Mechanistic Insights into Glycerol Oxidation to High-Value Chemicals via Metal-Based Catalysts
Abstract
:1. Introduction
2. Glycerol Oxidation: Basics and Catalysts
2.1. Glycerol Properties and Oxidation Products
2.1.1. Chemical Structure and Reactivity
2.1.2. Effect of Acid and Base in Glycerol Oxidation
2.1.3. Catalytic Mechanisms in Glycerol Oxidation: Thermal, Photocatalytic, and Electrocatalytic Approaches
2.1.4. Oxidation Pathways and Products
2.2. Types of Metal-Based Catalysts
2.2.1. Monometallic Catalyst
2.2.2. Bimetallic Catalysts
2.2.3. Metal Oxide Catalysts
3. Mechanistic Roles of Metal-Based Catalysts in Glycerol Oxidation
3.1. Selective Adsorption and Oxidation
3.2. Activation of Glycerol
3.3. Formation and Stabilization of Intermediates
3.4. Selective C–C Bond Cleavage
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Wang, M.; Zhang, B.; Yan, D.; Xiang, X. Mediating the oxidizing capability of surface-bound hydroxyl radicals produced by photoelectrochemical water oxidation to convert glycerol into dihydroxyacetone. ACS Catal. 2022, 12, 6946–6957. [Google Scholar] [CrossRef]
- An, Z.; Ma, H.; Han, H.; Huang, Z.; Jiang, Y.; Wang, W.; Zhu, Y.; Song, H.; Shu, X.; Xiang, X.; et al. Insights into the multiple synergies of supports in the selective oxidation of glycerol to dihydroxyacetone: Layered double hydroxide supported Au. ACS Catal. 2020, 10, 12437–12453. [Google Scholar] [CrossRef]
- Liu, X.; Zou, Y.; Jiang, J. Sunlight-driven selective oxidation of glycerol on formate oxidase mimicking Au-Pt/TiO2. Appl. Catal. B Environ. 2024, 350, 123927. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, Q.; Meng, A.; Wu, X.; Xiao, Y.; Su, C.; Zhang, Q. Molecular heptazine-triazine junction over carbon nitride frameworks for artificial photosynthesis of hydrogen peroxide. Adv. Mater. 2023, 35, e2306831. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Z.-Q.; Sun, Y.-D.; Ma, X.-J.; Jin, F.-X.; Zhang, F.-Y.; Han, W.-G.; Shen, B.-X.; Guo, S.-Q. A review on WO3-based composite photocatalysts: Synthesis, catalytic mechanism and diversified applications. Rare Met. 2024, 43, 3441–3459. [Google Scholar] [CrossRef]
- Balog, Á.; Kecsenovity, E.; Samu, G.F.; He, J.; Fekete, D.; Janáky, C. Paired photoelectrochemical conversion of CO2/H2O and glycerol at high rate. Nat. Catal. 2024, 7, 522–535. [Google Scholar] [CrossRef]
- Lin, C.; Dong, C.; Kim, S.; Lu, Y.; Wang, Y.; Yu, Z.; Gu, Y.; Gu, Z.; Lee, D.K.; Zhang, K.; et al. Photo-electrochemical glycerol conversion over a Mie scattering effect enhanced porous BiVO4 photoanode. Adv. Mater. 2023, 35, 2209955. [Google Scholar]
- Feng, X.; Feng, X.; Zhang, F. Enhanced photoelectrochemical oxidation of glycerol to dihydroxyacetone coupled with hydrogen generation via accelerative middle hydroxyl dehydrogenation over a Bi0/Bi3+ interface of a cascade heterostructure. J. Mater. Chem. A 2023, 11, 20242–20253. [Google Scholar] [CrossRef]
- Ma, Y.; Sun, H.; Wang, Q.; Sun, L.; Liu, Z.; Xie, Y.; Zhang, Q.; Su, C.; Fan, D. Driving hydrogen peroxide artificial photosynthesis and utilization for emerging contaminants removal by cyanided polymeric carbon nitride. Appl. Catal. B Environ. 2023, 335, 122878. [Google Scholar] [CrossRef]
- Sun, Y.-D.; Zeng, C.; Zhang, X.; Zhang, Z.-Q.; Yang, B.; Guo, S.-Q. Tendencies of alloyed engineering in BiOX-based photocatalysts: A state-of-the-art review. Rare Met. 2024, 43, 1488–1512. [Google Scholar] [CrossRef]
- Fan, L.; Liu, B.; Liu, X.; Senthilkumar, N.; Wang, G.; Wen, Z. Recent progress in electrocatalytic glycerol oxidation. Energy Technol. 2021, 9, 2000804. [Google Scholar] [CrossRef]
- Li, T.; Harrington, D.A. An overview of glycerol electrooxidation mechanisms on Pt, Pd, and Au. ChemSusChem 2021, 14, 1472–1495. [Google Scholar] [CrossRef] [PubMed]
- Teng, Z.; Zhang, Q.; Yang, H.; Kato, K.; Yang, W.; Lu, Y.-R.; Liu, S.; Wang, C.; Yamakata, A.; Su, C.; et al. Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide. Nat. Catal. 2021, 4, 374–384. [Google Scholar] [CrossRef]
- Sun, X.-D.; Guo, X.; Zhang, J.-H.; Wu, J.; Shi, Y.; Sun, H.-Y.; Pan, C.-F.; Pan, L.-J. A new study on formation mechanism of ordered porous anodized metal oxides. Rare Met. 2024, 43, 5410–5418. [Google Scholar] [CrossRef]
- Liu, D.; Liu, J.-C.; Cai, W.; Ma, J.; Yang, H.B.; Xiao, H.; Li, J.; Xiong, Y.; Huang, Y.; Liu, B. Selective photoelectrochemical oxidation of glycerol to high value-added dihydroxyacetone. Nat. Commun. 2019, 10, 1779. [Google Scholar] [CrossRef]
- Lu, Y.; Lee, B.G.; Lin, C.; Liu, T.-K.; Wang, Z.; Miao, J.; Oh, S.H.; Kim, K.C.; Zhang, K.; Park, J.H. Solar-driven highly selective conversion of glycerol to dihydroxyacetone using surface atom engineered BiVO4 photoanodes. Nat. Commun. 2024, 15, 5475. [Google Scholar] [CrossRef]
- Tang, J.; Li, X.; Ma, Y.; Wang, K.; Liu, Z.; Zhang, Q. Boosting exciton dissociation and charge transfer by regulating dielectric constant in polymer carbon nitride for CO2 photoreduction. Appl. Catal. B Environ. 2023, 327, 122417. [Google Scholar] [CrossRef]
- Hilbrands, A.M.; Goetz, M.K.; Choi, K.-S. C–C bond formation coupled with C–C bond cleavage during oxidative upgrading of glycerol on a nanoporous BiVO4 photoanode. J. Am. Chem. Soc. 2023, 145, 25382–25391. [Google Scholar] [CrossRef]
- Luo, L.; Chen, W.; Xu, S.-M.; Yang, J.; Li, M.; Zhou, H.; Xu, M.; Shao, M.; Kong, X.; Li, Z.; et al. Selective photoelectrocatalytic glycerol oxidation to dihydroxyacetone via enhanced middle hydroxyl adsorption over a Bi2O3-incorporated catalyst. J. Am. Chem. Soc. 2022, 144, 7720–7730. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, J.; Li, G.; Zhang, D.; Li, H. Recent advances in photocatalytic renewable energy production. Energy Mater. 2022, 2, 200001. [Google Scholar] [CrossRef]
- Li, Y.-R.; Li, M.-X.; Li, S.-N.; Liu, Y.-J.; Chen, J.; Wang, Y. A review of energy and environment electrocatalysis based on high-index faceted nanocrystals. Rare Met. 2021, 40, 3406–3441. [Google Scholar] [CrossRef]
- He, K.; Huang, Z.; Shen, R.; Myagmarsereejid, P.; Zhang, Q.; Li, X.; Zhong, Y.L. Etching strategy for photocatalysis: The evolution of structures and properties. Solar RRL 2023, 7, 2300408. [Google Scholar] [CrossRef]
- Haider, M.H.; Dummer, N.F.; Knight, D.W.; Jenkins, R.L.; Howard, M.; Moulijn, J.; Taylor, S.H.; Hutchings, G.J. Efficient green methanol synthesis from glycerol. Nat. Chem. 2015, 7, 1028–1032. [Google Scholar] [CrossRef] [PubMed]
- Vo, T.-G.; Ho, P.-Y.; Chiang, C.-Y. Operando mechanistic studies of selective oxidation of glycerol to dihydroxyacetone over amorphous cobalt oxide. Appl. Catal. B Environ. 2022, 300, 120723. [Google Scholar] [CrossRef]
- Zhu, Q.; Fan, J.; Tao, Y.; Shang, H.; Xu, J.; Zhang, D.; Li, G.; Li, H. Photo-coupled electrocatalytic oxygen reduction to hydrogen peroxide using metal-free CNT-threaded oxidized g-C3N4. Energy Mater. 2022, 2, 200029. [Google Scholar] [CrossRef]
- Li, C.; Zhao, D.-H.; Long, H.-L.; Li, M. Recent advances in carbonized non-noble metal–organic frameworks for electrochemical catalyst of oxygen reduction reaction. Rare Met. 2021, 40, 2657–2689. [Google Scholar] [CrossRef]
- Houache, M.S.E.; Safari, R.; Nwabara, U.O.; Rafaïdeen, T.; Botton, G.A.; Kenis, P.J.A.; Baranton, S.; Coutanceau, C.; Baranova, E.A. Selective electrooxidation of glycerol to formic acid over carbon supported Ni1–xMx(M = Bi, Pd, and Au) nanocatalysts and coelectrolysis of CO2. ACS Appl. Energy Mater. 2020, 3, 8725–8738. [Google Scholar] [CrossRef]
- Martins, C.A.; Pei, P.; Tellis, M.; Ibrahim, O.A.; Kjeang, E. Graphene-oxide-modified metal-free cathodes for glycerol/bleach microfluidic fuel cells. ACS Appl. Nano Mater. 2020, 3, 8286–8293. [Google Scholar] [CrossRef]
- Teng, Z.; Yang, H.; Zhang, Q.; Cai, W.; Lu, Y.-R.; Kato, K.; Zhang, Z.; Ding, J.; Sun, H.; Liu, S.; et al. Atomically dispersed low-valent Au boosts photocatalytic hydroxyl radical production. Nat. Chem. 2024, 16, 1250–1260. [Google Scholar] [CrossRef]
- Jiao, L.; Wei, W.; Li, X.; Hong, C.-B.; Han, S.-G.; Khan, M.I.; Zhu, Q.-L. Value-added formate production from selective ethylene glycol oxidation based on cost-effective self-supported MOF nanosheet arrays. Rare Met. 2022, 41, 3654–3661. [Google Scholar] [CrossRef]
- Houache, M.S.E.; Hughes, K.; Safari, R.; Botton, G.A.; Baranova, E.A. Modification of nickel surfaces by bismuth: Effect on electrochemical activity and selectivity toward glycerol. ACS Appl. Mater. Interfaces. 2020, 12, 15095–15107. [Google Scholar] [CrossRef] [PubMed]
- de Souza, M.B.C.; Yukuhiro, V.Y.; Vicente, R.A.; Vilela Menegaz Teixeira Pires, C.T.G.; Bott-Neto, J.L.; Fernández, P.S. Pb- and Bi-modified Pt electrodes toward glycerol electrooxidation in alkaline media. Activity, selectivity, and the importance of the Pt atoms arrangement. ACS Catal. 2020, 10, 2131–2137. [Google Scholar] [CrossRef]
- Wu, X.; Ling Tan, H.; Zhang, C.; Teng, Z.; Liu, Z.; Hau Ng, Y.; Zhang, Q.; Su, C. Recent advances in two-dimensional ultrathin Bi-based photocatalysts. Prog. Mater. Sci. 2023, 133, 101047. [Google Scholar] [CrossRef]
- Hao, X.-L.; Zhao, N.; Jin, H.-H.; Ma, W.; Zhang, D.-H. Nickel-free sealing technology for anodic oxidation film of aluminum alloy at room temperature. Rare Met. 2020, 40, 968–974. [Google Scholar] [CrossRef]
- Han, X.; Sheng, H.; Yu, C.; Walker, T.W.; Huber, G.W.; Qiu, J.; Jin, S. Electrocatalytic oxidation of glycerol to formic acid by CuCo2O4 spinel oxide nanostructure catalysts. ACS Catal. 2020, 10, 6741–6752. [Google Scholar] [CrossRef]
- Morales, D.M.; Jambrec, D.; Kazakova, M.A.; Braun, M.; Sikdar, N.; Koul, A.; Brix, A.C.; Seisel, S.; Andronescu, C.; Schuhmann, W. Electrocatalytic conversion of glycerol to oxalate on Ni oxide nanoparticles-modified oxidized multiwalled carbon nanotubes. ACS Catal. 2022, 12, 982–992. [Google Scholar] [CrossRef]
- Xu, B.; Jia, L.; Yang, H.; Wang, Y.; Fan, S.-Y.; Yuan, S.-S.; Zhang, Q.-T.; Zhang, M.; Ohno, T. Improved photocatalytic performance of acetaldehyde degradation via crystal plane regulation on truncated octahedral CeO2. Rare Met. 2024, 43, 2026–2038. [Google Scholar] [CrossRef]
- Dong, L.; Chang, G.-R.; Feng, Y.; Yao, X.-Z.; Yu, X.-Y. Regulating Ni site in NiV LDH for efficient electrocatalytic production of formate and hydrogen by glycerol electrolysis. Rare Met. 2022, 41, 1583–1594. [Google Scholar] [CrossRef]
- Xiong, L.; Yu, Z.; Cao, H.; Guan, W.; Su, Y.; Pan, X.; Zhang, L.; Liu, X.; Wang, A.; Tang, J. Converting Glycerol into Valuable Trioses by Cuδ+-Single-Atom-Decorated WO3 under Visible Light. Angew. Chem. Int. Ed. 2024, 63, e202318461. [Google Scholar] [CrossRef]
- Liu, C.; Hirohara, M.; Maekawa, T.; Chang, R.; Hayashi, T.; Chiang, C.-Y. Selective electro-oxidation of glycerol to dihydroxyacetone by a non-precious electrocatalyst—CuO. Appl. Catal. B Environ. 2020, 265, 118543. [Google Scholar] [CrossRef]
- Painter, R.M.; Pearson, D.M.; Waymouth, R.M. Selective catalytic oxidation of glycerol to dihydroxyacetone. Angew. Chem. Int. Ed. 2010, 49, 9456–9459. [Google Scholar] [CrossRef] [PubMed]
- Bruggeman, D.F.; Laporte, A.A.H.; Detz, R.J.; Mathew, S.; Reek, J.N.H. Aqueous biphasic dye-sensitized photosynthesis cells for TEMPO-based oxidation of glycerol. Angew. Chem. Int. Ed. 2022, 61, e202200175. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, A.; Romero, R.; Gutiérrez-Cedillo, G.P.; López-Tellez, G.; Lorenzo-González, O.; Gómez-Espinosa, R.M.; Natividad, R. Selective production of dihydroxyacetone and glyceraldehyde by photo-assisted oxidation of glycerol. Catal. Today 2020, 358, 149–154. [Google Scholar] [CrossRef]
- Sharninghausen, L.S.; Campos, J.; Manas, M.G.; Crabtree, R.H. Efficient selective and atom economic catalytic conversion of glycerol to lactic acid. Nat. Commun. 2014, 5, 5084. [Google Scholar] [CrossRef]
- He, K.; Huang, Z.; Chen, C.; Qiu, C.; Zhong, Y.L.; Zhang, Q. Exploring the roles of single atom in hydrogen peroxide photosynthesis. Nano-Micro Lett. 2023, 16, 23. [Google Scholar] [CrossRef]
- Villa, A.; Veith, G.M.; Prati, L. Selective oxidation of glycerol under acidic conditions using gold catalysts. Angew. Chem. Int. Ed. 2010, 49, 4499–4502. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Y.-Q.; Xie, Z.; Xu, S.-M.; Xu, M.; Li, Z.; Ma, L.; Ge, R.; Zhou, H.; Li, Z.; et al. Efficient electrocatalytic oxidation of glycerol via promoted OH* generation over single-atom-bismuth-doped spinel Co3O4. ACS Catal. 2022, 12, 12432–12443. [Google Scholar] [CrossRef]
- Yan, H.; Shen, Q.; Sun, Y.; Zhao, S.; Lu, R.; Gong, M.; Liu, Y.; Zhou, X.; Jin, X.; Feng, X.; et al. Tailoring facets of α-Mn2O3 microcrystalline catalysts for enhanced selective oxidation of glycerol to glycolic acid. ACS Catal. 2021, 11, 6371–6383. [Google Scholar] [CrossRef]
- Wang, X.-J.; Yuan, S.-S.; Yang, L.; Dong, Y.; Chen, Y.-M.; Zhang, W.-X.; Chen, C.-X.; Zhang, Q.-T.; Ohno, T. Spatially charge-separated 2D homojunction for photocatalytic hydrogen production. Rare Met. 2023, 42, 3952–3959. [Google Scholar] [CrossRef]
- Fan, L.; Ji, Y.; Wang, G.; Chen, J.; Chen, K.; Liu, X.; Wen, Z. High entropy alloy electrocatalytic electrode toward alkaline glycerol valorization coupling with acidic hydrogen production. J. Am. Chem. Soc. 2022, 144, 7224–7235. [Google Scholar] [CrossRef]
- Yan, H.; Liu, B.; Zhou, X.; Meng, F.; Zhao, M.; Pan, Y.; Li, J.; Wu, Y.; Zhao, H.; Liu, Y.; et al. Enhancing polyol/sugar cascade oxidation to formic acid with defect rich MnO2 catalysts. Nat. Commun. 2023, 14, 4509. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Barrio, J.; Sunny, N.; Li, A.; Steier, L.; Shah, N.; Stephens, I.E.L.; Titirici, M.M. Progress and perspectives in photo- and electrochemical-oxidation of biomass for sustainable chemicals and hydrogen production. Adv. Energy Mater. 2021, 11, 2101180. [Google Scholar] [CrossRef]
- Yang, F.; Ye, J.; Yuan, Q.; Yang, X.; Xie, Z.; Zhao, F.; Zhou, Z.; Gu, L.; Wang, X. Ultrasmall Pd-Cu-Pt trimetallic twin icosahedrons boost the electrocatalytic performance of glycerol oxidation at the operating temperature of fuel cells. Adv. Funct. Mater. 2020, 30, 1908235. [Google Scholar] [CrossRef]
- Xiong, L.; Qi, H.; Zhang, S.; Zhang, L.; Liu, X.; Wang, A.; Tang, J. Highly selective transformation of biomass derivatives to valuable chemicals by single-atom photocatalyst Ni/TiO2. Adv. Mater. 2023, 35, e2209646. [Google Scholar] [CrossRef]
- Wu, J.; Li, J.; Li, Y.; Ma, X.Y.; Zhang, W.Y.; Hao, Y.; Cai, W.B.; Liu, Z.P.; Gong, M. Steering the glycerol electro-reforming selectivity via cation–intermediate interactions. Angew. Chem. Int. Ed. 2022, 61, e202113362. [Google Scholar]
- Yan, H.; Zhao, M.; Feng, X.; Zhao, S.; Zhou, X.; Li, S.; Zha, M.; Meng, F.; Chen, X.; Liu, Y.; et al. PO43− coordinated robust single-atom platinum catalyst for selective polyol oxidation. Angew. Chem. Int. Ed. 2022, 61, e202116059. [Google Scholar] [CrossRef]
- Wu, J.; Liu, X.; Hao, Y.; Wang, S.; Wang, R.; Du, W.; Cha, S.; Ma, X.Y.; Yang, X.; Gong, M. Ligand hybridization for electro-reforming waste glycerol into isolable oxalate and hydrogen. Angew. Chem. Int. Ed. 2023, 62, e202216083. [Google Scholar]
- Wang, Y.; Liu, W.; Zhao, J.; Wang, Z.; Zhao, N. Oxidation of glycerol to dihydroxyacetone over highly stable Au catalysts supported on mineral-derived CuO-ZnO mixed oxide. Appl. Catal. A 2024, 671, 119578. [Google Scholar] [CrossRef]
- Vo, T.-G.; Kao, C.-C.; Kuo, J.-L.; Chiu, C.-c.; Chiang, C.-Y. Unveiling the crystallographic facet dependence of the photoelectrochemical glycerol oxidation on bismuth vanadate. Appl. Catal. B Environ. 2020, 278, 119303. [Google Scholar] [CrossRef]
- Goetz, M.K.; Bender, M.T.; Choi, K.-S. Predictive control of selective secondary alcohol oxidation of glycerol on NiOOH. Nat. Commun. 2022, 13, 5848. [Google Scholar] [CrossRef]
- He, Z.; Hwang, J.; Gong, Z.; Zhou, M.; Zhang, N.; Kang, X.; Han, J.W.; Chen, Y. Promoting biomass electrooxidation via modulating proton and oxygen anion deintercalation in hydroxide. Nat. Commun. 2022, 13, 3777. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Liu, M.; Wang, S.; Ren, K.; Wang, M.; Wang, Z.; Li, X.; Wang, L.; Wang, H. Integrating electrocatalytic hydrogen generation with selective oxidation of glycerol to formate over bifunctional nitrogen-doped carbon coated nickel-molybdenum-nitrogen nanowire arrays. Appl. Catal. B Environ. 2021, 298, 120493. [Google Scholar] [CrossRef]
- Yu, J.; Dappozze, F.; Martín-Gomez, J.; Hidalgo-Carrillo, J.; Marinas, A.; Vernoux, P.; Caravaca, A.; Guillard, C. Glyceraldehyde production by photocatalytic oxidation of glycerol on WO3-based materials. Appl. Catal. B Environ. 2021, 299, 120616. [Google Scholar] [CrossRef]
- Li, Y.; Wei, X.; Chen, L.; Shi, J.; He, M. Nickel-molybdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions. Nat. Commun. 2019, 10, 5335. [Google Scholar] [CrossRef]
- Ma, J.; Wang, X.; Song, J.; Tang, Y.; Sun, T.; Liu, L.; Wang, J.; Wang, J.; Yang, M. Synergistic Lewis and Brønsted acid sites promote OH* formation and enhance formate selectivity: Towards high-efficiency glycerol valorization. Angew. Chem. Int. Ed. 2024, 63, e202319153. [Google Scholar]
- Ferrari, L.; Tuler, F.; Promancio, E.; Gusé, L.; Touza, D.G.; Casas, C.; Comelli, R.A. Glycerol as raw material to an Argentinian biorefinery. Catal. Today 2022, 394–396, 247–255. [Google Scholar] [CrossRef]
- Zalineeva, A.; Serov, A.; Padilla, M.; Martinez, U.; Artyushkova, K.; Baranton, S.; Coutanceau, C.; Atanassov, P.B. Self-supported PdxBi catalysts for the electrooxidation of glycerol in alkaline media. J. Am. Chem. Soc. 2014, 136, 3937–3945. [Google Scholar] [CrossRef]
- Wang, C.Y.; Yu, Z.Y.; Li, G.; Song, Q.T.; Li, G.; Luo, C.X.; Yin, S.H.; Lu, B.A.; Xiao, C.; Xu, B.B.; et al. Intermetallic PtBi nanoplates with high catalytic activity towards electro-oxidation of formic acid and glycerol. ChemElectroChem 2020, 7, 239–245. [Google Scholar] [CrossRef]
- Carlucci, C. A Focus on the Transformation Processes for the Valorization of Glycerol Derived from the Production Cycle of Biofuels. Catalysts 2021, 11, 280. [Google Scholar] [CrossRef]
- Bricotte, L.; Chougrani, K.; Alard, V.; Ladmiral, V.; Caillol, S. Dihydroxyacetone: A User Guide for a Challenging Bio-Based Synthon. Molecules 2023, 28, 2724. [Google Scholar] [CrossRef]
- Hu, Y.; He, Q.; Xu, C. Catalytic Conversion of Glycerol into Hydrogen and Value-Added Chemicals: Recent Research Advances. Catalysts 2021, 11, 1455. [Google Scholar] [CrossRef]
- Lin, Y.-T.; Yang, J.; Mou, C.-Y. Highly Selective Conversion of Glycerol to Formic Acid over a Synergistic Au/Phosphotungstic Acid Catalyst under Nanoconfinement. ACS Sustain. Chem. Eng. 2021, 9, 3571–3579. [Google Scholar] [CrossRef]
- Koranian, P.; Huang, Q.; Dalai, A.K.; Sammynaiken, R. Chemicals Production from Glycerol through Heterogeneous Catalysis: A Review. Catalysts 2022, 12, 897. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, B.; Yan, D.; Xiang, X. Recent advances in the selective oxidation of glycerol to value-added chemicals via photocatalysis/photoelectrocatalysis. Green Chem. 2024, 26, 2505–2524. [Google Scholar] [CrossRef]
- Othman, P.N.A.M.; Karim, N.A.; Kamarudin, S.K. Research and innovation in the electrocatalyst development toward glycerol oxidation reaction. Int. J. Energy Res. 2021, 45, 12693–12727. [Google Scholar] [CrossRef]
- Chilakamarry, C.R.; Sakinah, A.M.M.; Zularisam, A.W.; Pandey, A. Glycerol waste to value added products and its potential applications. Syst. Microbiol. Biomanuf. 2021, 1, 378–396. [Google Scholar] [CrossRef]
- Kumar, M.; Meena, B.; Yu, A.; Sun, C.; Challapalli, S. Advancements in catalysts for glycerol oxidation via photo-/electrocatalysis: A comprehensive review of recent developments. Green Chem. 2023, 25, 8411–8443. [Google Scholar] [CrossRef]
- Huang, B.; Ge, Y.; Zhang, A.; Zhu, S.; Chen, B.; Li, G.; Yun, Q.; Huang, Z.; Shi, Z.; Zhou, X.; et al. Seeded synthesis of hollow PdSn intermetallic nanomaterials for highly efficient electrocatalytic glycerol oxidation. Adv. Mater. 2023, 35, 2302233. [Google Scholar] [CrossRef]
- Kong, H.; Gupta, S.; Pérez-Torres, A.F.; Höhn, C.; Bogdanoff, P.; Mayer, M.T.; van de Krol, R.; Favaro, M.; Abdi, F.F. Electrolyte selection toward efficient photoelectrochemical glycerol oxidation on BiVO4. Chem. Sci. 2024, 15, 10425–10435. [Google Scholar] [CrossRef]
- Melle, G.; de Souza, M.B.C.; Santiago, P.V.B.; Corradini, P.G.; Mascaro, L.H.; Fernández, P.S.; Sitta, E. Glycerol electro-oxidation at Pt in alkaline media: Influence of mass transport and cations. Electrochim. Acta 2021, 398, 139318. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, Y.; He, Y.; Li, D. Insight into the effect of Cu species and its origin in Pt-based catalysts on reaction pathways of glycerol oxidation. ACS Catal. 2022, 12, 14140–14151. [Google Scholar] [CrossRef]
- Deng, C.-Q.; Deng, J.; Fu, Y. Manganese-catalysed dehydrogenative oxidation of glycerol to lactic acid. Green Chem. 2022, 24, 8477–8483. [Google Scholar] [CrossRef]
- Meng, Z.; Tran, D.; Hjelm, J.; Kristoffersen, H.H.; Rossmeisl, J. Insight into selectivity differences of glycerol electro-oxidation on Pt(111) and Ag(111). ACS Catal. 2024, 14, 2455–2462. [Google Scholar] [CrossRef]
- Feng, X.; Sun, T.; Feng, X.; Yu, H.; Yang, Y.; Chen, L.; Zhang, F. Single-atomic-site platinum steers middle hydroxyl selective oxidation on amorphous/crystalline homojunction for photoelectrochemical glycerol oxidation coupled with hydrogen generation. Adv. Funct. Mater. 2024, 34, 202316238. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, W.; Dong, Z.; Zhang, N.; Zhang, Q.; Xie, C.; Wu, Z.; Xu, G.-R.; Wang, L. One-step CO assisted synthesis of hierarchical porous PdRuCu nanosheets as advanced bifunctional catalysts for hydrogen evolution and glycerol oxidation. Int. J. Hydrogen Energy 2022, 47, 33319–33328. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, C.; Zhao, X.; Yan, H.; Li, J.; Lyu, P.; Du, Y.; Xi, S.; Chi, K.; Chi, X.; et al. Promoted glycerol oxidation reaction in an interface-confined hierarchically structured catalyst. Adv. Mater. 2018, 31, 1804763. [Google Scholar] [CrossRef]
- Chen, W.; Wang, J.; Zhang, Y.; Zhang, J.; Duan, X.; Si, R.; Chen, D.; Qian, G.; Zhou, X. Kinetics decoupling activity and selectivity of Pt nanocatalyst for enhanced glycerol oxidation performance. AIChE J. 2021, 67, e17339. [Google Scholar] [CrossRef]
- Ren, H.; Huang, Z.; Cai, G.; Guo, J.; Sun, Y.; Yao, W.; Ye, D.; Qian, H.; Zhang, J.; Zhao, H. Cobalt (II) oxide for efficient glycerol electrooxidation for formic acid coupled with hydrogen production. J. Alloys Compd. 2024, 996, 174781. [Google Scholar] [CrossRef]
- Liu, Y.; Zha, M.; Qin, H.; Yao, S.; Zhou, X.; Zhao, S.; Sheng, N.; Sun, Y.; Jin, X.; Yan, H.; et al. Au-Promoted Pt nanoparticles supported on MgO/SBA-15 as an efficient catalyst for selective oxidation of glycerol. AIChE J. 2021, 67, e17196. [Google Scholar] [CrossRef]
- Kobayashi, A. Photoredox cascade catalyst for efficient hydrogen production with biomass photoreforming. Angew. Chem. Int. Ed. 2023, 62, e202313014. [Google Scholar] [CrossRef]
- Yan, H.; Yao, S.; Liang, W.; Zhao, S.; Jin, X.; Feng, X.; Liu, Y.; Chen, X.; Yang, C. Ni–Co oxide catalysts with lattice distortions for enhanced oxidation of glycerol to glyceric acid. J. Catal. 2020, 381, 248–260. [Google Scholar] [CrossRef]
- Huang, Z.; Ren, H.; Guo, J.; Tang, Y.; Ye, D.; Zhang, J.; Zhao, H. High DHA selectivity and low-cost electrode for glycerol oxidation: CuO regulates MnO2 electron density to promote DHA desorption. Appl. Catal. B Environ. 2024, 351, 123986. [Google Scholar] [CrossRef]
- Wang, Q.; Ma, X.; Wu, P.; Li, B.; Zhang, L.; Shi, J. CoNiFe-LDHs decorated Ta3N5 nanotube array photoanode for remarkably enhanced photoelectrochemical glycerol conversion coupled with hydrogen generation. Nano Energy 2021, 89, 106326. [Google Scholar] [CrossRef]
- Jin, X.; Meng, K.; Zhang, G.; Liu, M.; Song, Y.; Song, Z.; Yang, C. Interfacial catalysts for sustainable chemistry: Advances on atom and energy efficient glycerol conversion to acrylic acid. Green Chem. 2021, 23, 51–76. [Google Scholar] [CrossRef]
- Wu, G.; Liu, Y.; He, Y.; Feng, J.; Li, D. Reaction pathway investigation using in situ Fourier transform infrared technique over Pt/CuO and Pt/TiO2 for selective glycerol oxidation. Appl. Catal. B Environ. 2021, 291, 120061. [Google Scholar] [CrossRef]
- Faroppa, M.L.; Chiosso, M.E.; Musci, J.J.; Ocsachoque, M.A.; Merlo, A.B.; Casella, M.L. Oxidation of glycerol in base-free aqueous solution using carbon-supported Pt and PtSn catalyst. Catalysts 2023, 13, 1071. [Google Scholar] [CrossRef]
- Nunotani, N.; Takashima, M.; Choi, Y.-B.; Uetake, Y.; Sakurai, H.; Imanaka, N. Dihydroxyacetone production by glycerol oxidation under moderate condition using Pt loaded on La1−xBixOF solids. Chem. Commun. 2023, 59, 9533–9536. [Google Scholar] [CrossRef]
- Luo, P.; Wang, J.; Rui, W.; Xu, R.; Kuai, Z.; Yang, D.; Wan, X.; Zhou, C.; Yang, Y.; Dai, Y. Ball-milling-induced phase transition of ZrO2 promotes selective oxidation of glycerol to dihydroxyacetone over supported PtBi bimetal catalyst. Chem. Eng. J. 2023, 467, 143502. [Google Scholar] [CrossRef]
- Zhao, M.; Sun, Y.; Yan, H.; Liu, Y.; Zhou, X.; Chen, X.; Feng, X.; Yang, C. Reaction mechanism and kinetics for Pt/C and Au/C catalyzed aqueous phase glycerol oxidation to various carboxylic acids. Chem. Eng. Sci. 2024, 296, 120237. [Google Scholar] [CrossRef]
- Luo, Z.; Zhu, Z.; Xiao, R.; Chu, D. Synergy of Pt single atom and clusters toward selective glycerol oxidation. ChemNanoMat 2023, 9, e202200494. [Google Scholar] [CrossRef]
- Yang, L.; He, T.; Lai, C.; Chen, P.; Hou, Z. Selective oxidation of glycerol with oxygen in base-free solution over N-doped-carbon-supported Sb@PtSb2 hybrid. Chin. J. Catal. 2020, 41, 494–502. [Google Scholar] [CrossRef]
- Huang, N.; Zhang, Z.; Lu, Y.; Tian, J.; Jiang, D.; Yue, C.; Zhang, P.; Jiang, P.; Leng, Y. Assembly of platinum nanoparticles and single-atom bismuth for selective oxidation of glycerol. J. Mater. Chem. A 2021, 9, 25576–25584. [Google Scholar] [CrossRef]
- Tigwell, M.; Douthwaite, M.; Smith, L.R.; Dummer, N.F.; Morgan, D.J.; Bethell, D.; Taylor, S.H.; Hutchings, G.J. Investigating catalytic properties which influence dehydration and oxidative dehydrogenation in aerobic glycerol oxidation over Pt/TiO2. J. Phys. Chem. C 2022, 126, 15651–15661. [Google Scholar] [CrossRef]
- Zhou, Y.; Shen, Y.; Luo, X.; Liu, G.; Cao, Y. Boosting activity and selectivity of glycerol oxidation over platinum–palladium–silver electrocatalysts via surface engineering. Nanoscale Adv. 2020, 2, 3423–3430. [Google Scholar] [CrossRef]
- Sheng, H.; Janes, A.N.; Ross, R.D.; Hofstetter, H.; Lee, K.; Schmidt, J.R.; Jin, S. Linear paired electrochemical valorization of glycerol enabled by the electro-Fenton process using a stable NiSe2 cathode. Nat. Catal. 2022, 5, 716–725. [Google Scholar] [CrossRef]
- Tayyebi, A.; Mehrotra, R.; Mubarok, M.A.; Kim, J.; Zafari, M.; Tayebi, M.; Oh, D.; Lee, S.-h.; Matthews, J.E.; Lee, S.-W.; et al. Bias-free solar NH3 production by perovskite-based photocathode coupled to valorization of glycerol. Nat. Catal. 2024, 7, 510–521. [Google Scholar] [CrossRef]
- An, Z.; Zhang, Z.; Huang, Z.; Han, H.; Song, B.; Zhang, J.; Ping, Q.; Zhu, Y.; Song, H.; Wang, B.; et al. Pt1 enhanced C–H activation synergistic with Ptn catalysis for glycerol cascade oxidation to glyceric acid. Nat. Commun. 2022, 13, 5467. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, Q.; Sun, H.; Teng, Z.; Su, C. Semiconducting polymers for photosynthesis of H2O2: Spatial separation and synergistic utilization of photoredox centers. Acta Phys.-Chim. Sin. 2023, 39, 2301001. [Google Scholar]
- Rodrigues, E.G.; Carabineiro, S.A.; Delgado, J.J.; Chen, X.; Pereira, M.F.; Órfão, J.J. Corrigendum to “Gold supported on carbon nanotubes for the selective oxidation of glycerol”. J. Catal. 2012, 292, 246. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, M.; Liu, D.; Gao, J.; Ding, J.; Wang, H.; Yang, H.B.; Li, F.; Chen, M.; Xu, Y.; et al. Selective photoelectrochemical oxidation of glycerol to glyceric acid on (002) facets exposed WO3 nanosheets. Angew. Chem. Int. Ed. 2024, 63, e202319685. [Google Scholar] [CrossRef]
- Feng, S.; Yi, J.; Miura, H.; Nakatani, N.; Hada, M.; Shishido, T. Experimental and theoretical investigation of the role of bismuth in promoting the selective oxidation of glycerol over supported Pt–Bi catalyst under mild conditions. ACS Catal. 2020, 10, 6071–6083. [Google Scholar] [CrossRef]
- Yu, X.; dos Santos, E.C.; White, J.; Salazar-Alvarez, G.; Pettersson, L.G.M.; Cornell, A.; Johnsson, M. Electrocatalytic glycerol oxidation with concurrent hydrogen evolution utilizing an efficient MoOx/Pt catalyst. Small 2021, 17, 2104288. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhang, L.; Xu, L.; He, Y.; Pang, H.; Wang, S.; Zou, Y. Pulse potential mediated selectivity for the electrocatalytic oxidation of glycerol to glyceric acid. Nat. Commun. 2024, 15, 2420. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.-A.; Roh, I.; Yang, P. Photochemical diodes for simultaneous bias-free glycerol valorization and hydrogen evolution. J. Am. Chem. Soc. 2023, 145, 12987–12991. [Google Scholar] [CrossRef]
- Zhang, X.; Cui, G.; Feng, H.; Chen, L.; Wang, H.; Wang, B.; Zhang, X.; Zheng, L.; Hong, S.; Wei, M. Platinum–copper single atom alloy catalysts with high performance towards glycerol hydrogenolysis. Nat. Commun. 2019, 10, 5812. [Google Scholar] [CrossRef]
- Pagliaro, M.; Ciriminna, R.; Kimura, H.; Rossi, M.; Della Pina, C. From glycerol to value-added products. Angew. Chem. Int. Ed. 2007, 46, 4434–4440. [Google Scholar] [CrossRef]
- Ren, Z.; Li, Y.; Yu, L.; Wang, L.; Yang, Y.; Wei, M. Pt/ZrO2 catalyst with metal-support synergistic effect towards glycerol selective oxidation. Chem. Eng. J. 2023, 468, 143623. [Google Scholar] [CrossRef]
- Wölfel, R.; Taccardi, N.; Bösmann, A.; Wasserscheid, P. Selective catalytic conversion of biobased carbohydrates to formic acid using molecular oxygen. Green Chem. 2011, 13, 2759–2763. [Google Scholar] [CrossRef]
- Li, D.; Gong, H.; Lin, L.; Ma, W.; Zhou, Q.; Kong, K.; Huang, R.; Hou, Z. Selective aerobic oxidation of glycerol over zirconium phosphate-supported vanadium catalyst. Mol. Catal. 2019, 474, 110404. [Google Scholar] [CrossRef]
- Fessner, W.D.; Sinerius, G. Synthesis of dihydroxyacetone phosphate (and isosteric analogues) by enzymatic oxidation; sugars from glycerol. Angew. Chem. Int. Ed. 2003, 33, 209–212. [Google Scholar] [CrossRef]
- Hickey, D.P.; McCammant, M.S.; Giroud, F.; Sigman, M.S.; Minteer, S.D. Hybrid enzymatic and organic electrocatalytic cascade for the complete oxidation of glycerol. J. Am. Chem. Soc. 2014, 136, 15917–15920. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Lu, J.; Liu, Y.; Chen, L.; Zhang, X.; Wang, H. Sustainable catalytic oxidation of glycerol: A review. Environ. Chem. Lett. 2023, 21, 2825–2861. [Google Scholar] [CrossRef]
- Wang, Y.; Furukawa, S.; Song, S.; He, Q.; Asakura, H.; Yan, N. Catalytic production of alanine from waste glycerol. Angew. Chem. Int. Ed. 2019, 59, 2289–2293. [Google Scholar] [CrossRef] [PubMed]
Catalyst | Analytical Techniques | Products | Highly Selective Product | References |
---|---|---|---|---|
WO3 | HPLC | Glyceric acid (73%), Dihydroxyacetone (23%), Formic acid (4%) | Glyceric acid
Selectivity: 73 % | [110] |
Mn-3 | 1H NMR | 1,2-propanediol (2%), Lactic acid (98%) | Lactic acid Selectivity: 98% | [82] |
CoO/NF | HPLC | Glyceraldehyde (0.6%), Glyceric acid (0.36%), Glycolic acid (2.8%), Oxalic acid (2.94%), Formic acid (93.3%) | Formic acid Selectivity: 93.3% | [88] |
Ni1Co1Ox | HPLC | Glyceric acid (66.5%), Glycolic acid (19.5%), Oxalic acid (6.4%) | Glyceric acid
Selectivity: 66.5% | [91] |
Pt–Bi/SBA-15 | HPLC GC | Dihydroxyacetone (65.1%), Glyceric acid (4.7%), Hydroxypyruvic acid (11.1%), Mesoxalic acid (6.8%) | Dihydroxyacetone Selectivity: 65.1% | [111] |
Bi-rich BiVO4−x | HPLC | Dihydroxyacetone (80.3%), Glyceric acid (7.5%), Glyceraldehyde, Glycolic acid (2.05%), Formic acid (10.1%) | Dihydroxyacetone Selectivity: 80.3% | [16] |
0.9%Pt1 + Ptn/Cu − CuZrOx | GC HPLC | Acetic acid (0.7%), Glyceraldehyde (4.6%), Dihydroxyacetone (10.5%), Glyceric acid (80%), Tartronic (1.4%), Oxalic acid (1.2%), Glycolic acid (1.1%) | Glyceric acid Selectivity: 80% | [107] |
MnO2-D | HPLC | Glyceric acid (1.4%), GLYOA (3.2%), XA (2.8%), Formic acid (83.2%) | Formic acid Selectivity: 83.2% | [51] |
BiVO4 | LC-MS | Formic acid (16.4%), Glyceric acid (10.0%), Dihydroxyacetone (63.6%), Glycolic acid (0.2%), CO2 (0.9), CO (0.2%) | Dihydroxyacetone
Selectivity: 63.6% | [15] |
Bi2O3/TiO2 | HPLC | Dihydroxyacetone (65%), Glycolic acid (4%), Glyceraldehyde (12.7%), Formic acid (7.8%) | Dihydroxyacetone Selectivity: 65% | [19] |
Catalyst 16 | 1H NMR | 1,2-propanediol (0.6%), Ethylene glycol (2.4%), Formic acid (97%), Formic acid (0.1%) | Lactic acid
Selectivity: 97% | [44] |
0.5Ni/TiO2−MS | HPLC | Glycolaldehyde, Glyceraldehyde, Dihydroxyacetone, Formic acid | Glycolaldehyde
Selectivity: 60.1% | [56] |
BiVO4 | HPLC | Glycolaldehyde (60%), Formic acid (27%), Glyceraldehyde (5%), Glyceric acid (1%), Dihydroxyacetone (6%), Glycolic acid (1%) | Glycolaldehyde, Selectivity: 60% | [18] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Tu, Y.; He, K.; Chen, C.; Liang, L.; Ruan, C.; Zhang, Q. Mechanistic Insights into Glycerol Oxidation to High-Value Chemicals via Metal-Based Catalysts. Molecules 2025, 30, 1310. https://doi.org/10.3390/molecules30061310
Li J, Tu Y, He K, Chen C, Liang L, Ruan C, Zhang Q. Mechanistic Insights into Glycerol Oxidation to High-Value Chemicals via Metal-Based Catalysts. Molecules. 2025; 30(6):1310. https://doi.org/10.3390/molecules30061310
Chicago/Turabian StyleLi, Junqing, Ying Tu, Kelin He, Chao Chen, Lixing Liang, Chongze Ruan, and Qitao Zhang. 2025. "Mechanistic Insights into Glycerol Oxidation to High-Value Chemicals via Metal-Based Catalysts" Molecules 30, no. 6: 1310. https://doi.org/10.3390/molecules30061310
APA StyleLi, J., Tu, Y., He, K., Chen, C., Liang, L., Ruan, C., & Zhang, Q. (2025). Mechanistic Insights into Glycerol Oxidation to High-Value Chemicals via Metal-Based Catalysts. Molecules, 30(6), 1310. https://doi.org/10.3390/molecules30061310