Bond Valence Sum Parameters for Analyzing Pyranopterin Tungsten Enzyme Structures
Abstract
:1. Introduction
2. Results
2.1. New BVS Parameters for Pyranopterin Tungsten Enzymes
2.2. Comparison of W Enzyme-Specific BVS Parameters with General W BVS Parameters
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schut, G.J.; Thorgersen, M.P.; Poole, F.L.; Haja, D.K.; Putumbaka, S.; Adams, M.W.W. Tungsten enzymes play a role in detoxifying food and antimicrobial aldehydes in the human gut microbiome. Proc. Natl. Acad. Sci. USA 2021, 118, e2109008118. [Google Scholar] [CrossRef] [PubMed]
- Ingersol, L.J.; Kirk, M.L. Structure, Function, and Mechanism of Pyranopterin Molybdenum and Tungsten Enzymes. In Comprehensive Coordination Chemistry III; Constable, E.C., Parkin, G., Que, L., Jr., Eds.; Elsevier: Oxford, UK, 2021; pp. 790–811. [Google Scholar]
- Niks, D.; Hille, R. Molybdenum- and tungsten-containing formate dehydrogenases and formylmethanofuran dehydrogenases: Structure, mechanism, and cofactor insertion. Protein Sci. 2019, 28, 111–122. [Google Scholar] [CrossRef]
- Crawford, A.M.; Cotelesage, J.J.H.; Prince, R.C.; George, G.N. The Catalytic Mechanisms of the Molybdenum and Tungsten Enzymes. In Metallocofactors That Activate Small Molecules: With Focus on Bioinorganic Chemistry; Ribbe, M.W., Ed.; Structure and Bonding; Springer: Cham, Switzerland, 2019; Volume 179, pp. 63–100. [Google Scholar]
- Ryde, U.; Dong, G.; Li, J.; Feldt, M.; Mata, R.A. Computational Studies of Molybdenum and Tungsten Enzymes. In Molybdenum and Tungsten Enzymes: Spectroscopic and Theoretical Investigations; Hille, R., Schulzke, C., Kirk, M.L., Eds.; The Royal Society of Chemistry: Cambridge, UK, 2017; pp. 275–321. [Google Scholar]
- Maia, L.B.; Moura, I.; Moura, J.J.G. Molybdenum and Tungsten-Containing Enzymes: An Overview; The Royal Society of Chemistry: Cambridge, UK, 2017; Volume 5, pp. 1–80. [Google Scholar]
- Hille, R.; Schulzke, C.; Kirk, M.L. (Eds.) Molybdenum and Tungsten Enzymes; The Royal Society of Chemistry: Cambridge, UK, 2017. [Google Scholar]
- Hagen, W.R. Tungsten Containing Enzymes. In Molybdenum and Tungsten Enzymes—Biochemistry; HIlle, R., Schulzke, C., Kirk, M.L., Eds.; The Royal Society of Chemistry: Cambridge, UK, 2017; pp. 313–342. [Google Scholar]
- George, G.N. X-Ray Absorption Spectroscopy of Molybdenum and Tungsten Enzymes. In Molybdenum and Tungsten Enzymes: Spectroscopic and Theoretical Investigations; Hille, R., Schulzke, C., Kirk, M.L., Eds.; The Royal Society of Chemistry: Cambridge, UK, 2017; pp. 121–167. [Google Scholar]
- Moura, J.J.G.; Bernhardt, P.V.; Maia, L.B.; Gonzalez, P.J. Molybdenum and tungsten enzymes: From biology to chemistry and back. J. Biol. Inorg. Chem. 2015, 20, 181–182. [Google Scholar] [CrossRef] [PubMed]
- Pushie, M.J.; George, G.N. Spectroscopic studies of molybdenum and tungsten enzymes. Coord. Chem. Rev. 2011, 255, 1055–1084. [Google Scholar] [CrossRef]
- Majumdar, A.; Sarkar, S. Bioinorganic chemistry of molybdenum and tungsten enzymes: A structural‚ Äìfunctional modeling approach. Coord. Chem. Rev. 2011, 255, 1039–1054. [Google Scholar] [CrossRef]
- Holm, R.H.; Solomon, E.I.; Majumdar, A.; Tenderholt, A. Comparative molecular chemistry of molybdenum and tungsten and its relation to hydroxylase and oxotransferase enzymes. Coord. Chem. Rev. 2011, 255, 993–1015. [Google Scholar] [CrossRef]
- Romao, M.J. Molybdenum and tungsten enzymes: A crystallographic and mechanistic overview. Dalton Trans. 2009, 4053–4068. [Google Scholar] [CrossRef] [PubMed]
- Bevers, L.E.; Hagedoorn, P.L.; Hagen, W.R. The bioinorganic chemistry of tungsten. Coord. Chem. Rev. 2009, 253, 269–290. [Google Scholar] [CrossRef]
- Kletzin, A.; Adams, M.W.W. Tungsten in Biological Systems. FEMS Microbiol. Rev. 1996, 18, 5–63. [Google Scholar] [CrossRef] [PubMed]
- Hille, R.; Hall, J.; Basu, P. The Mononuclear Molybdenum Enzymes. Chem. Rev. 2014, 114, 3963–4038. [Google Scholar] [CrossRef] [PubMed]
- Burgmayer, S.J.N.; Kirk, M.L. Advancing Our Understanding of Pyranopterin-Dithiolene Contributions to Moco Enzyme Catalysis. Molecules 2023, 28, 7456. [Google Scholar] [CrossRef] [PubMed]
- Kirk, M.L.; Kc, K. Molybdenum and Tungsten Cofactors and the Reactions They Catalyze Transition Metals and Sulfur—A Strong Relationship for Life. In Metal Ions in Life Sciences; Sigel, A., Freisinger, E., Sigel, R.K.O., Eds.; De Gruyter: Berlin, Germany, 2020; Volume 20, pp. 313–342. [Google Scholar]
- Kirk, M.L.; Stein, B. The Molybdenum Enzymes. In Comprehensive Inorganic Chemistry II, 2nd ed.; Jan, R., Kenneth, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 263–293. [Google Scholar]
- Jalilehvand, F.; Lim, B.S.; Holm, R.H.; Hedman, B.; Hodgson, K.O. X-ray absorption spectroscopy of a structural analogue of the oxidized active sites in the sulfite oxidase enzyme family and related molybdenum(V) complexes. Inorg. Chem. 2003, 42, 5531–5536. [Google Scholar] [CrossRef] [PubMed]
- Sung, K.M.; Holm, R.H. Oxo transfer reactions mediated by bis(dithiolene)tungsten analogues of the active sites of molybdoenzymes in the DMSO reductase family: Comparative reactivity of tungsten and molybdenum. J. Am. Chem. Soc. 2001, 123, 1931–1943. [Google Scholar] [CrossRef] [PubMed]
- Tucci, G.C.; Donahue, J.P.; Holm, R.H. Comparative Kinetics of Oxo Transfer to Substrate Mediated by Bis(dithiolene)dioxomolybdenum and -tungsten Complexes. Inorg. Chem. 1998, 37, 1602–1608. [Google Scholar] [CrossRef]
- Lorber, C.; Donahue, J.P.; Goddard, C.A.; Nordlander, E.; Holm, R.H. Synthesis, structures, and oxo transfer reactivity of bis(dithiolene)tungsten(IV,VI) complexes related to the active sites of tungstoenzymes. J. Am. Chem. Soc. 1998, 120, 8102–8112. [Google Scholar] [CrossRef]
- Donahue, J.P.; Goldsmith, C.R.; Nadiminti, U.; Holm, R.H. Synthesis, structures, and reactivity of bis(dithiolene)molybdenum(IV,VI) complexes related to the active sites of molybdoenzymes. J. Am. Chem. Soc. 1998, 120, 12869–12881. [Google Scholar] [CrossRef]
- Oku, H.; Ueyama, N.; Nakamura, A. Benzoin Oxidation at Extreme Temperature by Bis(1,2-benzenedithiolato)dioxotungstate(VI) complex: A Model Study for Hyperthermostable Tungsten Oxidoreductases. Chem. Lett. 1996, 25, 1131–1132. [Google Scholar] [CrossRef]
- Chan, M.K.; Mukund, S.; Kletzin, A.; Adams, M.W.W.; Rees, D.C. Structure of a Hyperthermophilic Tungstopterin Enzyme, Aldehyde Ferredoxin Oxidoreductase. Science 1995, 267, 1463–1469. [Google Scholar] [CrossRef] [PubMed]
- Juszczak, A.; Aono, S.; Adams, M.W.W. The Extremely Thermophilic Eubacterium; Thermotoga-Maritima; Contains a Novel Iron-Hydrogenase Whose Cellular-Activity Is Dependent Upon Tungsten. J. Biol. Chem. 1991, 266, 13834–13841. [Google Scholar] [CrossRef] [PubMed]
- Adams, M.W.W. The biochemical diversity of life near and above 100 degrees C in marine environments. J. Appl. Microbiol. 1999, 85 (Suppl. S1), S108–S117. [Google Scholar] [CrossRef] [PubMed]
- George, G.N.; Prince, R.C.; Mukund, S.; Adams, M.W.W. Aldehyde Ferredoxin Oxidoreductase From the Hyperthermophilic Archaebacterium Pyrococcus furiosus Contains a Tungsten Oxo-Thiolate Center. J. Am. Chem. Soc. 1992, 114, 3521–3523. [Google Scholar] [CrossRef]
- Mukund, S.; Adams, M.W.W. The Novel Tungsten-Iron-Sulfur Protein of the Hyperthermophilic Archaebacterium, Pyrococcus furiosus, is an Aldehyde Ferredoxin Oxidoreductase: Evidence for Its Participation in a Unique Glycolytic Pathway. J. Biol. Chem. 1991, 266, 14208–14216. [Google Scholar] [CrossRef] [PubMed]
- Rothery, R.A.; Stein, B.; Solomonson, M.; Kirk, M.L.; Weiner, J.H. Pyranopterin conformation defines the function of molybdenum and tungsten enzymes. Proc. Natl. Acad. Sci. USA 2012, 109, 14773–14778. [Google Scholar] [CrossRef]
- Burgmayer, S.J.N.; Kirk, M.L. The Role of the Pyranopterin Dithiolene Component of Moco in Molybdoenzyme Catalysis. In Metallocofactors That Activate Small Molecules: With Focus on Bioinorganic Chemistry; Ribbe, M.W., Ed.; Structure and Bonding; Springer International Publishing: Cham, Switzerland, 2019; Volume 179, pp. 101–151. [Google Scholar]
- Rothery, R.A.; Weiner, J.H. Shifting the metallocentric molybdoenzyme paradigm: The importance of pyranopterin coordination. J. Biol. Inorg. Chem. 2015, 20, 349–372. [Google Scholar] [CrossRef]
- Habib, U.; Riaz, M.; Hofmann, M. Unraveling the Way Acetaldehyde is Formed from Acetylene: A Study Based on DFT. ACS Omega 2021, 6, 6924–6933. [Google Scholar] [CrossRef] [PubMed]
- Kroneck, P.M.H. Acetylene hydratase: A non-redox enzyme with tungsten and iron-sulfur centers at the active site. J. Biol. Inorg. Chem. 2016, 21, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Boll, M.; Einsle, O.; Ermler, U.; Kroneck, P.M.H.; Ullmann, G.M. Structure and Function of the Unusual Tungsten Enzymes Acetylene Hydratase and Class II Benzoyl-Coenzyme A Reductase. J. Mol. Microbiol. Biotechnol. 2016, 26, 119–137. [Google Scholar] [CrossRef]
- Seiffert, G.B.; Ullmann, G.M.; Messerschmidt, A.; Schink, B.; Kroneck, P.M.H.; Einsle, O. Structure of the non-redox-active tungsten/[4Fe:4S] enzyme acetylene hydratase. Proc. Natl. Acad. Sci. USA 2007, 104, 3073–3077. [Google Scholar] [CrossRef] [PubMed]
- Hennig, C.; Reich, T.; Funke, H.; Rossberg, A.; Rutsch, M.; Bernhard, G. EXAFS as a tool for bond-length determination in the environment of heavy atoms. J. Synchrotron Radiat. 2001, 8, 695–697. [Google Scholar] [CrossRef] [PubMed]
- Aubin, S.M.J.; Sun, Z.M.; Pardi, L.; Krzystek, J.; Folting, K.; Brunel, L.C.; Rheingold, A.L.; Christou, G.; Hendrickson, D.N. Reduced anionic Mn-12 molecules with half-integer ground states as single-molecule magnets. Inorg. Chem. 1999, 38, 5329–5340. [Google Scholar] [CrossRef]
- Garner, C.D.; Baugh, P.; Collison, D.; Davies, E.S.; Dinsmore, A.; Joule, J.A.; Pidcock, E.; Wilson, C.R. X-Ray Absorption Spectroscopic Studies of Metal Centres in Biology and Developments of Relevant Synthetic Analogues. Pure Appl. Chem. 1997, 69, 2205–2212. [Google Scholar] [CrossRef]
- Garner, C.D. XAS Studies of Metal Centers in Proteins. Phys. B 1995, 209, 714–716. [Google Scholar] [CrossRef]
- Liu, W.; Thorp, H.H. Bond Valence Sum Analysis of Metal-Ligand Bond Lengths in Metalloenzymes and Model Complexes. 2. Refined Distances and Other Enzymes. Inorg. Chem. 1993, 32, 4102–4105. [Google Scholar] [CrossRef]
- Thorp, H.H. Bond valence sum analysis of metal-ligand bond lengths in metalloenzymes and model complexes. Inorg. Chem. 1992, 31, 1585–1588. [Google Scholar] [CrossRef]
- Brown, I.D. Recent Developments in the Methods and Applications of the Bond Valence Model. Chem. Rev. 2009, 109, 6858–6919. [Google Scholar] [CrossRef]
- Brown, I.D.; Altermatt, D. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal-structure database. Acta Crystallogr. Sect. B 1985, 41, 244–247. [Google Scholar] [CrossRef]
- Gagne, O.C.; Hawthorne, F.C. Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallogr. Sect. B 2015, 71, 562–578. [Google Scholar] [CrossRef]
- Brown, I.D. 2.16—Modern Bond Valence Theory. In Comprehensive Coordination Chemistry III; Constable, E.C., Parkin, G., Que, L., Jr., Eds.; Elsevier: Oxford, UK, 2021; pp. 276–306. [Google Scholar]
- McNaughton, R.L.; Lim, B.S.; Knottenbelt, S.Z.; Holm, R.H.; Kirk, M.L. Spectroscopic and electronic structure studies of symmetrized models for reduced members of the dimethylsulfoxide reductase enzyme family. J. Am. Chem. Soc. 2008, 130, 4628–4636. [Google Scholar] [CrossRef] [PubMed]
- Groysman, S.; Holm, R.H. Synthesis and Structures of Bis(dithiolene)tungsten(IV,VI) Thiolate and Selenolate Complexes: Approaches to the Active Sites of Molybdenum and Tungsten Formate Dehydrogenases. Inorg. Chem. 2007, 46, 4090–4102. [Google Scholar] [CrossRef]
- Sung, K.M.; Holm, R.H. Synthesis and structures of bis(dithiolene)-tungsten(IV) complexes related to the active sites of tungstoenzymes. Inorg. Chem. 2000, 39, 1275–1281. [Google Scholar] [CrossRef] [PubMed]
- Musgrave, K.B.; Lim, B.S.; Sung, K.M.; Holm, R.H.; Hedman, B.; Hodgson, K.O. X-ray spectroscopy of enzyme active site analogues and related molecules: Bis(dithiolene)molybdenum(IV) and -tungsten(IV,VI) complexes with variant terminal ligands. Inorg. Chem. 2000, 39, 5238–5247. [Google Scholar] [CrossRef] [PubMed]
- Musgrave, K.B.; Donahue, J.P.; Lorber, C.; Holm, R.H.; Hedman, B.; Hodgson, K.O. An X-ray spectroscopic investigation of bis(dithiolene)molybdenum(IV; V; VI) and -tungsten(IV; V; VI) complexes: Symmetrized structural representations of the active sites of molybdoenzymes in the DMSO reductase family and of tungstoenzymes in the AOR and F(M)DH families. J. Am. Chem. Soc. 1999, 121, 10297–10307. [Google Scholar]
- Donahue, J.P.; Lorber, C.; Nordlander, E.; Holm, R.H. Molybdenum and tungsten structural analogues of the active sites of the Mo-IV+[O]->(MoO)-O-VI oxygen atom transfer couple of DMSO reductases. J. Am. Chem. Soc. 1998, 120, 3259–3260. [Google Scholar] [CrossRef]
- Brown, I.D. Bond Valence Parameters; The IUCr: Chester, UK, 2020. [Google Scholar]
- Hong, Q.M.; Zhou, Z.H.; Hu, S.Z. Study on the Bond Valence Parameters for Tungsten-oxygen Bonds. Acta Chim. Sin. 2004, 62, 1733–1737. [Google Scholar]
- Brese, N.E.; O’Keeffe, M. Bond-valence parameters for solids. Acta Crystallogr. Sect. B 1991, 47, 192–197. [Google Scholar] [CrossRef]
- Hardcastle, F.; Lykins, R. Bond Length and Bond Valence for Tungsten-Oxygen and Tungsten-Sulfur Bonds. J. Ark. Acad. Sci. 2017, 71, 59–61. [Google Scholar] [CrossRef]
- Stewart, L.J.; Bailey, S.; Bennett, B.; Charnock, J.M.; Garner, C.D.; McAlpine, A.S. Dimethylsulfoxide reductase: An enzyme capable of catalysis with either molybdenum or tungsten at the active site. J. Mol. Biol. 2000, 299, 593–600. [Google Scholar] [CrossRef]
- Raaijmakers, H.; Macieira, S.; Dias, J.M.; Teixeira, S.; Bursakov, S.; Huber, R.; Moura, J.J.; Moura, I.; Romão, M.J. Gene sequence and the 1.8 A crystal structure of the tungsten-containing formate dehydrogenase from Desulfovibrio gigas. Structure 2002, 10, 1261–1272. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.R.; Mota, C.; Mourato, C.; Domingos, R.M.; Santos, M.F.A.; Gesto, D.; Guigliarelli, B.; Santos-Silva, T.; Romão, M.J.; Cardoso Pereira, I.A. Toward the Mechanistic Understanding of Enzymatic CO2 Reduction. ACS Catal. 2020, 10, 3844–3856. [Google Scholar] [CrossRef]
- Vilela-Alves, G.A.-O.; Manuel, R.R.; Oliveira, A.R.; Pereira, I.C.; Romão, M.A.-O.; Mota, C. Tracking W-Formate Dehydrogenase Structural Changes During Catalysis and Enzyme Reoxidation. Int. J. Mol. Sci. 2023, 24, 476. [Google Scholar] [CrossRef]
- Wagner, T.; Ermler, U.; Shima, S. The methanogenic CO2 reducing-and-fixing enzyme is bifunctional and contains 46 [4Fe-4S] clusters. Science 2016, 354, 114–117. [Google Scholar] [CrossRef] [PubMed]
- Weinert, T.; Huwiler, S.G.; Kung, J.W.; Weidenweber, S.; Hellwig, P.; Stärk, H.J.; Biskup, T.; Weber, S.; Cotelesage, J.J.; George, G.N.; et al. Structural basis of enzymatic benzene ring reduction. Nat. Chem. Biol. 2015, 11, 586–591. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Faham, S.; Roy, R.; Adams, M.W.W.; Rees, D.C. Formaldehyde ferredoxin oxidoreductase from Pyrococcus furiosus: The 1.85 Å resolution crystal structure and its mechanistic implications11Edited by I. A. Wilson. J. Mol. Biol. 1999, 286, 899–914. [Google Scholar] [CrossRef] [PubMed]
- Cramer, S.P.; Liu, C.-L.; Mortenson, L.E.; Spence, J.T.; Liu, S.-M.; Yamamoto, I.; Ljungdahl, L.G. Formate Dehydrogenase Molybdenum and Tungsten Sites—Observation by EXAFS of Structural Differences. J. Inorg. Biochem. 1985, 23, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Garman, E.F.; Weik, M. Radiation damage to biological macromolecules. Curr. Opin. Struct. Biol. 2023, 82, 102662. [Google Scholar] [CrossRef]
Compound Number | .cif Filename | Chemical Formula |
---|---|---|
1 | ic062441a-1 | W(S2C2Me2)2(SPh(Pri)3)2 |
2 | ic9903329-9-1 | W(S2C2Ph2)3 |
3 | ic9903329-9-2 | W(S2C2Ph2)3 |
4 | ic062441a-4 | [NEt4][W(O)(S2C2Me2)2(SBut)] |
5 | ic062441a-7 | [NEt4][W(O)(S2C2Me2)2(SeBut)] |
6 | ic062441a-12 | [NEt4][W(O)(S2C2Me2)2(S-1-Ad)] |
7 | ic062441a-13 | [NEt4][W(OSiPh3)(S2C2Me2)2(S-1-Ad)] |
8 | ic010421x-8 | [NEt4][W(S)(OPh)(S2C2Me2)2] |
9 | ic010421x-9 | [NEt4]2[W(O)2(S2C2Me2)2] |
10 | ic062441a-2 | [NEt4][W(S-But)(S2C2Me2)2] |
11 | ic062441a-9 | [NEt4][W(S2C2Me2)2(S-1-Ad)] |
12 | ic062441a-5 | [NEt4][W(S2C2Me2)2(SeBut)] |
13 | ic991153u-1 | [NEt4][W(OPh)(S2C2Me2)2] |
14 | ic991153u-2-1 | [NEt4][W(CO)(SPh)(S2C2Me2)2] |
15 | ic991153u-2-2 | [NEt4][W(CO)(SPh)(S2C2Me2)2] |
16 | ic991153u-2-3 | [NEt4][W(CO)(SPh)(S2C2Me2)2] |
17 | ic991153u-3 | [NEt4][W(CO)(SPh(Pri)3)(S2C2Me2)2] |
18 | ic991153u-4-1 | [NEt4][W(CO)(SePh)(S2C2Me2)2] |
19 | ic991153u-4-2 | [NEt4][W(CO)(SePh)(S2C2Me2)2] |
20 | ic991153u-4-3 | [NEt4][W(CO)(SePh)(S2C2Me2)2] |
21 | ic991153u-4-4 | [NEt4][W(CO)(SePh)(S2C2Me2)2] |
22 | ic991153u-5 | [NEt4][W(CO)(SePh(Pri)3)(S2C2Me2)2] |
23 | ic9903329-1 | W(CO)2(S2C2Me2)2 |
24 | ic9903329-2 | W(CO)2(S2C2Ph2)2 |
25 | ic9903329-3-1 | [NEt4]2[W(O)(S2C2Ph2)2] |
26 | ic9903329-3-2 | [NEt4]2[W(O)(S2C2Ph2)2] |
27 | ic9903329-5 | [NEt4][W(O)(MeS2C2Ph2)(S2C2Ph2) |
28 | ic9903329-6 | [NEt4]2[W(S)(S2C2Ph2)2] |
29 | ic010421x-1 | [NEt4][W(O2CPh)(S2C2Me2)2] |
30 | ic010421x-2 | [NEt4][W(CO)(S-2-Ad)(S2C2Me2)2] |
31 | ic010421x-3 | [NEt4][W(CO)(Se-2-Ad)(S2C2Me2)2] |
W–Ligand Bond | Set A (R0, B) | Set B (R0, B) | NEW Set (R0, B) |
---|---|---|---|
WIV-O WVI-O | 1.851, 0.370 | 1.901, 0.303 | 1.804, 0.489 |
1.896 a, 0.280 a | 1.901 a, 0.303 a | 1.889, 0.375 | |
WIV-S WVI-S | 2.390 a, 0.370 a | 2.307 a, 0.3027 a | 2.207, 0.456 |
2.390 a, 0.370 a | 2.307 a, 0.3027 a | 2.366, 0.515 | |
WIV-Se WVI-Se | 2.510, 0.370 | N/A | 2.336, 0.418 |
2.510, 0.370 | N/A | 2.514 b, 0.401 b | |
WIV-CO WVI-CO | N/A | N/A | 1.843, 0.371 |
N/A | N/A | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lepluart, J.; Kirk, M.L. Bond Valence Sum Parameters for Analyzing Pyranopterin Tungsten Enzyme Structures. Molecules 2025, 30, 871. https://doi.org/10.3390/molecules30040871
Lepluart J, Kirk ML. Bond Valence Sum Parameters for Analyzing Pyranopterin Tungsten Enzyme Structures. Molecules. 2025; 30(4):871. https://doi.org/10.3390/molecules30040871
Chicago/Turabian StyleLepluart, Jesse, and Martin L. Kirk. 2025. "Bond Valence Sum Parameters for Analyzing Pyranopterin Tungsten Enzyme Structures" Molecules 30, no. 4: 871. https://doi.org/10.3390/molecules30040871
APA StyleLepluart, J., & Kirk, M. L. (2025). Bond Valence Sum Parameters for Analyzing Pyranopterin Tungsten Enzyme Structures. Molecules, 30(4), 871. https://doi.org/10.3390/molecules30040871