The Development and Preparation of Novel Gel Emulsion Systems Based on a Cholesterol Star-Shaped Derivative
Abstract
:1. Introduction
2. Results and Discussion
2.1. Gelation Behaviors
2.2. Exploration of Gel Emulsion Systems
2.3. Microscopic Morphology of the Gel Emulsion
2.4. The Effects of Different Polymerizable Monomers on Gel Emulsions
2.5. Rheological Properties
3. Experimental Section
3.1. Reagents and Instruments
3.2. Experimental Procedure
3.2.1. Synthesis and Characterization of CSD and D-PDMS
Synthesis of Intermediate 1
Synthesis of CSD
Synthesis of Crosslinker D-PDMS
Structural Characterization of the Compounds
3.2.2. Gelation Experiment
3.2.3. Preparation of Gel Emulsion
3.2.4. Tgel Measurements
3.2.5. Rheological Measurements
3.2.6. Inverted Fluorescence Microscope Observation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Langevin, D. Recent advances on emulsion and foam stability. Langmuir 2023, 39, 3821–3828. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, H.; Reger, M. Emulsions with unique properties from proteins as emulsifiers. Adv. Colloid Interface Sci. 2014, 205, 94–104. [Google Scholar] [CrossRef]
- Zhi, L.; Liu, Z.; Wu, C.; Ma, X.; Hu, H.; Liu, H.; Adhikari, B.; Wang, Q.; Shi, A. Advances in preparation and application of food-grade emulsion gels. Food Chem. 2023, 424, 136399. [Google Scholar] [CrossRef] [PubMed]
- Zeeb, B.; Herz, E.; McClements, D.J.; Weiss, J. Impact of alcohols on the formation and stability of protein-stabilized nanoemulsions. J. Colloid Interface Sci. 2014, 433, 196–203. [Google Scholar] [CrossRef]
- Yan, X.; Wang, F.; Zheng, B.; Huang, F. Stimuli-responsive supramolecular polymeric materials. Chem. Soc. Rev. 2012, 41, 6042–6065. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Ma, L.; Cheng, C.; Liu, J.; Liang, R.; Zou, L.; Liu, W.; McClements, D.J. Review of recent advances in the preparation, properties, and applications of high internal phase emulsions. Trends Food Sci. Technol. 2021, 112, 36–49. [Google Scholar] [CrossRef]
- Aldemir Dikici, B.; Claeyssens, F. Basic principles of emulsion templating and its use as an emerging manufacturing method of tissue engineering scaffolds. Front. Bioeng. Biotechnol. 2020, 8, 875. [Google Scholar] [CrossRef] [PubMed]
- Princen, H.M.; Kiss, A.D. Osmotic pressure of foams and highly concentrated emulsions. 2. Determination from the variation in volume fraction with height in an equilibrated column. Langmuir 1987, 3, 36–41. [Google Scholar] [CrossRef]
- Ramos, L.; Weitz, D.A. Patterned colloidal coating using adhesive emulsions. Langmuir 2001, 17, 2275–2277. [Google Scholar] [CrossRef]
- Uzum, G.; Akın Ozmen, B.; Tekneci Akgul, E.; Yavuz, E. Emulsion-templated porous polymers for efficient dye removal. ACS Omega 2022, 7, 16127–16140. [Google Scholar] [CrossRef] [PubMed]
- Velez-Erazo, E.M.; Bosqui, K.; Rabelo, R.S.; Kurozawa, L.E.; Hubinger, M.D. High internal phase emulsions (HIPE) using pea protein and different polysaccharides as stabilizers. Food Hydrocoll. 2020, 105, 105775. [Google Scholar] [CrossRef]
- Bai, Y.; Pei, X.; Zhao, B.; Xu, K.; Zhai, K.; Wang, C.; Zhang, F.; Tan, Y.; Zhang, B.; Wang, Y.; et al. Multiple pickering high internal phase emulsions stabilized by modified diatomite particles via one-step emulsification process. Chem. Eng. Sci. 2020, 212, 115341. [Google Scholar] [CrossRef]
- Gao, Y.; Lin, D.; Peng, H.; Zhang, R.; Zhang, B.; Yang, X. Low oil Pickering emulsion gels stabilized by bacterial cellulose nanofiber/soybean protein isolate: An excellent fat replacer for ice cream. Int. J. Biol. Macromol. 2023, 247, 125623. [Google Scholar] [CrossRef]
- Li, Z.; Liu, H.; Zeng, L.; Liu, H.; Yang, S.; Wang, Y. Preparation of high internal water-phase double emulsions stabilized by a single anionic surfactant for fabricating interconnecting porous polymer microspheres. Langmuir 2014, 30, 12154–12163. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.; Song, B.; Pei, X.; Cui, Z.; Binks, B.P.; Yang, H. Widely adaptable oil-in-water gel emulsions stabilized by an amphiphilic hydrogelator derived from dehydroabietic acid. Angew. Chem. 2020, 132, 647–651. [Google Scholar] [CrossRef]
- Princen, H.M. Highly concentrated emulsions. I. Cylindrical Systems. J. Colloid Interface Sci. 1979, 71, 55–66. [Google Scholar] [CrossRef]
- Silverstein, M.S. Emulsion-templated porous polymers: A retrospective perspective. Polymer 2014, 55, 304–320. [Google Scholar] [CrossRef]
- Chen, X.; Liu, K.; He, P.; Zhang, H.; Fang, Y. Preparation of novel W/O gel-emulsions and their application in the preparation of low-density materials. Langmuir 2012, 28, 9275–9281. [Google Scholar] [CrossRef]
- Patel, A.R.; Rodriguez, Y.; Lesaffer, A.; Dewettinck, K. High internal phase emulsion gels (HIPE-gels) prepared using food-grade components. RSC Adv. 2014, 4, 18136–18140. [Google Scholar] [CrossRef]
- Wang, P.; He, Y.; Luo, Y.; Peng, J.; Fang, Y. Soft template-based preparation of light-weight and high-strength cross-linked polystyrene foams--from monoliths to selective permeable membranes. Sci. Sin. Chim. 2024, 54, 1663–1669. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, S.; Zhang, Q.; Tian, G. Synthesis of a cholesterol derivative and its application in gel emulsion preparation. Molecules 2024, 29, 6055. [Google Scholar] [CrossRef]
- Fu, X.; Wang, P.; Miao, Q.; Liu, K.; Liu, H.; Liu, J.; Fang, Y. Polymerizable organo-gelator-stabilized gel-emulsions toward the preparation of compressible porous polymeric monoliths. J. Mater. Chem. A. 2016, 4, 15215–15223. [Google Scholar] [CrossRef]
- Chen, X.; Liu, L.; Liu, K.; Miao, Q.; Lü, Y.; Fang, Y. Compressible porous hybrid monoliths: Preparation via a low molecular mass gelators-based gel-emulsion approach and exceptional performances. J. Mater. Chem. A. 2015, 3, 24322–24332. [Google Scholar] [CrossRef]
- Cai, K.; Wang, W.; Zhang, J.; Chen, L.; Wang, L.; Zhu, X.; Yu, Z.; Wu, Z.; Zhou, H. Facile construction of olefin-linked covalent organic frameworks for enhanced photocatalytic organic transformation via wall surface engineering. J. Mater. Chem. A. 2022, 10, 7165–7172. [Google Scholar] [CrossRef]
- Wang, Z.; Ghasimi, S.; Landfester, K.; Zhang, K. Molecular structural design of conjugated microporous poly(benzooxadiazole) networks for enhanced photocatalytic activity with visible light. Adv. Mater. 2015, 27, 6265–6270. [Google Scholar] [CrossRef]
- Kundu, S.K.; Bhaumik, A. Novel nitrogen and sulfur rich hyper-cross-linked microporous poly-triazine-thiophene copolymer for superior CO2 capture. ACS Sustain. Chem. Eng. 2016, 4, 3697–3703. [Google Scholar] [CrossRef]
- Campo, L.; Moghaddam, M.J.; Varslot, T.; Kirby, N.; Mittelbach, R.; Sawkins, T.; Hyde, S.T. Nanocompartmentalization of soft materials with three mutually immiscible solvents: Synthesis and self-assembly of three-arm star-polyphiles. Chem. Mater. 2015, 27, 857–866. [Google Scholar] [CrossRef]
- Xu, Y.; Jin, S.; Xu, H.; Nagai, A.; Jiang, D. Conjugated microporous polymers: Design, synthesis and application. Chem. Soc. Rev. 2013, 42, 8012–8031. [Google Scholar] [CrossRef] [PubMed]
- Xue, M.; Miao, Q.; Fang, Y. Synthesis and gelation properties of cholesterol-based new low-molecular-mass gelators. Acta Phys. Chim. Sin. 2013, 29, 2005–2012. [Google Scholar]
- Liu, N.; Liu, C.; Yan, B.; Jin, Z. Thermoregulated ligand–palladium-catalyzed Suzuki reaction in water. Appl. Organomet. Chem. 2011, 25, 168–172. [Google Scholar] [CrossRef]
- Liu, N.; Liu, C.; Jin, Z. Green synthesis of fluorinated biaryl derivatives via thermoregulated ligand/palladium-catalyzed Suzuki reaction. J. Organomet. Chem. 2011, 696, 2641–2647. [Google Scholar] [CrossRef]
- Pi, J.; Jin, H.; Yang, F.; Chen, Z.W.; Cai, J. In situ single molecule imaging of cell membranes: Linking basic nanotechniques to cell biology, immunology and medicine. Nanoscale 2014, 6, 12229–12249. [Google Scholar] [CrossRef] [PubMed]
- Montalti, M.; Cantelli, A.; Battistelli, G. Nanodiamonds and silicon quantum dots: Ultrastable and biocompatible luminescent nanoprobes for long-term bioimaging. Chem. Soc. Rev. 2015, 44, 4853–4921. [Google Scholar] [CrossRef]
- Bartelmess, J.; Quinn, S.J.; Giordani, S. Carbon nanomaterials: Multi-functional agents for biomedical fluorescence and Raman imaging. Chem. Soc. Rev. 2015, 44, 4672–4698. [Google Scholar] [CrossRef] [PubMed]
- Jagadesan, P.; Whittemore, T.; Beirl, T.; Turro, C.; McGrier, P.L. Excited-state intramolecular proton-transfer properties of three tris(N-salicylideneaniline)-based chromophores with extended conjugation. Chem. Eur. J. 2017, 23, 917–925. [Google Scholar] [CrossRef]
- Takahashi, A.; Sakai, M.; Kato, T. Melting temperature of thermally reversible gel. VI. Effect of branching on the sol–gel transition of polyethylene gels. Polym. J. 1980, 12, 335–341. [Google Scholar] [CrossRef]
Solvent | Result | Solvent | Result | Solvent | Result | ||
---|---|---|---|---|---|---|---|
methanol | P | petroleum ether | G, ~74 a | n-hexane | G, ~45 | ||
ethanol | P | DCM | G, ~50 | n-heptane | G, ~41 | ||
n-propanol | P | ethyl acetate | G, ~84 | n-octane | G, ~36 | ||
n-butanol | P | CCl4 | G, ~42 | n-nonane | G, ~54 | ||
n-pentanol | P | TEA | G, ~94 | n-decane | G, ~49 | ||
isopropanol | P | t-BMA | G, ~112 | cyclohexane | G, ~98 | ||
vinyl cyanide | P | MMA | PG | toluene | G, ~46 | ||
pyridine | S | ethyl ether | PG | styrene | G, ~78 | ||
CHCl3 | S | DMSO | P | isopentanol | P | ||
H2O | I | DMF | P | acetone | P | ||
acetic acid | I | THF | S | acetonitrile | I |
Solvent | Time (Result) | Solvent | Time (Result) | Solvent | Time (Result) | Solvent | Time (Result) |
---|---|---|---|---|---|---|---|
petroleum ether | 3 min (G) | TEA | 5 min (G) | n-hexane | 10 min (G) | n-decane | 15 min (G) |
DCM | 2 min (G) | t-BMA | 4 min (G) | n-heptane | 10 min (G) | cyclohexane | 8 min (G) |
ethyl acetate | 5 min (G) | MMA | 20 min (PG) | n-octane | 15 min (G) | toluene | 6 min (G) |
CCl4 | 3 min (G) | ethyl ether | 20 min (PG) | n-nonane | 15 min (G) | styrene | 4 min (G) |
NO. | CSD (%, w/v) | DCM (µL) | D-PDMS (g) | Water (µL) | t-BMA (µL) | N-t-BMA (g) | Result |
---|---|---|---|---|---|---|---|
CSD2.5-0 a | 2.5 | 100 | 0.075 | 900 | 0 | 0 | GE |
CSD2.5-30 (l) | 2.5 | 70 | 0.075 | 900 | 30 | 0 | GE |
CSD2.5-40 (l) | 2.5 | 60 | 0.075 | 900 | 40 | 0 | GE |
CSD2.5-50 (l) | 2.5 | 50 | 0.075 | 900 | 50 | 0 | GE |
CSD2.5-50 (s) b | 2.5 | 100 | 0.075 | 900 | 0 | 0.05 | GE |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Yao, T.; Xia, D.; Liu, Q.; Tian, G.; Liu, Y. The Development and Preparation of Novel Gel Emulsion Systems Based on a Cholesterol Star-Shaped Derivative. Molecules 2025, 30, 787. https://doi.org/10.3390/molecules30040787
Liu S, Yao T, Xia D, Liu Q, Tian G, Liu Y. The Development and Preparation of Novel Gel Emulsion Systems Based on a Cholesterol Star-Shaped Derivative. Molecules. 2025; 30(4):787. https://doi.org/10.3390/molecules30040787
Chicago/Turabian StyleLiu, Shuaihua, Tian Yao, Donghui Xia, Quan Liu, Guanghui Tian, and Yang Liu. 2025. "The Development and Preparation of Novel Gel Emulsion Systems Based on a Cholesterol Star-Shaped Derivative" Molecules 30, no. 4: 787. https://doi.org/10.3390/molecules30040787
APA StyleLiu, S., Yao, T., Xia, D., Liu, Q., Tian, G., & Liu, Y. (2025). The Development and Preparation of Novel Gel Emulsion Systems Based on a Cholesterol Star-Shaped Derivative. Molecules, 30(4), 787. https://doi.org/10.3390/molecules30040787