Research Progress in the Construction Strategy and Application of Superhydrophobic Wood
Abstract
1. Introduction
2. Superhydrophobic Surfaces
Basic Theory of Superhydrophobicity
3. Preparation of Superhydrophobic Wood
3.1. Sol–Gel Method
3.2. Hydrothermal Method
3.3. Template Method
3.4. Surface-Coating Method
3.5. Chemical Deposition Method
3.6. Vegetable Oil-Based Hydrophobic Protection Methods
4. Wettability Changes in Hydrophobic Wood During Prolonged and Continuous Contact with Aqueous Phases
5. Application of Superhydrophobic Wood
5.1. Oil–Water Separation Field
5.2. Self-Cleaning Ability
5.3. Flame-Retardant Effect
5.4. Self-Healing Properties
5.5. Decay Resistance and Antibacterial Ability
6. Summary and Future Prospects
Funding
Conflicts of Interest
References
- Liu, S.; Gu, M.; Yu, J.; Ni, K.; Li, H.; Wang, H.; Huang, T.; Yang, H.; Du, G.; Yang, L. Activated wood flour as adhesives for bonding activated wood veneer to produce sustainable wood composites. Ind. Crop. Prod. 2024, 211, 118310. [Google Scholar] [CrossRef]
- Pokhrel, G.; Gardner, D.J.; Han, Y. Properties of Wood–Plastic Composites Manufactured from Two Different Wood Feedstocks: Wood Flour and Wood Pellets. Polymers 2021, 13, 2769. [Google Scholar] [CrossRef]
- Nam, H.K.; Choi, J.; Jing, T.; Yang, D.; Lee, Y.; Kim, Y.-R.; Le, T.-S.D.; Kim, B.; Yu, L.; Kim, S.-W.; et al. Laser-induced graphene formation on recycled woods for green smart furniture. EcoMat 2024, 6, e12447. [Google Scholar] [CrossRef]
- Pramreiter, M.; Nenning, T.; Malzl, L.; Konnerth, J. A plea for the efficient use of wood in construction. Nat. Rev. Mater. 2023, 8, 217–218. [Google Scholar] [CrossRef]
- Liu, H.; Ke, M.; Zhou, T.; Sun, X. Effect of samples length on the characteristics of moisture transfer and shrinkage of eucalyptus urophylla wood during conventional drying. Forests 2023, 14, 1218. [Google Scholar] [CrossRef]
- Rahimi, S.; Nasir, V.; Avramidis, S.; Sassani, F. Wood moisture monitoring and classification in kiln-dried timber. Struct. Control Health Monit. 2022, 29, e2911. [Google Scholar] [CrossRef]
- Luan, Q.; Zhang, H.; Chen, C.; Jiang, F.; Yao, Y.; Deng, Q.; Zeng, K.; Tang, H.; Huang, F. Controlled nutrient delivery through a pH-responsive wood vehicle. ACS Nano 2022, 16, 2198–2208. [Google Scholar] [CrossRef] [PubMed]
- Latthe, S.S.; Sutar, R.S.; Kodag, V.S.; Bhosale, A.K.; Kumar, A.M.; Kumar Sadasivuni, K.; Xing, R.; Liu, S. Self-cleaning superhydrophobic coatings: Potential industrial applications. Prog. Org. Coat. 2019, 128, 52–58. [Google Scholar] [CrossRef]
- Zhang, N.; Yang, X.; Wang, Y.; Qi, Y.; Cui, P.; Jiang, W. Hierarchically porous superhydrophobic sponge for oil-water separation. J. Water Process Eng. 2022, 46, 102590. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, Z.; Chen, X.; Zou, W.; Jiang, X.; Sun, D.; Yu, M. Color fastness enhancement of dyed wood by Si-sol@PDMS based superhydrophobic coating. Colloid. Surface. A 2022, 651, 129701. [Google Scholar] [CrossRef]
- Sun, W.; Li, J.; Qiu, J.; Sun, Y. Biomimetic nano/microfabrication techniques in multi-bioinspired superhydrophobic wood: New insight on theory, design and applications. Surf. Interfaces 2024, 48, 104217. [Google Scholar] [CrossRef]
- Wei, X.; Niu, X. Recent Advances in superhydrophobic surfaces and applications on wood. Polymers 2023, 15, 1682. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ge-Zhang, S.; Mu, P.; Wang, X.; Li, S.; Qiao, L.; Mu, H. Advances in Sol-Gel-Based superhydrophobic coatings for wood: A review. Int. J. Mol. Sci. 2023, 24, 9675. [Google Scholar] [CrossRef]
- Yin, H.; Moghaddam, M.S.; Tuominen, M.; Eriksson, M.; Järn, M.; Dėdinaitė, A.; Wålinder, M.; Swerin, A. Superamphiphobic plastrons on wood and their effects on liquid repellence. Mater. Design 2020, 195, 108974. [Google Scholar] [CrossRef]
- Ou, J.; Zhao, G.; Wang, F.; Li, W.; Lei, S.; Fang, X.; Siddiqui, A.R.; Xia, Y.; Amirfazli, A. Durable superhydrophobic wood via one-step immersion in composite silane solution. ACS Omega 2021, 6, 7266–7274. [Google Scholar] [CrossRef] [PubMed]
- Yudaev, P.; Semenova, A.; Chistyakov, E. Gel based on modified chitosan for oil spill cleanup. J. Appl. Polym. Sci. 2024, 141, e54838. [Google Scholar] [CrossRef]
- Chen, Z.; Su, X.; Li, K.; Niu, S.; Shen, Z.; Li, X.; Chen, S.; Wu, W. A thiolated TiO2-based degradable superhydrophobic wood for oil–water separation and heavy metal treatment. Sep. Purif. Technol. 2025, 354, 128949. [Google Scholar] [CrossRef]
- He, L.; Ren, R.; Wang, L.; Zhou, J.; Ling, K.; Li, J.; Chen, S.; Chen, Y. Construction of layered double hydroxides on wood surfaces for wood coloring. Ind. Crop. Prod. 2023, 198, 116661. [Google Scholar] [CrossRef]
- Xiao, Z.; Wang, Y.; Song, Y.; Li, Q.; Xu, Q.; Li, J. Functional improvement of fast-growing wood based on nano-ZnO/PDMS double-layer structure. Wood Sci. Technol. 2023, 57, 275–288. [Google Scholar] [CrossRef]
- Cai, Y.; Ning, L.; Zhang, Z.; Zhou, M.; Wang, W. Construction of durable, multifunctional superhydrophobic wood surface via ɛ-polylysine/PDMS/wax treatment. Prog. Org. Coat. 2024, 192, 108516. [Google Scholar] [CrossRef]
- Lee, J.; Yong, K. Combining the lotus leaf effect with artificial photosynthesis: Regeneration of underwater superhydrophobicity of hierarchical ZnO/Si surfaces by solar water splitting. NPG Asia Mater. 2015, 7, e201. [Google Scholar] [CrossRef]
- Sun, S.; Li, H.; Guo, Y.; Mi, H.-Y.; He, P.; Zheng, G.; Liu, C.; Shen, C. Superefficient and robust polymer coating for bionic manufacturing of superwetting surfaces with “rose petal effect” and “lotus leaf effect”. Prog. Org. Coat. 2021, 151, 106090. [Google Scholar] [CrossRef]
- Wu, W.; Zhao, M.; Miao, S.; Li, X.; Wu, Y.; Gong, X.; Wang, H. A solar-driven interfacial evaporator for seawater desalination based on mussel-inspired superhydrophobic composite coating. Carbon 2024, 217, 118593. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, Y.; Zhang, L.-W. Effective Underwater Drag Reduction: A Butterfly Wing Scale-Inspired Superhydrophobic Surface. ACS Appl. Mater. Interfaces 2024, 16, 26954–26964. [Google Scholar] [CrossRef]
- Ahmed, M.M.M.; Chi, Y.-T.; Hung, Y.-H.; Reyes, L.M.C.; Yeh, J.-M. UV-cured electroactive polyurethane acrylate coatings with superhydrophobic surface structure of biomimetic peacock feather for anticorrosion application. Prog. Org. Coat. 2022, 165, 106679. [Google Scholar] [CrossRef]
- Gao, J.; Liu, Y.; Zhong, Y.; You, Q.; Lin, Y.; Cui, S.; Shen, X. Aerogel structure used for fabricating superamphiphobic materials with self-cleaning property. Colloid. Surface. A 2024, 694, 134121. [Google Scholar] [CrossRef]
- Latthe, S.S.; Terashima, C.; Nakata, K.; Fujishima, A. Superhydrophobic surfaces developed by mimicking hierarchical surface morphology of lotus leaf. Molecules 2014, 19, 4256–4283. [Google Scholar] [CrossRef]
- Lv, B.; Li, S.; Wang, W.; Xu, Y.; Zhao, B.; Song, C.; Fan, X.; Liu, Y. A lotus leaf-inspired Janus dual-functional nanofiber evaporator for efficient water purification. J. Clean. Prod. 2024, 438, 140880. [Google Scholar] [CrossRef]
- Ma, Z.; Xing, Z.; Zhao, Y.; Zhang, H.; Xin, Q.; Liu, J.; Qin, M.; Ding, C.; Li, J. Lotus leaf inspired sustainable and multifunctional Janus film for food packaging. Chem. Eng. J. 2023, 457, 141279. [Google Scholar] [CrossRef]
- Parra-Vicente, S.; Ibáñez-Ibáñez, P.F.; Cabrerizo-Vílchez, M.; Sánchez-Almazo, I.; Rodríguez-Valverde, M.Á.; Ruiz-Cabello, F.J.M. Understanding the petal effect: Wetting properties and surface structure of natural rose petals and rose petal-derived surfaces. Colloid. Surface. B 2024, 236, 113832. [Google Scholar] [CrossRef]
- Mo, M.; Bai, X.; Liu, Z.; Huang, Z.; Xu, M.; Ma, L.; Lai, W.; Mo, Q.; Xie, S.; Li, Y.; et al. Defect by design: Harnessing the “petal effect” for advanced hydrophobic surface applications. J. Colloid Interf. Sci. 2024, 673, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, G.; Zong, L.; Jiang, M.; Song, Z.; Ma, C.; Zhang, T.; Duan, Y.; Zhang, J. Tough, ultralight, and water-adhesive graphene/natural rubber latex hybrid aerogel with sandwichlike cell wall and biomimetic rose-petal-like surface. ACS Appl. Mater. Interfaces 2020, 12, 1378–1386. [Google Scholar] [CrossRef]
- Oopath, S.V.; Baji, A.; Abtahi, M. Biomimetic rose petal structures obtained using UV-Nanoimprint lithography. Polymers 2022, 14, 3303. [Google Scholar] [CrossRef]
- Yu, Y.; Dong, Y.; Ning, H.; Zhao, T.; Xing, J.; Xie, B.; Zhou, M.; Peng, S. A robust superhydrophobic coating with multi-dimensional micro-nano structure on 5052 aluminum alloy. Surf. Coat. Technol. 2023, 465, 129564. [Google Scholar] [CrossRef]
- Chen, G.; Xu, Y.; Zhang, B.; Zhou, Y.; Wang, S.; Meng, Y.; Huang, L.; Song, J. Superhydrophobic coating with super-high adhesive strength to substrate. Mater. Lett. 2023, 351, 135084. [Google Scholar] [CrossRef]
- Zhao, X.; Soper, S.A.; Murphy, M.C. A high-adhesion binding strategy for silica nanoparticle-based superhydrophobic coatings. Colloid. Surface. A 2021, 625, 126810. [Google Scholar] [CrossRef] [PubMed]
- Yi, Z.; Zhao, B.; Liao, M.; Qin, Z. Fabrication of Superhydrophobic Wood surface by etching polydopamine coating with sodium hydroxide. Coatings 2020, 10, 847. [Google Scholar] [CrossRef]
- Shao, C.; Jiang, M.; Zhang, J.; Zhang, Q.; Han, L.; Wu, Y. Construction of a superhydrophobic wood surface coating by layer-by-layer assembly: Self-adhesive properties of polydopamine. Appl. Surf. Sci. 2023, 609, 155259. [Google Scholar] [CrossRef]
- Wang, J.-N.; Liu, Y.-Q.; Zhang, Y.-L.; Feng, J.; Wang, H.; Yu, Y.-H.; Sun, H.-B. Wearable superhydrophobic elastomer skin with switchable wettability. Adv. Funct. Mater. 2018, 28, 1800625. [Google Scholar] [CrossRef]
- McHale, G.; Orme, B.V.; Wells, G.G.; Ledesma-Aguilar, R. Apparent contact angles on lubricant-impregnated surfaces/SLIPS: From superhydrophobicity to electrowetting. Langmuir 2019, 35, 4197–4204. [Google Scholar] [CrossRef]
- Marmur, A.; Della Volpe, C.; Siboni, S.; Amirfazli, A.; Drelich, J.W. Contact angles and wettability: Towards common and accurate terminology. Surf. Innov. 2017, 5, 3–8. [Google Scholar] [CrossRef]
- Emelyanenko, A.M.; Makvandi, P.; Moradialvand, M.; Boinovich, L.B. Harnessing extreme wettability: Combatting spread of bacterial infections in healthcare. Surf. Innov. 2024, 12, 360–379. [Google Scholar] [CrossRef]
- Chen, Z.; Su, X.; Wu, W.; Chen, S.; Zhang, X.; Wu, Y.; Xie, H.; Li, K. Superhydrophobic PDMS@TiO2 wood for photocatalytic degradation and rapid oil-water separation. Surf. Coat. Tech. 2022, 434, 128182. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, T.; Zhao, Y.; Yuan, T.; Wang, X.; Li, Y. Preparation of multifunctional flame-retardant and superhydrophobic composite wood by iron ions doped phytic acid-based nanosheets. Constr. Build. Mater. 2024, 422, 135854. [Google Scholar] [CrossRef]
- Fan, X.; Song, S.; Shi, Y.; Cai, M.; Huang, Y.; Zhang, B.; Zhu, M. Mechanochemical stable superhydrophobic coating toward lasting corrosion protection. Prog. Org. Coat. 2023, 178, 107478. [Google Scholar] [CrossRef]
- Facchi, S.P.; de Almeida, D.A.; Abrantes, K.K.B.; Rodrigues, P.C.d.S.; Tessmann, D.J.; Bonafé, E.G.; da Silva, M.F.; Gashti, M.P.; Martins, A.F.; Cardozo-Filho, L. Ultra-Pressurized Deposition of Hydrophobic Chitosan Surface Coating on Wood for Fungal Resistance. Int. J. Mol. Sci. 2024, 25, 10899. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lu, Y.; Chu, Q.; Ma, C.; Cai, L.; Shen, Z.; Chen, H. Facile construction of superhydrophobic surfaces by coating fluoroalkylsilane/silica composite on a modified hierarchical structure of wood. Polymers 2020, 12, 813. [Google Scholar] [CrossRef]
- Chang, J.; He, X.; Yang, Z.; Bai, X.; Yuan, C. Effects of chemical composition on the hydrophobicity and antifouling performance of epoxy-based self-stratifying nanocomposite coatings. Prog. Org. Coat. 2022, 167, 106827. [Google Scholar] [CrossRef]
- Luo, Q.; Peng, J.; Chen, X.; Zhang, H.; Deng, X.; Jin, S.; Zhu, H. Recent advances in multifunctional mechanical–chemical superhydrophobic materials. Front. Bioeng. Biotech. 2022, 10, 947327. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Liu, Y.; Yuan, Z. A better prediction of the contact angle for nanodroplets on chemically patterned surfaces by considering varied contact line width. Surf. Interfaces 2023, 39, 102931. [Google Scholar] [CrossRef]
- Zhu, G.; Yao, J.; Zhang, L.; Sun, H.; Li, A.; Shams, B. Investigation of the dynamic contact angle using a direct numerical simulation method. Langmuir 2016, 32, 11736–11744. [Google Scholar] [CrossRef] [PubMed]
- Xie, G.; Xiao, Y.; Bai, Y.; Luo, Y.; Wang, R.; Gu, S. Synthesis of alkyl polyamine with different functional groups and its montmorillonite swelling inhibition mechanism: Experiment and density functional theory simulation. Appl. Clay Sci. 2022, 230, 106715. [Google Scholar] [CrossRef]
- Barthwal, S.; Uniyal, S.; Barthwal, S. Nature-Inspired superhydrophobic coating materials: Drawing inspiration from nature for enhanced functionality. Micromachines 2024, 15, 391. [Google Scholar] [CrossRef]
- Sharma, J.; Bhandari, A.; Khatri, N.; Jangra, S.; Goyat, M.S.; Mishra, Y.K. A brief review of transitional wetting regimes for superhydrophobic surfaces. J. Braz. Soc. Mech. Sci. 2024, 46, 273. [Google Scholar] [CrossRef]
- Li, Q.; Fan, Z.; Liu, Q.; Ma, W.; Li, J.; Li, N.; Ma, P.; Zhang, H. Synthesis of a superhydrophobic fluorinated nano-emulsion and its modification on the wettability of tight sandstone. Materials 2022, 15, 4015. [Google Scholar] [CrossRef]
- Sarkar, D.; Dhar, M.; Das, A.; Mandal, S.; Phukan, A.; Manna, U. Covalent crosslinking chemistry for controlled modulation of nanometric roughness and surface free energy. Chem. Sci. 2024, 15, 4938–4951. [Google Scholar] [CrossRef]
- Xu, P.; Bai, J.R.; Zhou, P.; Wang, L.L.; Sun, X.N.; Wei, L.; Zhou, Q.F. Theoretical investigations on the superhydrophobicity of intrinsic hydrophilic surfaces with overhang microstructures. RSC Adv. 2022, 12, 2701–2711. [Google Scholar] [CrossRef]
- Barrio-Zhang, H.; Ruiz-Gutiérrez, É.; Armstrong, S.; McHale, G.; Wells, G.G.; Ledesma-Aguilar, R. Contact-Angle hysteresis and contact-line friction on slippery liquid-like surfaces. Langmuir 2020, 36, 15094–15101. [Google Scholar] [CrossRef]
- Kaneko, S.; Urata, C.; Sato, T.; Hönes, R.; Hozumi, A. Smooth and transparent films showing paradoxical surface properties: The lower the static contact angle, the better the water sliding performance. Langmuir 2019, 35, 6822–6829. [Google Scholar] [CrossRef] [PubMed]
- Park, I.W.; Ribe, J.M.; Fernandino, M.; Dorao, C.A. The criterion of the Cassie–Baxter and Wenzel wetting modes and the effect of elastic substrates on it. Adv. Mater. Interfaces 2023, 10, 2202439. [Google Scholar] [CrossRef]
- Wang, S.; Li, L.; Zou, Q.; Chen, J.; Zhao, X.; Xie, Y.; Hu, Y.; Yang, K. Abrasion mechanisms of superhydrophobic coating surfaces wetted in Wenzel state. Colloid. Surface. A 2023, 657, 130585. [Google Scholar] [CrossRef]
- Peng, J.; Wu, L.; Zhang, H.; Wang, B.; Si, Y.; Jin, S.; Zhu, H. Research progress on eco-friendly superhydrophobic materials in environment, energy and biology. Chem. Commun. 2022, 58, 11201–11219. [Google Scholar] [CrossRef]
- Rohrs, C.; Azimi, A.; He, P. Wetting on micropatterned surfaces: Partial penetration in the Cassie state and Wenzel deviation theoretically explained. Langmuir 2019, 35, 15421–15430. [Google Scholar] [CrossRef]
- Shardt, N.; Bigdeli, M.B.; Elliott, J.A.W.; Tsai, P.A. How surfactants affect droplet wetting on hydrophobic microstructures. J. Phys. Chem. Lett. 2019, 10, 7510–7515. [Google Scholar] [CrossRef]
- Lee, E.; Kim, D.H. Simple fabrication of asphalt-based superhydrophobic surface with controllable wetting transition from Cassie-Baxter to Wenzel wetting state. Colloid. Surface. A 2021, 625, 126927. [Google Scholar] [CrossRef]
- Chen, S.; Zhu, M.; Zhang, Y.; Dong, S.; Wang, X. Magnetic-Responsive superhydrophobic surface of magnetorheological elastomers mimicking from lotus leaves to rose petals. Langmuir 2021, 37, 2312–2321. [Google Scholar] [CrossRef] [PubMed]
- Marmur, A. Wetting on hydrophobic rough surfaces: To be heterogeneous or not to be? Langmuir 2003, 19, 8343–8348. [Google Scholar] [CrossRef]
- Wang, F.; Xiang, M.; Yang, W. Effects of contact angle hysteresis on frosting and defrosting characteristics on vertical superhydrophobic surfaces. Appl. Therm. Eng. 2024, 236, 121881. [Google Scholar] [CrossRef]
- Han, Y.; Han, Y.; Huang, Y.; Wang, C.; Liu, H.; Han, L.; Zhang, Y. Laser-Induced graphene superhydrophobic surface transition from pinning to rolling for multiple applications. Small Methods 2022, 6, 2200096. [Google Scholar] [CrossRef] [PubMed]
- Di, Y.; Qiu, J.; Wang, G.; Wang, H.; Lan, L.; Zheng, B. Exploring contact angle hysteresis behavior of droplets on the surface microstructure. Langmuir 2021, 37, 7078–7086. [Google Scholar] [CrossRef]
- Butt, H.-J.; Liu, J.; Koynov, K.; Straub, B.; Hinduja, C.; Roismann, I.; Berger, R.; Li, X.; Vollmer, D.; Steffen, W.; et al. Contact angle hysteresis. Curr. Opin. Colloid Interface Sci. 2022, 59, 101574. [Google Scholar] [CrossRef]
- Wu, W.; Wang, J.; Liu, Q.; Xiao, H.; Li, X.; Zhou, Y.; Wang, H.; Zheng, A.; Zhao, J.; Ren, L.; et al. Electrochemical polishing assisted selective laser melting of biomimetic superhydrophobic metallic parts. Appl. Surf. Sci. 2022, 596, 153601. [Google Scholar] [CrossRef]
- Zhang, L.; He, D.; Li, J.; Li, Y.; Xiao, Y.; Xiang, J.; Du, W.; Tang, N. Construction of PP membranes with robust interfacial stability by ALD and fluorinated grafting for high salt solution distillation. Desalination 2023, 548, 116291. [Google Scholar] [CrossRef]
- Zhan, K.; Lu, Q.; Xia, S.; Guo, C.; Zhao, S.; Gao, W.; Yang, L.; Morrell, J.J.; Yi, T.; Xie, L.; et al. A cost effective strategy to fabricate STA@PF@Cu2O hierarchical structure on wood surface: Aimed at superhydrophobic modification. Wood Sci. Technol. 2021, 55, 565–583. [Google Scholar] [CrossRef]
- Yang, J.; Li, H.; Yi, Z.; Liao, M.; Qin, Z. Stable superhydrophobic wood surface constracting by KH580 and nano-Al2O3 on polydopamine coating with two process methods. Colloid. Surface. A 2022, 637, 128219. [Google Scholar] [CrossRef]
- Wang, K.; Liu, X.; Tan, Y.; Zhang, W.; Zhang, S.; Li, J. Two-dimensional membrane and three-dimensional bulk aerogel materials via top-down wood nanotechnology for multibehavioral and reusable oil/water separation. Chem. Eng. J. 2019, 371, 769–780. [Google Scholar] [CrossRef]
- Sun, H.; Ji, T.; Bi, H.; Lin, X.; Chen, C.; Xu, M.; Cai, L.; Huang, Z. Flexible, strong, anisotropic wood-derived conductive circuit. Adv. Sustain. Syst. 2021, 5, 2100040. [Google Scholar] [CrossRef]
- Yao, X.; Zhao, W.; Zhang, H.; Zhang, Y.; Zhong, L.; Wu, Y. Performance study of a superhydrophobic nanocellulose membrane on the surface of a wood-based panel prepared via the sol-gel method. Colloid Interface Sci. 2023, 57, 100758. [Google Scholar] [CrossRef]
- Lu, Q.; Cheng, R.; Jiang, H.; Xia, S.; Zhan, K.; Yi, T.; Morrell, J.J.; Yang, L.; Wan, H.; Du, G.; et al. Superhydrophobic wood fabricated by epoxy/Cu2(OH)3Cl NPs/stearic acid with performance of desirable self-cleaning, anti-mold, dimensional stability, mechanical and chemical durability. Colloid. Surface. A 2022, 647, 129162. [Google Scholar] [CrossRef]
- Gao, X.; Wang, M.; He, Z. Superhydrophobic wood surfaces: Recent developments and future perspectives. Coatings 2023, 13, 877. [Google Scholar] [CrossRef]
- Tuong, V.M.; Huyen, N.V.; Kien, N.T.; Dien, N.V. Durable epoxy@ZnO coating for improvement of hydrophobicity and color stability of wood. Polymers 2019, 11, 1388. [Google Scholar] [CrossRef]
- Jian, Y.; Xu, T.; Hess, D.W.; Tang, W.; Chai, X.; Zhang, L.; Xu, K.; Guo, Z.; Wan, H.; Xie, L. Efficient synthesis of durable superhydrophobic SiO2@PFDMS coatings on bamboo by liquid deposition. Ind. Crop. Prod. 2024, 219, 119078. [Google Scholar] [CrossRef]
- Qu, L.; Rahimi, S.; Qian, J.; He, L.; He, Z.; Yi, S. Preparation and characterization of hydrophobic coatings on wood surfaces by a sol-gel method and post-aging heat treatment. Polym. Degrad. Stabil. 2021, 183, 109429. [Google Scholar] [CrossRef]
- Liu, S.; Zhu, M.; Huang, Y.; Yu, Y.; Yu, W.; Lv, B. A nature-inspired strategy towards superhydrophobic wood. J. Mate. Chem. A 2023, 11, 25875–25886. [Google Scholar] [CrossRef]
- Hashjin, R.n.R.; Ranjbar, Z.; Yari, H.; Momen, G. Tuning up sol-gel process to achieve highly durable superhydrophobic coating. Surf. Interfaces 2022, 33, 102282. [Google Scholar] [CrossRef]
- Wang, Z.; Zou, W.; Liu, M.; Yu, M.; Yao, L.; Sun, D.; Song, X.; Hao, X. A new perspective on durable superhydrophobic wood: Designing a non-wetting structure from the wood surface to the interior. Ind. Crop. Prod. 2025, 225, 120445. [Google Scholar] [CrossRef]
- Wang, J.; Wang, H. Integrated device based on cauliflower-like nickel hydroxide particles–coated fabrics with inverse wettability for highly efficient oil/hot alkaline water separation. J. Colloid Interf. Sci. 2019, 534, 228–238. [Google Scholar] [CrossRef]
- Fan, H.-Q.; Lu, P.; Zhu, X.; Behnamian, Y.; Li, Q. Development of superhydrophobic and corrosion resistant coatings on carbon steel by hydrothermal treatment and fluoroalkyl silane self-assembly. Mater. Chem. Phys. 2022, 290, 126569. [Google Scholar] [CrossRef]
- Liu, M.; Qing, Y.; Wu, Y.; Liang, J.; Luo, S. Facile fabrication of superhydrophobic surfaces on wood substrates via a one-step hydrothermal process. Appl. Surf. Sci. 2015, 330, 332–338. [Google Scholar] [CrossRef]
- Tan, Y.; Wang, K.; Dong, Y.; Zhang, W.; Zhang, S.; Li, J. Bulk superhydrophobility of wood via in-situ deposition of ZnO rods in wood structure. Surf. Coat. Technol. 2020, 383, 125240. [Google Scholar] [CrossRef]
- Khan, M.Z.; Militky, J.; Baheti, V.; Fijalkowski, M.; Wiener, J.; Voleský, L.; Adach, K. Growth of ZnO nanorods on cotton fabrics via microwave hydrothermal method: Effect of size and shape of nanorods on superhydrophobic and UV-blocking properties. Cellulose 2020, 27, 10519–10539. [Google Scholar] [CrossRef]
- Tang, M.; Christie, K.S.S.; Hou, D.; Ding, C.; Jia, X.; Wang, J. Fabrication of a novel underwater-superoleophobic/hydrophobic composite membrane for robust anti-oil-fouling membrane distillation by the facile breath figures templating method. J. Membrane Sci. 2021, 617, 118666. [Google Scholar] [CrossRef]
- Wan, T.; Wang, B.; Han, Q.; Chen, J.; Li, B.; Wei, S. A review of superhydrophobic shape-memory polymers: Preparation, activation, and applications. Appl. Mater. Today 2022, 29, 101665. [Google Scholar] [CrossRef]
- Li, A.; Wei, Z.; Zhang, F.; He, Q. A high reliability super hydrophobic silicone rubber. Colloid. Surface. A 2023, 671, 131639. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, H.; Mao, H.; Duan, M.; Wang, K.; Bao, N.; Zhao, Z.-P.; Li, H. Silica hollow spheres-based superhydrophobic PDMS composite membrane for enhanced acetone permselective pervaporation. Sep. Purif. Technol. 2023, 304, 122041. [Google Scholar] [CrossRef]
- Zhou, X.; Zhai, Z.; Wang, J.; Wang, T.; Zheng, H.; Wu, Y.; Yan, C.; Liu, M. Laser-Textured superhydrophobic wearable strain sensors of L-CNT@PDMS with superior anti/deicing properties. ACS Appl. Polym. Mater. 2024, 6, 7137–7147. [Google Scholar] [CrossRef]
- Li, X.; Qi, J.; Zhu, J.; Jia, Y.; Liu, Y.; Li, Y.; Liu, H.; Li, G.; Wu, K. Low-Loss, high-transparency luminescent solar concentrators with a bioinspired self-cleaning surface. J. Phys. Chem. Lett. 2022, 13, 9177–9185. [Google Scholar] [CrossRef]
- Wang, F.; Wang, L.; Wu, H.; Pang, J.; Gu, D.; Li, S. A lotus-leaf-like SiO2 superhydrophobic bamboo surface based on soft lithography. Colloid. Surface. A 2017, 520, 834–840. [Google Scholar] [CrossRef]
- Ma, T.; Li, L.; Mei, C.; Wang, Q.; Guo, C. Construction of sustainable, fireproof and superhydrophobic wood template for efficient oil/water separation. J. Mater. Sci. 2021, 56, 5624–5636. [Google Scholar] [CrossRef]
- Oni, O.P.; Hu, Y.; Tang, S.; Yan, H.; Zeng, H.; Wang, H.; Ma, L.; Yang, C.; Ran, J. Syntheses and applications of mesoporous hydroxyapatite: A review. Mater. Chem. Front. 2023, 7, 9–43. [Google Scholar] [CrossRef]
- Mudassir, M.A.; Aslam, H.Z.; Ansari, T.M.; Zhang, H.; Hussain, I. Fundamentals and design-led synthesis of emulsion-templated porous materials for environmental applications. Adv. Sci. 2021, 8, 2102540. [Google Scholar] [CrossRef] [PubMed]
- Lathia, R.; Modak, C.D.; Sen, P. Two modes of contact-time reduction in the impact of particle-coated droplets on superhydrophobic surfaces. SusMat 2023, 2, e89. [Google Scholar] [CrossRef]
- Kim, B.; Lee, J.; Lee, E.; Jeong, K.; Seo, J.-H. One-pot coatable fluorinated polyurethane resin solution for robust superhydrophobic anti-fouling surface. Prog. Org. Coat. 2024, 187, 108097. [Google Scholar] [CrossRef]
- He, P.; Qu, J.; Li, S.; Sun, R.; Huang, K.; Zhao, J.; Mo, J. Study on the construction of durable superhydrophobic coatings using simple spray coating method and their underwater drag reduction performance. Colloid. Surface. A 2024, 701, 134858. [Google Scholar] [CrossRef]
- Tang, Z.; Gao, M.; Zhang, Z.; Su, X.; Li, Y.; Han, Z.; Lv, X.; He, J.; Li, H.; Zheng, Z.; et al. Biomimetic construction of green, fire-proof and super-hydrophobic multifunctionality-integrated coatings via one-step spraying method for steel structures. Colloid. Surface. A 2024, 683, 133056. [Google Scholar] [CrossRef]
- Xiao, Z.; Xu, D.; Zhang, W.; Yu, X.; Zhang, Y. Dip-coating of superhydrophobic surface on irregular substrates for dropwise condensation. J. Bionic Eng. 2021, 18, 387–397. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, H.; Guo, J.; Chen, T.; Liu, H. Superhydrophobic polypyrrole-coated cigarette filters for effective Oil/Water separation. Appl. Sci. 2020, 10, 1985. [Google Scholar] [CrossRef]
- Lazari, M.; Elmi, F. Structural study of coated wood with superhydrophobic chitosan/silica hybrid nanocomposite in seawater. Prog. Org. Coat. 2024, 186, 108076. [Google Scholar] [CrossRef]
- Cai, Y.; Yu, Y.; Wu, J.; Wang, K.; Dong, Y.; Qu, J.; Hu, J.; Zhang, L.; Fu, Q.; Li, J.; et al. Durable, flexible, and super-hydrophobic wood membrane with nanopore by molecular cross-linking for efficient separation of stabilized water/oil emulsions. EcoMat 2022, 4, e12255. [Google Scholar] [CrossRef]
- Elzaabalawy, A.; Meguid, S.A. Development of novel superhydrophobic coatings using siloxane-modified epoxy nanocomposites. Chem. Eng. J. 2020, 398, 125403. [Google Scholar] [CrossRef]
- Ahmad, N.; Rasheed, S.; Ali, T.; Azhar, I.; Ahmad, W.; Hussain, D. Superoleophilic cotton fabric decorated with hydrophobic Zn/Zr MOF nanoflowers for efficient self-cleaning, UV-blocking, and oil–water separation. Chem. Eng. J. 2024, 485, 149991. [Google Scholar] [CrossRef]
- Lin, J.; Lin, F.; Liu, R.; Li, P.; Fang, S.; Ye, W.; Zhao, S. Scalable fabrication of robust superhydrophobic membranes by one-step spray-coating for gravitational water-in-oil emulsion separation. Sep. Purif. Technol. 2020, 231, 115898. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, J.; Zhang, W.; Ning, H.; Wang, H.; Liu, Z. Facile preparation of durable superhydrophobic coating with microstructure self-repairing function by spraying method. Prog. Org. Coat. 2024, 187, 108166. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, J.; Liu, M.; Han, X.; Liu, H. Hydrophilicity–hydrophobicity adjustable polymer-modified surfaces from one-step dip-coating method. J. Coat. Technol. Res. 2024, 21, 1203–1215. [Google Scholar] [CrossRef]
- Xu, S.; Wang, Q.; Wang, N. Chemical fabrication strategies for achieving bioinspired superhydrophobic surfaces with micro and nanostructures: A review. Adv. Eng. Mater. 2021, 23, 2001083. [Google Scholar] [CrossRef]
- Fu, J.; Sun, Y.; Ji, Y.; Zhang, J. Fabrication of robust ceramic based superhydrophobic coating on aluminum substrate via plasma electrolytic oxidation and chemical vapor deposition methods. J. Mater. Process. Technol. 2022, 306, 117641. [Google Scholar] [CrossRef]
- Li, Y.; Wen, T.; Huang, X.; Song, W.; Wang, R.; Wu, Q.; Guo, C. Bio-inspired hydrophobic copper stearate coating to reduce the moisture absorption of fine-grained ammonium perchlorate and improve safety and thermal decomposition performance. J. Phys. Chem. Solids 2023, 179, 111416. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, X.; Yan, J.; Li, Z.; Huang, S.; Weng, Y.; Li, J.; Yuan, C.; Han, P.; Ye, S.; et al. Preparation of superhydrophobic coating with anti-corrosion and anti-fouling properties on the surface of low manganese steel by electrodeposition. Surf. Coat. Technol. 2023, 460, 129412. [Google Scholar] [CrossRef]
- Jian, Y.; Tang, W.; Xu, T.; Hess, D.W.; Chai, X.; Zhang, L.; Xu, K.; Guo, Z.; Wan, H.; Xie, L. Imparting durable superhydrophobic/oleophobic properties to wood surfaces by means of PFDMS@MTCS vapor deposition. Prog. Org. Coat. 2023, 185, 107926. [Google Scholar] [CrossRef]
- Tang, W.; Jian, Y.; Shao, M.; Cheng, Y.; Liu, J.; Liu, Y.; Hess, D.W.; Wan, H.; Xie, L. A novel two-step strategy to construct multifunctional superhydrophobic wood by liquid-vapor phase deposition of methyltrimethoxysilane for improving moisture resistance, anti-corrosion and mechanical strength. Colloid. Surface. A 2023, 666, 131314. [Google Scholar] [CrossRef]
- Zhang, L.; Lyu, S.; Chen, Z.; Wang, S. Preparation and characterization of dual-functional coatings of nanofibrillated cellulose and modified SrAl2O4: Eu, Dy phosphors. Surf. Coat. Technol. 2018, 349, 318–327. [Google Scholar] [CrossRef]
- Janesch, J.; Arminger, B.; Gindl-Altmutter, W.; Hansmann, C. Superhydrophobic coatings on wood made of plant oil and natural wax. Prog. Org. Coat. 2020, 148, 105891. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y.; Cao, J.; Wang, W. Improved water repellency and dimensional stability of wood via impregnation with an epoxidized linseed oil and carnauba wax complex emulsion. Forests 2020, 11, 271. [Google Scholar] [CrossRef]
- Kuzina, E.A.; Omran, F.S.; Emelyanenko, A.M.; Boinovich, L.B. On the significance of selecting hydrophobization conditions for obtaining stable superhydrophobic coatings. Colloid J. 2023, 85, 59–65. [Google Scholar] [CrossRef]
- Klimov, V.V.; Kolyaganova, O.V.; Bryuzgin, E.V.; Navrotskiy, A.V.; Novakov, I.A. Investigation of the mechanical and chemical stability of superhydrophobic coatings based on reactive copolymers of glycidyl methacrylate and fluoroalkyl methacrylates. Colloid J. 2024, 86, 52–63. [Google Scholar] [CrossRef]
- Donath, S.; Militz, H.; Mai, C. Creating water-repellent effects on wood by treatment with silanes. Holzforschung 2006, 60, 40–46. [Google Scholar] [CrossRef]
- Hill, C.; Altgen, M.; Penttilä, P.; Rautkari, L. Review: Interaction of water vapour with wood and other hygro-responsive materials. J. Mater. Sci. 2024, 59, 7595–7635. [Google Scholar]
- Fredriksson, M. On wood–water interactions in the over-hygroscopic moisture range—Mechanisms, methods, and influence of wood modification. Forests 2019, 10, 779. [Google Scholar] [CrossRef]
- Engelund, E.T.; Thygesen, L.G.; Svensson, S.; Hill, C.A.S. A critical discussion of the physics of wood–water interactions. Wood Sci. Technol. 2013, 47, 141–161. [Google Scholar] [CrossRef]
- Julien, E.; Rubinstein, S.M.; Caré, S.; Coussot, P. Slow spreading with a large contact angle on hygroscopic materials. Soft Matter 2023, 19, 3475–3486. [Google Scholar] [CrossRef]
- Kong, L.; Tu, K.; Guan, H.; Wang, X. Growth of high-density ZnO nanorods on wood with enhanced photostability, flame retardancy and water repellency. Appl. Surf. Sci. 2017, 407, 479–484. [Google Scholar] [CrossRef]
- Yang, H.; Wang, J.; Zhao, P.; Mu, H.; Qi, D. UV-Assisted multiscale superhydrophobic wood resisting surface contamination and failure. ACS Omega 2021, 6, 26732–26740. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Huang, J.; Guo, Z.; Liu, W. Icephobic/anti-icing properties of superhydrophobic surfaces. Adv. Colloid Interface. 2022, 304, 102658. [Google Scholar] [CrossRef]
- Huang, J.; Li, M.; Ren, C.; Huang, W.; Miao, Y.; Wu, Q.; Wang, S. Construction of HLNPs/Fe3O4 based superhydrophobic coating with excellent abrasion resistance, UV resistance, flame retardation and oil absorbency. J. Environ. Chem. Eng. 2023, 11, 109046. [Google Scholar] [CrossRef]
- Su, X.; Li, H.; Lai, X.; Chen, Z.; Zeng, X. Highly stretchable and conductive superhydrophobic coating for flexible electronics. ACS Appl. Mater. Interfaces 2018, 10, 10587–10597. [Google Scholar] [CrossRef]
- Zhang, Z.; Meng, Y.; Fang, X.; Wang, Q.; Wang, X.; Niu, H.; Zhou, H. Robust, flexible, and superhydrophobic fabrics for high-efficiency and ultrawide-band microwave absorption. Engineering 2024, 41, 161–171. [Google Scholar] [CrossRef]
- Duan, H.; Lyu, H.; Shen, B.; Tian, J.; Pu, X.; Wang, F.; Wang, X. Superhydrophobic-superoleophilic biochar-based foam for high-efficiency and repeatable oil-water separation. Sci. Total Environ. 2021, 780, 146517. [Google Scholar] [CrossRef] [PubMed]
- Al-Maas, M.; Hussain, A.; Minier Matar, J.; Ponnamma, D.; Hassan, M.K.; Al Ali Al-Maadeed, M.; Alamgir, K.; Adham, S. Validation and application of a membrane filtration evaluation protocol for oil-water separation. J. Water Process Eng. 2021, 43, 102185. [Google Scholar] [CrossRef]
- Pi, P.; Ren, Z.; Yang, Y.; Chen, W.; Lin, Y. A review of various dimensional superwetting materials for oil–water separation. Nanoscale 2024, 16, 17248–17275. [Google Scholar] [CrossRef] [PubMed]
- Omar, R.A.; Talreja, N.; Ashfaq, M.; Chauhan, D. Two-Dimensional nanomaterial (2D-NMs)-based polymeric composite for Oil–Water separation: Strategies to improve Oil–Water separation. Sustainability 2023, 15, 10988. [Google Scholar] [CrossRef]
- Vásquez, L.; Davis, A.; Gatto, F.; Ngoc An, M.; Drago, F.; Pompa, P.P.; Athanassiou, A.; Fragouli, D. Multifunctional PDMS polyHIPE filters for oil-water separation and antibacterial activity. Surf. Coat. Technol. 2021, 255, 117748. [Google Scholar] [CrossRef]
- Fang, Y.; Jing, C.; Li, G.; Ling, S.; Wang, Z.; Lu, P.; Li, Q.; Dai, C.; Gao, S.; Chen, B.; et al. Wood-Derived systems for sustainable Oil/Water separation. Adv. Sustain. Syst. 2021, 5, 2100039. [Google Scholar] [CrossRef]
- Zhang, M.; Shi, L.; Du, X.; Li, Z.; Shi, Y.; An, C.; Li, J.; Wang, C.; Shi, J. Janus mesoporous wood-based membrane for simultaneous oil/water separation, aromatic dyes removal, and seawater desalination. Ind. Crop. Prod. 2022, 188, 115643. [Google Scholar] [CrossRef]
- Cheng, Z.; Guan, H.; Meng, J.; Wang, X. Dual-Functional porous wood filter for simultaneous Oil/Water separation and organic pollutant removal. ACS Omega 2020, 5, 14096–14103. [Google Scholar] [CrossRef]
- Li, C.; Long, C.; Cai, Y.; Li, Z.; Guan, Z.; Song, H.; Guo, L.; Xu, X.; Liu, C.; Qing, Y. Design of amphoteric micro/nanofiber-coupling fabric for ultrafast, precise, and robust removal of water droplets from oils. Chem. Eng. J. 2023, 471, 144479. [Google Scholar] [CrossRef]
- Cai, Y.; Wu, Y.; Yang, F.; Gan, J.; Wang, Y.; Zhang, J. Wood sponge reinforced with polyvinyl alcohol for sustainable Oil–Water separation. ACS Omega 2021, 6, 12866–12876. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Tian, J.; Qian, Z.; Huang, J.; Sun, D. Highly robust separation for aqueous oils enabled by balsa wood-based cellulose aerogel with intrinsic superior hydrophilicity. Sep. Purif. Technol. 2023, 315, 123688. [Google Scholar] [CrossRef]
- Du, B.; Li, B.; Yang, K.; Chao, Y.; Luo, R.; Zhou, S.; Li, H. Superhydrophobic wood sponge with intelligent pH responsiveness for efficient and continuous oil-water separation. Mater. Res. Express 2023, 10, 055101. [Google Scholar] [CrossRef]
- Wu, J.; Cui, Z.; Yu, Y.; Han, H.; Tian, D.; Hu, J.; Qu, J.; Cai, Y.; Luo, J.; Li, J. A 3D smart wood membrane with high flux and efficiency for separation of stabilized oil/water emulsions. J. Hazard. Mater. 2023, 441, 129900. [Google Scholar] [CrossRef]
- Chang, S.; Yao, L.; Wang, Z.; Wang, X. Novel two-step strategy for the construction of weathering-resistant hydrophobic wood to extend its service life. Prog. Org. Coat. 2024, 186, 107985. [Google Scholar] [CrossRef]
- Xia, M.; Yang, T.; Chen, S.; Yuan, G. Fabrication of superhydrophobic eucalyptus wood surface with self-cleaning performance in air and oil environment and high durability. Colloid Interface Sci. 2020, 36, 100264. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, Z.; Sun, D.; Zou, W.; Yu, M.; Yao, L. Thermally induced response self-healing superhydrophobic wood with self-cleaning and photocatalytic performance. Cellulose 2022, 29, 9407–9420. [Google Scholar] [CrossRef]
- Wu, X.; Kong, Z.; Yao, X.; Gan, J.; Zhan, X.; Wu, Y. Transparent wood with self-cleaning properties for next-generation smart photovoltaic panels. Appl. Surf. Sci. 2023, 613, 155927. [Google Scholar] [CrossRef]
- Wei, J.; Zhang, G.; Dong, J.; Wang, H.; Guo, Y.; Zhuo, X.; Li, C.; Liang, H.; Gu, S.; Li, C.; et al. Facile, Scalable spray-coating of stable emulsion for transparent self-cleaning surface of cellulose-based materials. ACS Sustainable Chem. Eng. 2018, 6, 11335–11344. [Google Scholar] [CrossRef]
- Chu, T.; Gao, Y.; Yi, L.; Fan, C.; Yan, L.; Ding, C.; Liu, C.; Huang, Q.; Wang, Z. Highly fire-retardant optical wood enabled by transparent fireproof coatings. Adv. Compos. Hybrid Mater. 2022, 5, 1821–1829. [Google Scholar] [CrossRef]
- Sun, R.-Y.; Wang, F.; Li, C.-B.; Deng, Z.-P.; Song, F.; Wang, Y.-Z. Formulation of environmentally robust flame-retardant and superhydrophobic coatings for wood materials. Constr. Build. Mater. 2023, 392, 131873. [Google Scholar] [CrossRef]
- Shi, X.; Bi, R.; Wan, Z.; Jiang, F.; Rojas, O.J. Solid wood modification toward anisotropic elastic and insulative foam-like materials. ACS Nano 2024, 18, 7959–7971. [Google Scholar] [CrossRef]
- Aldalbahi, A.; El-Naggar, M.E.; Khattab, T.A.; Hossain, M. Preparation of flame-retardant, hydrophobic, ultraviolet protective, and luminescent transparent wood. Luminescence 2021, 36, 1922–1932. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, H.; Su, H.; Tan, X.; Lin, X.; Wu, Y.; Jiang, L.; Xiao, T.; Tan, X. Substrate-Independent superhydrophobic coating capable of photothermal-induced repairability for multiple damages fabricated via simple blade coating. Langmuir 2024, 40, 9449–9461. [Google Scholar] [CrossRef]
- Li, W.; Ni, X.; Zhang, X.; Lei, Y.; Guo, J.; Jin, J.; You, B. UV–NIR Dual-responsive nanocomposite coatings with healable, superhydrophobic, and contaminant-resistant properties. ACS Appl. Mater. Interfaces 2020, 12, 48101–48108. [Google Scholar] [CrossRef]
- Hasan, M.; Sun, B.; Yu, C.; Ma, W.; Gao, Y.; Chen, L. Hydrophobic fumed silica/epoxy coating: The impact of solvents on its hydrophobicity and durability. Colloid. Surface A 2025, 709, 136070. [Google Scholar] [CrossRef]
- Pulikkalparambil, H.; Parameswaranpillai, J.; Siengchin, S.; Pionteck, J. UV light triggered self-healing of green epoxy coatings. Constr. Build. Mater. 2021, 305, 124725. [Google Scholar] [CrossRef]
- Bi, Z.; Gao, X.; Zhang, J.; Lei, Y.; Yan, L. Antifungal activity of heat-treated wood extract against wood decay fungi. Int. Biodeter. Biodegr. 2024, 193, 105843. [Google Scholar] [CrossRef]
- Wang, G.; Weng, D.; Chen, C.; Chen, L.; Wang, J. Influence of TiO2 nanostructure size and surface modification on surface wettability and bacterial adhesion. Colloid. Interfac. Sci. 2020, 34, 100220. [Google Scholar] [CrossRef]
- Liu, S.; Zheng, J.; Hao, L.; Yegin, Y.; Bae, M.; Ulugun, B.; Taylor, T.M.; Scholar, E.A.; Cisneros-Zevallos, L.; Oh, J.K.; et al. Dual-Functional, superhydrophobic coatings with bacterial anticontact and antimicrobial characteristics. ACS Appl. Mater. Interfaces 2020, 12, 21311–21321. [Google Scholar] [CrossRef]
- Seth, M.; Khan, H.; Jana, S. Hierarchically structured alpha-nickel hydroxide based superhydrophobic and antibacterial coating on cellulosic materials for oil-water separation. Mater. Chem. Phys. 2020, 249, 123030. [Google Scholar] [CrossRef]
- Yao, Y.; Gellerich, A.; Zauner, M.; Wang, X.; Zhang, K. Differential anti-fungal effects from hydrophobic and superhydrophobic wood based on cellulose and glycerol stearoyl esters. Cellulose 2018, 25, 1329–1338. [Google Scholar] [CrossRef]
- Duan, X.; Liu, S.; Huang, E.; Shen, X.; Wang, Z.; Li, S.; Jin, C. Superhydrophobic and antibacterial wood enabled by polydopamine-assisted decoration of copper nanoparticles. Colloid. Surface. A. 2020, 602, 125145. [Google Scholar] [CrossRef]
- Zhang, W.; Li, S.; Wei, D.; Zheng, Z.; Han, Z.; Liu, Y. Fluorine-free, robust and self-healing superhydrophobic surfaces with anticorrosion and antibacterial performances. J. Mater. Sci. Technol. 2024, 186, 231–243. [Google Scholar] [CrossRef]
- Gao, L.; Gan, W.; Xiao, S.; Zhan, X.; Li, J. A robust superhydrophobic antibacterial Ag–TiO2 composite film immobilized on wood substrate for photodegradation of phenol under visible-light illumination. Ceram. Int. 2016, 42, 2170–2179. [Google Scholar] [CrossRef]
Synthetic Method | Comparison in Conditions and Characteristics | ||
---|---|---|---|
Process | Pros | Cons | |
Sol–gel method | The sol was converted into gel, and superhydrophobic material was formed after curing. | Easy to control; simple process. | Long reaction time; uneven coating. |
Hydrothermal method | High-temperature and high-pressure environment; recrystallization process. | Adjustable size and morphology; easy doping. | Slow process; complex reaction conditions. |
Template method | Synthesize templates with low surface energy; preparation of rough structure; removal of template. | High repeatability; low cost; structural stability. | Difficulty in removing templates; long processing time. |
Surface coating method | Uniformly dispersed particles are sprayed or deposited on the surface of the substrate. | Low costing; simple process; wide application range. | Poor adhesion; poor control. |
Chemical deposition | Through chemical reactions, low-surface-energy particles are deposited on the surface substrate to form high-performance coatings. | Easy to control; high efficiency. | Slow deposition rate; long processing time. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, S.; Yao, L.; Wang, L.; Wu, Y. Research Progress in the Construction Strategy and Application of Superhydrophobic Wood. Molecules 2025, 30, 719. https://doi.org/10.3390/molecules30030719
Chang S, Yao L, Wang L, Wu Y. Research Progress in the Construction Strategy and Application of Superhydrophobic Wood. Molecules. 2025; 30(3):719. https://doi.org/10.3390/molecules30030719
Chicago/Turabian StyleChang, Siyu, Lihong Yao, Lei Wang, and Yueqi Wu. 2025. "Research Progress in the Construction Strategy and Application of Superhydrophobic Wood" Molecules 30, no. 3: 719. https://doi.org/10.3390/molecules30030719
APA StyleChang, S., Yao, L., Wang, L., & Wu, Y. (2025). Research Progress in the Construction Strategy and Application of Superhydrophobic Wood. Molecules, 30(3), 719. https://doi.org/10.3390/molecules30030719