N,N-Dimethylformamide’s Participation in Domino Reactions for the Synthesis of Se-Phenyl Dimethylcarbamoselenoate Derivatives
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zingaro, R.A.; Cooper, W.C. Selenium; van Nostrand Reinhold Company: New York, NY, USA, 1974. [Google Scholar]
- Begines, P.; Martos, S.; Lagunes, I.; Maya, I.; Padrón, J.M.; López, Ó.; Fernández-Bolaños, J.G. Chemoselective Preparation of New Families of Phenolic-Organoselenium Hybrids—A Biological Assessment. Molecules 2022, 27, 1315. [Google Scholar] [CrossRef]
- Watanabe, A.; Nagatomo, M.; Hirose, A.; Hikone, Y.; Kishimoto, N.; Miura, S.; Yasutake, T.; Abe, T.; Misumi, S.; Inoue, M. Total Syntheses of Phorbol and 11 Tigliane Diterpenoids and Their Evaluation as HIV Latency-Reversing Agents. J. Am. Chem. Soc. 2024, 146, 8746–8756. [Google Scholar] [CrossRef] [PubMed]
- Arora, A.; Singh, S.; Oswal, P.; Nautiyal, D.; Rao, G.K.; Kumar, S.; Kumar, A. Preformed Molecular Complexes of Metals with Organoselenium Ligands: Syntheses and Applications in Catalysis. Coord. Chem. Rev. 2021, 438, 213885. [Google Scholar] [CrossRef]
- Kolay, S.; Wadawale, A.; Das, D.; Kisan, H.K.; Sunoj, R.B.; Jain, V.K. Cyclopalladation of Dimesityl Selenide: Synthesis, Reactivity, Structural Characterization, Isolation of an Intermediate Complex with C-H⋯Pd Intra-molecular Interaction and Computational Studies. Dalton Trans. 2013, 2, 10828–10837. [Google Scholar] [CrossRef]
- Zhou, M.; Frenking, G. Transition-metal Chemistry of the Heavier Alkaline Earth Atoms Ca, Sr, and Ba. Acc. Chem. Res. 2021, 54, 3071–3082. [Google Scholar] [CrossRef]
- Chaudhary, V.; Ashraf, N.; Khalid, M.; Walvekar, R.; Yang, Y.; Kaushik, A.; Mishra, Y.K. Emergence of MXene-Polymer Hybrid Nanocomposites as High-performance Next-Generation Chemiresistors for Efficient Air Quality Monitoring. Adv. Fun. Mat. 2022, 32, 2112913. [Google Scholar] [CrossRef]
- Benckendorff, C.M.M.; Sunde-Brown, P.; Cheallaigh, A.N.; Miller, G.J. Synthesis of Nucleoside Analogs Containing Sulfur or Selenium Replacements of the Ribose Ring Oxygen or Carbon. J. Org. Chem. 2024, 89, 16977–16989. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Kaminski Schierle, G.S.; Lei, B.; Liu, Y.; Kaminski, C.F. Fluorescent nanoparticles for super-resolution imaging. Chem. Rev. 2022, 122, 12495–12543. [Google Scholar] [CrossRef]
- Engl, S.; Reiser, O. Copper-photocatalyzed ATRA Reactions: Concepts, Applications, and Opportunities. Chem. Soc. Rev. 2022, 51, 5287–5299. [Google Scholar] [CrossRef]
- Larock, R. Comprehensive Organic Yransformations: A Guide to Functional Group Preparations; John Wiley & Sons: New York, NY, USA, 1989. [Google Scholar]
- Capperucci, A.; Petrucci, A.; Faggi, C.; Tanini, D. Click Reaction of Selenols with Isocyanates: Rapid Access to Selenocarbamates as Peroxide-Switchable Reservoir of Thiolperoxidase-Like Catalysts. Adv. Synth. Catal. 2021, 363, 4256–4263. [Google Scholar] [CrossRef]
- Patel, R.I.; Sharma, S.; Sharma, A. Cyanation: A Photochemical Approach and Applications in Organic Synthesis. Org. Chem. Front. 2021, 8, 3166–3200. [Google Scholar] [CrossRef]
- Gandeepan, P.; Müller, T.; Zell, D.; Cera, G.; Warratz, S.; Ackermann, L. 3d Transition Metals for C-H Activation. Chem. Rev. 2018, 119, 2192–2452. [Google Scholar] [CrossRef] [PubMed]
- Nair, S.R.; Chinta, B.S.; Baire, B. A Domino One-Pot Approach to Functionalized Benzonitriles from 2-[(3-Hydroxy/acetoxy) propyn-1-yl] benzamides. Synthesis 2024, 56, 3001–3008. [Google Scholar] [CrossRef]
- Xie, S.; Cai, F.; Liu, L.; Su, L.; Dong, J.; Zhou, Y. Copper-Mediated Selective Multiple Inert Chemical Bonds Cleavage for Cyanation of Indoles via Tandem Carbon and Nitrogen Atom Transfer. Chin. J. Chem. 2024, 42, 2299–2304. [Google Scholar]
- Gao, H.; Zhou, L.; Wan, J.P.; Liu, Y. Rongalite as C1 Synthon in the Synthesis of Divergent Pyridines and Quinolines. J. Org. Chem. 2023, 88, 7188–7198. [Google Scholar]
- Mondal, S.; Samanta, S.; Santra, S.; Bagdi, A.K.; Hajra, A. N,N-Dimethylformamide as a Methylenating Reagent: Synthesis of Heterodiarylmethanes via Copper-catalyzed Coupling Between Imidazo [1,2-a]pyridines and Indoles/N,N-dimethylaniline. Adv. Synth. Catal. 2016, 358, 3633–3641. [Google Scholar] [CrossRef]
- Yang, K.; Zhang, F.; Fang, T.; Li, C.; Li, W.; Song, Q. Passerini-type Reaction of Boronic Acids Enables α-Hydroxyketones Synthesis. Nat. Commun. 2021, 12, 441. [Google Scholar] [CrossRef]
- Zhang, Q.; Song, C.; Huang, H.; Zhang, K.; Chang, J. Cesium Carbonate Promoted Cascade Reaction Involving DMF as a Reactant for the Synthesis of Dihydropyrrolizino [3, 2-b] indol-10-ones. Org. Chem. Front. 2018, 5, 80–87. [Google Scholar] [CrossRef]
- Duan, F.F.; Song, S.Q.; Xu, R.S. Iron (II)-catalyzed Sulfur Directed C (sp3)-H Bond Amination/C-S Cross Coupling Reaction. Chem. Commun. 2017, 53, 2737–2739. [Google Scholar]
- Cai, R.R.; Zhou, Z.D.; Chai, Q.Q.; Zhu, Y.E.; Xu, R.S. Copper-Catalyzed C-S Direct Cross-coupling of Thiols with 5-Arylpenta-2, 4-Dienoic Acid Ethyl Ester. RSC Adv. 2018, 8, 26828–26836. [Google Scholar] [CrossRef] [PubMed]
- Cai, R.R.; Wei, Q.C.; Xu, R.S. A Nickel-catalyzed Tandem Reaction Involving Cyclic Esterification/C-S Bond Formation for Synthesizing 5-Oxa-11-thia-benzofluoren-6-ones. RSC Adv. 2020, 10, 26414–26417. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Xue, Y.Q.; Cheng, Y.Y.; Xu, R.S. Copper-catalyzed Tandem Reaction of Cyclic Esterification/selenoxidation for 11-Oxo-11H-5-oxa-11-selena-benzo [a] fluoren-6-ones Synthesis. Arkivoc 2021, 4, 119–129. [Google Scholar] [CrossRef]
- Khan, D.; Kumari, B.; Alzahrani, A.Y.A.; Dua, N.; Shaily; Maurya, N. Microwave-assisted Synthesis of Pyrroles, Pyridines, Chromenes, Coumarins, and Betti Bases via Alcohol Dehydrogenation with Chroman-4-one Amino Ligands. Curr. Org. Chem. 2024, 28, 1593–1604. [Google Scholar] [CrossRef]
- Wang, M.; Ren, H.Y.; Pu, X.Y.; Zhang, X.L.; Zhu, H.Y.; Wu, A.X.; Zhao, B.T. Rongalite/iodine-mediated C(sp3)–H Bond Oximation and Thiomethylation Reaction of Methyl Ketones using Copper Nitrate as the [NO] Reagent: Synthesis of Thiohydroximic Acids. Org. Biomol. Chem. 2024, 22, 7623–7627. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.C.; Liao, M.L.; Li, P.G.; Zou, L.H. A Concise Protocol for the Synthesis of 2-Alkenylindoles through [4+1] Annulation of Aminobenzyl Phosphonium Salts with Acrylaldehydes. Green. Chem. 2024, 26, 9295–9299. [Google Scholar] [CrossRef]
- Liu, J.M.; Zheng, X.H.; Luo, W.J.; Chen, Z.W.; Ling, F. TBAB-catalyzed Assisted C-C/C-N Bond Formations: An Efficient Approach to Dihydrobenzo[b][1,8]naphthyridin Derivatives via Metal Free Cascade Annulation. Synth. Commun. 2024, 54, 1252–1262. [Google Scholar] [CrossRef]
Entry | Copper Salt | Base | Solvent | 1a:2 | Yield (%) b |
---|---|---|---|---|---|
1 | CuO | Na2CO3 | DMSO | 1:1 | 0 |
2 | CuSO4 | Na2CO3 | DMF | 1:1 | 18 |
3 | CuI | Na2CO3 | DMF | 1:1 | 29 |
4 | CuCl2 | Na2CO3 | DMF | 1:1 | 34 |
5 | CuBr2 | Na2CO3 | DMF | 1:1 | 60 |
6 | Cu(OAc)2 | Na2CO3 | DMF | 1:1 | 75 |
7 | Cu(OAc)2 | Cs2CO3 | DMF | 1:1 | 86 |
8 | Cu(OAc)2 | NaOH | DMF | 1:1 | 56 |
9 | Cu(OAc)2 | Na2SO4 | DMF | 1:1 | 49 |
10 | Cu(OAc)2 | NaOEt | DMF | 1:1 | 65 |
11 | Cu(OAc)2 | K2CO3 | DMF | 1:1 | 55 |
12 | Cu(OAc)2 | K2PO3 | DMF | 1:1 | 57 |
13 | Cu(OAc)2 | Cs2CO3 | DMF | 1:1 | 5 |
14 | Cu(OAc)2 | Cs2CO3 | DMF | 1:1 | 48 |
15 | Cu(OAc)2 | Cs2CO3 | DMF | 1:1.5 | 72 c |
16 | Cu(OAc)2 | Cs2CO3 | DMF | 1:1.5 | 77 d |
17 | Cu(OAc)2 | Cs2CO3 | DMF | 1:1.5 | 64 e |
18 | Cu(OAc)2 | Cs2CO3 | DMF | 1:1.5 | 69 f |
Entry | 1 | Product | Yield (%) b |
---|---|---|---|
1 | 86 | ||
2 | 84 | ||
3 | 81 | ||
4 | 83 | ||
5 | 80 | ||
6 | 79 | ||
7 | 92 | ||
8 | 90 | ||
9 | 88 | ||
10 | 89 |
Entry | 5 | Product | Yield (%) b |
---|---|---|---|
1 | 81 | ||
2 | 78 | ||
3 | 76 | ||
4 | 85 | ||
6 | 86 | ||
5 | 83 | ||
7 | 72 | ||
8 | 70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, R.; Hu, S.; Wu, L.; Ning, Y.; Xu, J. N,N-Dimethylformamide’s Participation in Domino Reactions for the Synthesis of Se-Phenyl Dimethylcarbamoselenoate Derivatives. Molecules 2025, 30, 747. https://doi.org/10.3390/molecules30030747
Xu R, Hu S, Wu L, Ning Y, Xu J. N,N-Dimethylformamide’s Participation in Domino Reactions for the Synthesis of Se-Phenyl Dimethylcarbamoselenoate Derivatives. Molecules. 2025; 30(3):747. https://doi.org/10.3390/molecules30030747
Chicago/Turabian StyleXu, Runsheng, Shenhuanran Hu, Luhui Wu, Yifan Ning, and Jin Xu. 2025. "N,N-Dimethylformamide’s Participation in Domino Reactions for the Synthesis of Se-Phenyl Dimethylcarbamoselenoate Derivatives" Molecules 30, no. 3: 747. https://doi.org/10.3390/molecules30030747
APA StyleXu, R., Hu, S., Wu, L., Ning, Y., & Xu, J. (2025). N,N-Dimethylformamide’s Participation in Domino Reactions for the Synthesis of Se-Phenyl Dimethylcarbamoselenoate Derivatives. Molecules, 30(3), 747. https://doi.org/10.3390/molecules30030747