N,N-Dimethylformamide’s Participation in Domino Reactions for the Synthesis of Se-Phenyl Dimethylcarbamoselenoate Derivatives
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zingaro, R.A.; Cooper, W.C. Selenium; van Nostrand Reinhold Company: New York, NY, USA, 1974. [Google Scholar]
- Begines, P.; Martos, S.; Lagunes, I.; Maya, I.; Padrón, J.M.; López, Ó.; Fernández-Bolaños, J.G. Chemoselective Preparation of New Families of Phenolic-Organoselenium Hybrids—A Biological Assessment. Molecules 2022, 27, 1315. [Google Scholar] [CrossRef]
- Watanabe, A.; Nagatomo, M.; Hirose, A.; Hikone, Y.; Kishimoto, N.; Miura, S.; Yasutake, T.; Abe, T.; Misumi, S.; Inoue, M. Total Syntheses of Phorbol and 11 Tigliane Diterpenoids and Their Evaluation as HIV Latency-Reversing Agents. J. Am. Chem. Soc. 2024, 146, 8746–8756. [Google Scholar] [CrossRef] [PubMed]
- Arora, A.; Singh, S.; Oswal, P.; Nautiyal, D.; Rao, G.K.; Kumar, S.; Kumar, A. Preformed Molecular Complexes of Metals with Organoselenium Ligands: Syntheses and Applications in Catalysis. Coord. Chem. Rev. 2021, 438, 213885. [Google Scholar] [CrossRef]
- Kolay, S.; Wadawale, A.; Das, D.; Kisan, H.K.; Sunoj, R.B.; Jain, V.K. Cyclopalladation of Dimesityl Selenide: Synthesis, Reactivity, Structural Characterization, Isolation of an Intermediate Complex with C-H⋯Pd Intra-molecular Interaction and Computational Studies. Dalton Trans. 2013, 2, 10828–10837. [Google Scholar] [CrossRef]
- Zhou, M.; Frenking, G. Transition-metal Chemistry of the Heavier Alkaline Earth Atoms Ca, Sr, and Ba. Acc. Chem. Res. 2021, 54, 3071–3082. [Google Scholar] [CrossRef]
- Chaudhary, V.; Ashraf, N.; Khalid, M.; Walvekar, R.; Yang, Y.; Kaushik, A.; Mishra, Y.K. Emergence of MXene-Polymer Hybrid Nanocomposites as High-performance Next-Generation Chemiresistors for Efficient Air Quality Monitoring. Adv. Fun. Mat. 2022, 32, 2112913. [Google Scholar] [CrossRef]
- Benckendorff, C.M.M.; Sunde-Brown, P.; Cheallaigh, A.N.; Miller, G.J. Synthesis of Nucleoside Analogs Containing Sulfur or Selenium Replacements of the Ribose Ring Oxygen or Carbon. J. Org. Chem. 2024, 89, 16977–16989. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Kaminski Schierle, G.S.; Lei, B.; Liu, Y.; Kaminski, C.F. Fluorescent nanoparticles for super-resolution imaging. Chem. Rev. 2022, 122, 12495–12543. [Google Scholar] [CrossRef]
- Engl, S.; Reiser, O. Copper-photocatalyzed ATRA Reactions: Concepts, Applications, and Opportunities. Chem. Soc. Rev. 2022, 51, 5287–5299. [Google Scholar] [CrossRef]
- Larock, R. Comprehensive Organic Yransformations: A Guide to Functional Group Preparations; John Wiley & Sons: New York, NY, USA, 1989. [Google Scholar]
- Capperucci, A.; Petrucci, A.; Faggi, C.; Tanini, D. Click Reaction of Selenols with Isocyanates: Rapid Access to Selenocarbamates as Peroxide-Switchable Reservoir of Thiolperoxidase-Like Catalysts. Adv. Synth. Catal. 2021, 363, 4256–4263. [Google Scholar] [CrossRef]
- Patel, R.I.; Sharma, S.; Sharma, A. Cyanation: A Photochemical Approach and Applications in Organic Synthesis. Org. Chem. Front. 2021, 8, 3166–3200. [Google Scholar] [CrossRef]
- Gandeepan, P.; Müller, T.; Zell, D.; Cera, G.; Warratz, S.; Ackermann, L. 3d Transition Metals for C-H Activation. Chem. Rev. 2018, 119, 2192–2452. [Google Scholar] [CrossRef] [PubMed]
- Nair, S.R.; Chinta, B.S.; Baire, B. A Domino One-Pot Approach to Functionalized Benzonitriles from 2-[(3-Hydroxy/acetoxy) propyn-1-yl] benzamides. Synthesis 2024, 56, 3001–3008. [Google Scholar] [CrossRef]
- Xie, S.; Cai, F.; Liu, L.; Su, L.; Dong, J.; Zhou, Y. Copper-Mediated Selective Multiple Inert Chemical Bonds Cleavage for Cyanation of Indoles via Tandem Carbon and Nitrogen Atom Transfer. Chin. J. Chem. 2024, 42, 2299–2304. [Google Scholar]
- Gao, H.; Zhou, L.; Wan, J.P.; Liu, Y. Rongalite as C1 Synthon in the Synthesis of Divergent Pyridines and Quinolines. J. Org. Chem. 2023, 88, 7188–7198. [Google Scholar]
- Mondal, S.; Samanta, S.; Santra, S.; Bagdi, A.K.; Hajra, A. N,N-Dimethylformamide as a Methylenating Reagent: Synthesis of Heterodiarylmethanes via Copper-catalyzed Coupling Between Imidazo [1,2-a]pyridines and Indoles/N,N-dimethylaniline. Adv. Synth. Catal. 2016, 358, 3633–3641. [Google Scholar] [CrossRef]
- Yang, K.; Zhang, F.; Fang, T.; Li, C.; Li, W.; Song, Q. Passerini-type Reaction of Boronic Acids Enables α-Hydroxyketones Synthesis. Nat. Commun. 2021, 12, 441. [Google Scholar] [CrossRef]
- Zhang, Q.; Song, C.; Huang, H.; Zhang, K.; Chang, J. Cesium Carbonate Promoted Cascade Reaction Involving DMF as a Reactant for the Synthesis of Dihydropyrrolizino [3, 2-b] indol-10-ones. Org. Chem. Front. 2018, 5, 80–87. [Google Scholar] [CrossRef]
- Duan, F.F.; Song, S.Q.; Xu, R.S. Iron (II)-catalyzed Sulfur Directed C (sp3)-H Bond Amination/C-S Cross Coupling Reaction. Chem. Commun. 2017, 53, 2737–2739. [Google Scholar]
- Cai, R.R.; Zhou, Z.D.; Chai, Q.Q.; Zhu, Y.E.; Xu, R.S. Copper-Catalyzed C-S Direct Cross-coupling of Thiols with 5-Arylpenta-2, 4-Dienoic Acid Ethyl Ester. RSC Adv. 2018, 8, 26828–26836. [Google Scholar] [CrossRef] [PubMed]
- Cai, R.R.; Wei, Q.C.; Xu, R.S. A Nickel-catalyzed Tandem Reaction Involving Cyclic Esterification/C-S Bond Formation for Synthesizing 5-Oxa-11-thia-benzofluoren-6-ones. RSC Adv. 2020, 10, 26414–26417. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Xue, Y.Q.; Cheng, Y.Y.; Xu, R.S. Copper-catalyzed Tandem Reaction of Cyclic Esterification/selenoxidation for 11-Oxo-11H-5-oxa-11-selena-benzo [a] fluoren-6-ones Synthesis. Arkivoc 2021, 4, 119–129. [Google Scholar] [CrossRef]
- Khan, D.; Kumari, B.; Alzahrani, A.Y.A.; Dua, N.; Shaily; Maurya, N. Microwave-assisted Synthesis of Pyrroles, Pyridines, Chromenes, Coumarins, and Betti Bases via Alcohol Dehydrogenation with Chroman-4-one Amino Ligands. Curr. Org. Chem. 2024, 28, 1593–1604. [Google Scholar] [CrossRef]
- Wang, M.; Ren, H.Y.; Pu, X.Y.; Zhang, X.L.; Zhu, H.Y.; Wu, A.X.; Zhao, B.T. Rongalite/iodine-mediated C(sp3)–H Bond Oximation and Thiomethylation Reaction of Methyl Ketones using Copper Nitrate as the [NO] Reagent: Synthesis of Thiohydroximic Acids. Org. Biomol. Chem. 2024, 22, 7623–7627. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.C.; Liao, M.L.; Li, P.G.; Zou, L.H. A Concise Protocol for the Synthesis of 2-Alkenylindoles through [4+1] Annulation of Aminobenzyl Phosphonium Salts with Acrylaldehydes. Green. Chem. 2024, 26, 9295–9299. [Google Scholar] [CrossRef]
- Liu, J.M.; Zheng, X.H.; Luo, W.J.; Chen, Z.W.; Ling, F. TBAB-catalyzed Assisted C-C/C-N Bond Formations: An Efficient Approach to Dihydrobenzo[b][1,8]naphthyridin Derivatives via Metal Free Cascade Annulation. Synth. Commun. 2024, 54, 1252–1262. [Google Scholar] [CrossRef]
Entry | Copper Salt | Base | Solvent | 1a:2 | Yield (%) b |
---|---|---|---|---|---|
1 | CuO | Na2CO3 | DMSO | 1:1 | 0 |
2 | CuSO4 | Na2CO3 | DMF | 1:1 | 18 |
3 | CuI | Na2CO3 | DMF | 1:1 | 29 |
4 | CuCl2 | Na2CO3 | DMF | 1:1 | 34 |
5 | CuBr2 | Na2CO3 | DMF | 1:1 | 60 |
6 | Cu(OAc)2 | Na2CO3 | DMF | 1:1 | 75 |
7 | Cu(OAc)2 | Cs2CO3 | DMF | 1:1 | 86 |
8 | Cu(OAc)2 | NaOH | DMF | 1:1 | 56 |
9 | Cu(OAc)2 | Na2SO4 | DMF | 1:1 | 49 |
10 | Cu(OAc)2 | NaOEt | DMF | 1:1 | 65 |
11 | Cu(OAc)2 | K2CO3 | DMF | 1:1 | 55 |
12 | Cu(OAc)2 | K2PO3 | DMF | 1:1 | 57 |
13 | Cu(OAc)2 | Cs2CO3 | DMF | 1:1 | 5 |
14 | Cu(OAc)2 | Cs2CO3 | DMF | 1:1 | 48 |
15 | Cu(OAc)2 | Cs2CO3 | DMF | 1:1.5 | 72 c |
16 | Cu(OAc)2 | Cs2CO3 | DMF | 1:1.5 | 77 d |
17 | Cu(OAc)2 | Cs2CO3 | DMF | 1:1.5 | 64 e |
18 | Cu(OAc)2 | Cs2CO3 | DMF | 1:1.5 | 69 f |
Entry | 1 | Product | Yield (%) b |
---|---|---|---|
1 | 86 | ||
2 | 84 | ||
3 | 81 | ||
4 | 83 | ||
5 | 80 | ||
6 | 79 | ||
7 | 92 | ||
8 | 90 | ||
9 | 88 | ||
10 | 89 |
Entry | 5 | Product | Yield (%) b |
---|---|---|---|
1 | 81 | ||
2 | 78 | ||
3 | 76 | ||
4 | 85 | ||
6 | 86 | ||
5 | 83 | ||
7 | 72 | ||
8 | 70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, R.; Hu, S.; Wu, L.; Ning, Y.; Xu, J. N,N-Dimethylformamide’s Participation in Domino Reactions for the Synthesis of Se-Phenyl Dimethylcarbamoselenoate Derivatives. Molecules 2025, 30, 747. https://doi.org/10.3390/molecules30030747
Xu R, Hu S, Wu L, Ning Y, Xu J. N,N-Dimethylformamide’s Participation in Domino Reactions for the Synthesis of Se-Phenyl Dimethylcarbamoselenoate Derivatives. Molecules. 2025; 30(3):747. https://doi.org/10.3390/molecules30030747
Chicago/Turabian StyleXu, Runsheng, Shenhuanran Hu, Luhui Wu, Yifan Ning, and Jin Xu. 2025. "N,N-Dimethylformamide’s Participation in Domino Reactions for the Synthesis of Se-Phenyl Dimethylcarbamoselenoate Derivatives" Molecules 30, no. 3: 747. https://doi.org/10.3390/molecules30030747
APA StyleXu, R., Hu, S., Wu, L., Ning, Y., & Xu, J. (2025). N,N-Dimethylformamide’s Participation in Domino Reactions for the Synthesis of Se-Phenyl Dimethylcarbamoselenoate Derivatives. Molecules, 30(3), 747. https://doi.org/10.3390/molecules30030747