | 90 | 88.919 (2) |
V (Å3) | 3223.4 (6) | 8924.1 (8) |
Z | 4 | 4 |
Radiation type | Mo Kα | Cu Kα |
µ (mm−1) | 0.81 | 2.81 |
Crystal size (mm) | 0.42 × 0.16 × 0.07 | 0.18 × 0.15 × 0.07 |
Tmin, Tmax | 0.728, 0.946 | 0.622, 0.827 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 44,222, 6547, 5476 | 134,009, 25,452, 16,636 |
Rint | 0.038 | 0.206 |
(sin θ/λ)max (Å−1) | 0.626 | 0.556 |
R[I > 2σ(I)], wR(F2), S | 0.033, 0.085, 1.03 | 0.089, 0.252, 1.02 |
No. of parameters | 474 | 2524 |
No. of restraints | 45 | 27 |
∆ρmax, ∆ρmin (e Å−3) | 0.34, −0.33 | 1.31, −0.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pokharel, U.R.; Fronczek, F.R.; Maverick, A.W. Structural Rearrangement in Cyclic Cu(II) Pyridyltriazole Complexes: Oxidation of Dabco to Oxalate and CO2 Conversion to Carbonate. Molecules 2025, 30, 1430. https://doi.org/10.3390/molecules30071430
Pokharel UR, Fronczek FR, Maverick AW. Structural Rearrangement in Cyclic Cu(II) Pyridyltriazole Complexes: Oxidation of Dabco to Oxalate and CO2 Conversion to Carbonate. Molecules. 2025; 30(7):1430. https://doi.org/10.3390/molecules30071430
Chicago/Turabian StylePokharel, Uttam R., Frank R. Fronczek, and Andrew W. Maverick. 2025. "Structural Rearrangement in Cyclic Cu(II) Pyridyltriazole Complexes: Oxidation of Dabco to Oxalate and CO2 Conversion to Carbonate" Molecules 30, no. 7: 1430. https://doi.org/10.3390/molecules30071430
APA StylePokharel, U. R., Fronczek, F. R., & Maverick, A. W. (2025). Structural Rearrangement in Cyclic Cu(II) Pyridyltriazole Complexes: Oxidation of Dabco to Oxalate and CO2 Conversion to Carbonate. Molecules, 30(7), 1430. https://doi.org/10.3390/molecules30071430