Faberidilactone A, a Sesquiterpene Dimer, Inhibits Hepatocellular Carcinoma Progression Through Apoptosis, Ferroptosis, and Anti-Metastatic Mechanisms
Abstract
1. Introduction
2. Results
2.1. Inhibition and Selectivity of Tumor Cell Proliferation by Faberidilactone A
2.2. Induction of Apoptosis in HepG2 Cells by Faberidilactone A
2.3. Enhancement of ROS Production in HepG2 Cells by Faberidilactone A
2.4. Reduction in MMP in HepG2 Cells by Faberidilactone A
2.5. Promotion of Intracellular Lipid ROS Production in HepG2 Cells by Faberidilactone A
2.6. Depletion of GSH in HepG2 Cells by Faberidilactone A
2.7. Cell Cycle Arrest Induced by Faberidilactone A in HepG2 Cells
2.8. Modulation of Apoptosis-Related Protein Expression by Faberidilactone A
2.9. Inhibition of HepG2 Cell Proliferation via the STAT3 Signaling Pathway by Faberidilactone A
2.10. Suppression of HepG2 Cell Migration and Regulation of the FAK Signaling Pathway by Faberidilactone A
2.11. Toxicity Assessment of Faberidilactone A in Zebrafish Embryos
2.12. Inhibition of Angiogenesis in Zebrafish by Faberidilactone A
2.13. Suppression of Tumor Proliferation and Metastasis in Zebrafish by Faberidilactone A
3. Discussion
4. Materials and Methods
4.1. Materials and Cell Culture
4.2. Extraction and Purification of Faberidilactone A
4.3. Cell Morphology Observation and Toxicity Detection
4.4. Apoptosis Assays
4.5. Determination of Intracellular ROS
4.6. Determination of MMP
4.7. Lipid ROS Detection
4.8. GSH Assay
4.9. Cell Cycle Arrest Assay
4.10. Wound Healing Assay
4.11. Western Blotting Analysis
4.12. In Vivo Viability Assays
4.12.1. Toxicity Testing of Zebrafish Embryos
4.12.2. In Vivo Antitumor Experiments in Zebrafish Xenograft Models
4.12.3. Anti-Angiogenic Experiments in Zebrafish In Vivo
4.13. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cao, W.; Qin, K.; Li, F.; Chen, W. Comparative study of cancer profiles between 2020 and 2022 using global cancer statistics (GLOBOCAN). J. Natl. Cancer Cent. 2024, 4, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.Q.; Singal, A.G.; Kono, Y.; Tan, D.J.H.; El-Serag, H.B.; Loomba, R. Changing global epidemiology of liver cancer from 2010 to 2019: NASH is the fastest growing cause of liver cancer. Cell Metab. 2022, 34, 969–977.e2. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.D.; Xu, X.J.; Wang, K.C.; Diao, Y.K.; Xu, J.H.; Gu, L.H.; Yao, L.Q.; Li, C.; Lv, G.Y.; Yang, T. Conversion therapy for advanced hepatocellular carcinoma in the era of precision medicine: Current status, challenges and opportunities. Cancer Sci. 2024, 115, 2159–2169. [Google Scholar] [CrossRef]
- Chen, S.; Cao, Q.; Wen, W.; Wang, H. Targeted therapy for hepatocellular carcinoma: Challenges and opportunities. Cancer Lett. 2019, 460, 1–9. [Google Scholar] [CrossRef]
- Petrowsky, H.; Fritsch, R.; Guckenberger, M.; De Oliveira, M.L.; Dutkowski, P.; Clavien, P.A. Modern therapeutic approaches for the treatment of malignant liver tumours. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 755–772. [Google Scholar] [CrossRef]
- Augustin, Y.; Staines, H.M.; Krishna, S. Artemisinins as a novel anti-cancer therapy: Targeting a global cancer pandemic through drug repurposing. Pharmacol. Ther. 2020, 216, 107706. [Google Scholar] [CrossRef]
- Lan, Y.Y.; Cheng, T.C.; Lee, Y.P.; Wang, C.Y.; Huang, B.M. Paclitaxel induces human KOSC3 oral cancer cell apoptosis through caspase pathways. Biocell 2024, 48, 1047–1054. [Google Scholar] [CrossRef]
- Yang, L.; Wang, X.; Hou, A.; Zhang, J.; Wang, S.; Man, W.; Yu, H.; Zheng, S.; Wang, Q.; Jiang, H.; et al. A review of the botany, traditional uses, phytochemistry, and pharmacology of the Flos Inulae. J. Ethnopharmacol. 2021, 276, 114125. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Liu, W.; Shen, Y.; Lin, Z.; Nakajima, A.; Xu, J.; Guo, Y. A polysaccharide from Inula japonica showing in vivo antitumor activity by interacting with TLR-4, PD-1, and VEGF. Int. J. Biol. Macromol. 2023, 246, 125555. [Google Scholar] [CrossRef]
- Sun, C.P.; Jia, Z.L.; Huo, X.K.; Tian, X.G.; Feng, L.; Wang, C.; Zhang, B.J.; Zhao, W.Y.; Ma, X.C. Medicinal Inula species: Phytochemistry, biosynthesis, and bioactivities. Am. J. Chin. Med. 2021, 49, 315–358. [Google Scholar] [CrossRef]
- Li, J.; Guo, X.; Luo, Z.; Wu, D.; Shi, X.; Xu, L.; Zhang, Q.; Xie, C.; Yang, C. Chemical constituents from the flowers of Inula japonica and their anti-inflammatory activity. J. Ethnopharmacol. 2024, 318, 117052. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, M.; Zhang, W.H.; Zhu, Q.M.; Ning, J.; Huo, X.K.; Xiao, H.T.; Sun, C.P. Total terpenoids of Inula japonica activated the Nrf2 receptor to alleviate the inflammation and oxidative stress in LPS-induced acute lung injury. Phytomedicine 2022, 107, 154377. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ni, Z.Y.; Zhu, M.C.; Dong, M.; Wang, S.M.; Shi, Q.W.; Zhang, M.L.; Wang, Y.F.; Huo, C.H.; Kiyota, H.; et al. Antitumour activities of sesquiterpene lactones from Inula helenium and Inula japonica. Z. Naturforschung C J. Biosci. 2012, 67, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.P.; Zhang, J.S.; Zhang, Q.; Yu, S.J.; Zhang, Y.; Yu, J.H.; Zhang, H. Bioactive sesquiterpenoids and sesquiterpenoid glucosides from the flowers of Inula japonica. Fitoterapia 2019, 138, 104292. [Google Scholar] [CrossRef]
- Yang, Y.X.; Gao, S.; Zhang, S.D.; Zu, X.P.; Shen, Y.H.; Shan, L.; Li, H.L.; Zhang, W.D. Cytotoxic 2,4-linked sesquiterpene lactone dimers from Carpesium faberi exhibiting NF-κB inhibitory activity. RSC Adv. 2015, 5, 55285–55289. [Google Scholar] [CrossRef]
- Peña-Morán, O.A.; Villarreal, M.L.; Álvarez-Berber, L.; Meneses-Acosta, A.; Rodríguez-López, V. Cytotoxicity, post-treatment recovery, and selectivity analysis of naturally occurring podophyllotoxins from Bursera fagaroides var. fagaroides on breast cancer cell lines. Molecules 2016, 21, 1013. [Google Scholar] [CrossRef]
- Shahpari, M.; Hashemi, M.; Younesirad, T.; Hasanzadeh, A.; Mosanne, M.M.; Ahmadifard, M. The functional roles of competitive endogenous RNA (ceRNA) networks in apoptosis in human cancers: The circRNA/miRNA/mRNA regulatory axis and cell signaling pathways. Heliyon 2024, 10, e37089. [Google Scholar] [CrossRef]
- Yoon, Y.J.; Lee, Y.J.; Choi, J.; Chi, S.W.; Lee, S.; Park, K.C.; Kwon, B.M.; Han, D.C. 2′-Hydroxycinnamaldehyde induces ROS-mediated apoptosis in cancer cells by targeting PRX1 and PRX2. Results Chem. 2024, 13, 101931. [Google Scholar] [CrossRef]
- Xu, Q.; Deng, H.; Huang, X.; Chen, G.Q.; Quan, Y.S.; Wang, Y.L.; Liu, J.Y.; Yan, R.; Nie, W.Z.; Shen, Q.K.; et al. Design, synthesis, and in vitro and in vivo biological evaluation of dihydroartemisinin derivatives as potent anti-cancer agents with ferroptosis-inducing and apoptosis-activating properties. Eur. J. Med. Chem. 2025, 281, 117018. [Google Scholar] [CrossRef]
- Amin, T.; Sharma, R.P.; Mir, K.B.; Slathia, N.; Chhabra, S.; Tsering, D.; Kotwal, P.; Bhagat, M.; Nandi, U.; Parkesh, R.; et al. Quinoxalinone substituted pyrrolizine (4h)-induced dual inhibition of AKT and ERK instigates apoptosis in breast and colorectal cancer by modulating mitochondrial membrane potential. Eur. J. Pharmacol. 2023, 957, 175945. [Google Scholar] [CrossRef]
- Bulić, M.; Nikolić, I.; Mitrović, M.; Muškinja, J.; Todorović, T.; Anđelković, M. Four newly synthesized enones induce mitochondrial-mediated apoptosis and G2/M cell cycle arrest in colorectal and cervical cancer cells. RSC Adv. 2024, 14, 33987–34004. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Park, S.H. Hexane fraction of Adenophora triphylla var. japonica root extract induces apoptosis of human lung cancer cells by inactivating Src/STAT3 pathway. Nat. Prod. Res. 2023, 37, 2924–2928. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Fang, Z.Y.; Tao, Y.N.; Zhang, Y.H.; Zhang, Y.; Sun, H.Y.; Zhou, Y.; Wu, Y.F. Design, Synthesis and Antitumor Activity of FAK/PLK1 Dual Inhibitors with Quinazolinone as the Skeleton. Chem. Biodivers. 2023, 20, e202300146. [Google Scholar] [CrossRef]
- Zhang, J.; Li, W.; Wang, W.; Chen, Q.; Xu, Z.; Deng, M.; Zhou, L.; He, G. Dual roles of FAK in tumor angiogenesis: A review focused on pericyte FAK. Eur. J. Pharmacol. 2023, 947, 175694. [Google Scholar] [CrossRef]
- Li, L.; Li, W.; Liu, Y.; Han, B.; Yu, Y.; Lin, H. MEHP induced mitochondrial damage by promoting ROS production in CIK cells, leading to apoptosis, autophagy, cell cycle arrest. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2025, 288, 110064. [Google Scholar] [CrossRef]
- Chen, A.; Huang, H.; Fang, S.; Hang, Q. ROS: A “booster” for chronic inflammation and tumor metastasis. Biochim. Biophys. Acta BBA Rev. Cancer 2024, 1879, 189175. [Google Scholar] [CrossRef]
- Ma, Q.; Yu, J.; Zhang, X.; Wu, X.; Deng, G. Wnt/β-catenin signaling pathway-a versatile player in apoptosis and autophagy. Biochimie 2023, 211, 57–67. [Google Scholar] [CrossRef]
- Manoharan, S.; Perumal, E. A strategic review of STAT3 signaling inhibition by phytochemicals for cancer prevention and treatment: Advances and insights. Fitoterapia 2024, 179, 106265. [Google Scholar] [CrossRef]
- Yang, J.; Wang, L.; Guan, X.; Qin, J.J. Inhibiting STAT3 signaling pathway by natural products for cancer prevention and therapy: In vitro and in vivo activity and mechanisms of action. Pharmacol. Res. 2022, 182, 106357. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Zhang, J.; Zhan, Z.; Mao, W. Development of novel focal adhesion kinase (FAK) inhibitors for targeting cancer: Structural insights and therapeutic potential. Eur. J. Med. Chem. 2024, 279, 116913. [Google Scholar] [CrossRef]
- Feng, Z.; Wei, W.; Wang, S.; Li, X.; Zhao, L.; Wan, G.; Hu, R.; Yu, L. A novel selective FAK inhibitor E2 inhibits ovarian cancer metastasis and growth by inducing cytotoxic autophagy. Biochem. Pharmacol. 2024, 229, 116461. [Google Scholar] [CrossRef] [PubMed]
- Sariahmetoglu, M.; Crawford, B.D.; Leon, H.; Sawicka, J.; Li, L.; Ballermann, B.J.; Holmes, C.; Berthiaume, L.G.; Holt, A.; Sawicki, G.; et al. Regulation of matrix metalloproteinase-2 (MMP-2) activity by phosphorylation. FASEB J. 2007, 21, 2486–2495. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, S.; Peng, M.; Ma, J.; Zhang, Q.; Guo, Y.; Xu, J. Modification of a natural diterpene and its antitumor mechanism: Promoting apoptosis, suppressing migration, and inhibiting angiogenesis. Arab. J. Chem. 2024, 17, 105603. [Google Scholar] [CrossRef]
- Hou, J.; Li, Y.; Xing, H.; Cao, R.; Jin, X.; Xu, J.; Guo, Y. Effusanin B inhibits lung cancer by prompting apoptosis and inhibiting angiogenesis. Molecules 2023, 28, 7682. [Google Scholar] [CrossRef]
- Li, Y.; Liu, W.; Xu, J.; Guo, Y. Chlorahololide D, a lindenane-type sesquiterpenoid dimer from Chloranthus holostegius suppressing breast cancer progression. Molecules 2023, 28, 7070. [Google Scholar] [CrossRef]
- Xia, Y.; Tang, Y.; Huang, Z.; Ke, N.; Zheng, Y.; Zhuang, W.; Zhang, Y.; Yin, X.; Tu, M.; Chen, J.; et al. Artesunate-loaded solid lipid nanoparticles resist esophageal squamous cell carcinoma by inducing Ferroptosis through inhibiting the AKT/mTOR signaling. Cell. Signal. 2024, 117, 111108. [Google Scholar] [CrossRef]
- Fu, R.; You, Y.; Wang, Y.; Wang, J.; Lu, Y.; Gao, R.; Pang, M.; Yang, P.; Wang, H. Sanggenol L induces ferroptosis in non-small cell lung cancer cells via regulating the miR-26a-1-3p/MDM2/p53 signaling pathway. Biochem. Pharmacol. 2024, 226, 116345. [Google Scholar] [CrossRef]
Compound | IC50 (µM) | ||
---|---|---|---|
A549 | HepG2 | MCF-7 | |
Faberidilactone A | 8.4 ± 0.3 | 5.4 ± 0.5 | 5.4 ± 0.4 |
Etoposide a | 15.3 ± 1.9 | 3.6 ± 0.1 | 17.1 ± 1.1 |
Compound | SI a | ||
---|---|---|---|
A549 | HepG2 | MCF-7 | |
Faberidilactone A | 7.3 | 11.4 | 11.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, R.; Liu, Y.; Bao, J.; Rong, M.; Xu, J.; Liao, H.; Guo, Y. Faberidilactone A, a Sesquiterpene Dimer, Inhibits Hepatocellular Carcinoma Progression Through Apoptosis, Ferroptosis, and Anti-Metastatic Mechanisms. Molecules 2025, 30, 1095. https://doi.org/10.3390/molecules30051095
Cao R, Liu Y, Bao J, Rong M, Xu J, Liao H, Guo Y. Faberidilactone A, a Sesquiterpene Dimer, Inhibits Hepatocellular Carcinoma Progression Through Apoptosis, Ferroptosis, and Anti-Metastatic Mechanisms. Molecules. 2025; 30(5):1095. https://doi.org/10.3390/molecules30051095
Chicago/Turabian StyleCao, Ruyu, Yuhui Liu, Jiahe Bao, Mingming Rong, Jing Xu, Haibing Liao, and Yuanqiang Guo. 2025. "Faberidilactone A, a Sesquiterpene Dimer, Inhibits Hepatocellular Carcinoma Progression Through Apoptosis, Ferroptosis, and Anti-Metastatic Mechanisms" Molecules 30, no. 5: 1095. https://doi.org/10.3390/molecules30051095
APA StyleCao, R., Liu, Y., Bao, J., Rong, M., Xu, J., Liao, H., & Guo, Y. (2025). Faberidilactone A, a Sesquiterpene Dimer, Inhibits Hepatocellular Carcinoma Progression Through Apoptosis, Ferroptosis, and Anti-Metastatic Mechanisms. Molecules, 30(5), 1095. https://doi.org/10.3390/molecules30051095