Allelic Analysis of the Gli-B1 Locus in Hexaploid Wheat Using Reverse-Phase–Ultra-Performance Liquid Chromatography
Abstract
:1. Introduction
2. Results
2.1. Optimization of Instrument Conditions for Omega-5 Gliadin Analysis
2.2. Characterization of Omega-5 Gliadins in Standard Common Wheat Varieties with Different Alleles at the Gli-B1 Locus
2.3. Comparative Analysis of Omega-5 Gliadin Composition in 24 Wheat Varieties with the Gli-B1f Allelxx
The Number of Peaks | Retention Time (min) | Cultivars | Group * |
---|---|---|---|
2 | 3.92, 6.48 | Avalon, Galad | 22 |
3 | 2.95, 3.80, 6.00 | Arcane, Arminda, Brimstone, Castan, Champlein, Futur, Genial, Orepi, Thesee | 5 |
4 | 2.93, 3.80, 5.05, 5.98 | Glenlea, Candeal Alcala, Maris Freeman | 7 |
5 | 2.90, 3.78, 5.96, 6.71, 6.93 | Capitole, Cappelle-Desprez, Darius, Ducat, Friendland, Hardi | 6 |
5 | 2.95, 3.81, 6.00, 6.73, 7.40 | Camp-Remy | 20 |
5 | 3.90, 5.02, 6.34, 7.14, 7.82 | Dankowska | 2 |
6 | 2.93, 3.79, 5.05, 6.00, 6.71, 7.19 | Corin | 21 |
7 | 2.94, 3.80, 6.00, 6.72, 7.00, 7.23, 7.91 | Recital | 23 |
Group | Variety | Gli-B1 Allele | Group | Variety | Gli-B1 Allele | Group | Variety | Gli-B1 Allele |
---|---|---|---|---|---|---|---|---|
1 | Chinese Spring | a | 5 | Lutescens 62 | e | 12 | Clement | l |
2 | Avalon | f | Orepi | f | Kavkaz | l | ||
Bezostaya | b | Thesee | f | Seri 82 | l | |||
Carat | b | 6 | Capitole | f | 13 | Aragon 03 | o | |
Creneau | b | Cappelle-Desprez | f | San Rafael | o | |||
Gabo | b | Darius | f | 14 | Norin 61 | m | ||
Gala | f | Ducat | f | Titien | m | |||
Mentana | k | Friedland | f | 15 | Marquis | b | ||
Partizanka | b | Hardi | f | 16 | Prinqual | c | ||
Renan | b | 7 | Candeal Alcala | f | 17 | Chopin | d | |
Rivoli | b | Glenlea | f | 18 | Suneca | d | ||
Soissons | b | Maris Freeman | f | 19 | Apexal | e | ||
3 | Neepawa | d | 8 | Champtal | g | 20 | Camp-Remy | f |
Petrel | d | Mara | g | 21 | Corin | f | ||
4 | Yecora | d | Sadovo | g | 22 | Dankowska | f | |
Yecora Rojo | d | 9 | Canaleja | h | 23 | Recital | f | |
5 | Arcane | f | Tincurrin | h | 24 | Barbilla | g | |
Arminda | f | 10 | Chinook | r | 25 | Krasnodonka | h | |
Brimstone | f | Ghurka | i | 26 | Rudi | h | ||
Castan | f | Halberd | i | 27 | Aradi | o | ||
Champlein | f | Insignia | i | 28 | Levent | o | ||
Fournil | e | 11 | Kremena | k | 29 | Montjuich | o | |
Futur | f | Magnif 27 | k | 30 | Inia66 | p | ||
Genial | f | Pane 247 | k | 31 | Resistente | s | ||
Rempart | m |
2.4. Classification of 73 Wheat Varieties Based on Omega-5 Gliadin Composition via RP-UPLC
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Gliadin Extraction
4.3. RP-UPLC Analysis
4.4. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shewry, P.R.; Halford, N.G.; Lafiandra, D. Genetics of wheat gluten proteins. Adv. Genet. 2003, 49, 111–184. [Google Scholar]
- MacRitchie, F. Physicochemical properties of wheat proteins in relation to functionality. Adv. Food Nutr. Res. 1992, 36, 1–87. [Google Scholar]
- Rodrigues, M.M.F.; Martins, M.M.; Costa, M.L.B. Thermal properties of gluten proteins of two soft wheat varieties. Food Chem. 2005, 93, 459–465. [Google Scholar] [CrossRef]
- Anderson, O.D.; Dong, L.; Huo, N.; Gu, Y.Q. A new class of wheat gliadin genes and proteins. PLoS ONE 2012, 7, e52139. [Google Scholar] [CrossRef] [PubMed]
- Barak, S.; Mudgil, D.; Khatkar, B.S. Biochemical and functional properties of wheat gliadins: A review. Crit. Rev. Food Sci. Nutr. 2015, 55, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Payne, P.I.; Holt, L.M.; Lawrence, G.J.; Law, C.N. The genetics of gliadin and glutenin, the major storage proteins in the wheat endosperm. Qual. Plant. Plant Foods Hum. Nutr. 1982, 31, 229–241. [Google Scholar] [CrossRef]
- Tye-Din, J.A.; Stewart, J.A.; Dromey, J.A.; Beissbarth, T.; van Heel, D.A.; Tatham, A.; Henderson, K.; Mannering, S.I.; Gianfrani, C.; Jewell, D.P.; et al. Comprehensive, quantitative mapping of T cell epitopes in gluten in celiac disease. Sci. Transl. Med. 2010, 2, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Sollid, L.M.; Qiao, S.W.; Anderson, R.P.; Gianfrani, C.; Koning, F. Nomenclature and listing of celiac disease relevant gluten T-cell epitopes restricted by HLA-DQ molecules. Immunogenetics 2012, 64, 455–460. [Google Scholar] [CrossRef]
- Battais, F.; Mothes, T.; Moneret-Vautrin, D.A.; Pineau, F.; Kanny, G.; Popineau, Y.; Bodinier, M.; Denery-Papini, S. Identification of IgE-binding epitopes on gliadins of patients with food allergy to wheat. Allergy 2005, 60, 815–821. [Google Scholar] [CrossRef]
- Bushuk, W.; Zillman, R.R. Wheat cultivar identification by gliadin electrophoregrams. I. Apparatus, method and nomenclature. Can. J. Plant Sci. 1978, 58, 505–515. [Google Scholar] [CrossRef]
- Singh, N.K.; Shepherd, K.W.; Cornish, G.B. A simplified SDS-PAGE procedure for separating LMW subunits of glutenin. J. Cereal Sci. 1991, 14, 203–208. [Google Scholar] [CrossRef]
- Liu, L.; Ikeda, T.M.; Branlard, G.; Peña, R.J.; Rogers, W.J.; Lerner, S.E.; Kolman, M.A.; Xia, X.; Wang, L.; Ma, W.; et al. Comparison of low molecular weight glutenin subunits identified by SDS-PAGE, 2-DE, MALDI-TOF-MS and PCR in common wheat. BMC Plant Biol. 2010, 10, 124. [Google Scholar] [CrossRef]
- Anderson, N.G.; Tollaksen, S.L.; Pascoe, F.H.; Anderson, L. Two-dimensional electrophoretic analysis of wheat seed proteins. Crop Sci. 1985, 25, 667–674. [Google Scholar] [CrossRef]
- Dupont, F.M.; Vensel, W.H.; Tanaka, C.K.; Hurkman, W.J.; Altenbach, S.B. Deciphering the complexities of the wheat flour proteome using quantitative two-dimensional electrophoresis, three proteases and tandem mass spectrometry. Proteome Sci. 2011, 9, 10. [Google Scholar] [CrossRef]
- Altenbach, S.B.; Chang, H.C.; Simon-Buss, A.; Mohr, T.; Huo, N.; Gu, Y.Q. Exploiting the reference genome sequence of hexaploid wheat: A proteomic study of flour proteins from the cultivar Chinese Spring. Funct. Integr. Genom. 2020, 20, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Bietz, J.A.; Burnouf, T.; Cobb, L.A.; Wall, J.S. Gliadin analysis by reversed-phase high-performance liquid chromatography: Optimization of extraction conditions. Cereal Chem. 1984, 61, 124–129. [Google Scholar]
- Bietz, J.A.; Burnouf, T. Chromosomal control of wheat gliadin: Analysis by reversed-phase high-performance liquid chromatography. Theor. Appl. Genet. 1985, 70, 599–609. [Google Scholar] [CrossRef]
- Wieser, H.; Seilmeier, W.; Belitz, H.D. Quantitative determination of gliadin subgroups from different wheat cultivars. J. Cereal Sci. 1994, 19, 149–155. [Google Scholar] [CrossRef]
- Jang, Y.R.; Cho, K.; Kim, S.; Sim, J.R.; Lee, S.B.; Kim, B.G.; Gu, Y.Q.; Altenbach, S.B.; Lim, S.H.; Goo, T.W.; et al. Comparison of MALDI-TOF-MS and RP-HPLC as Rapid Screening Methods for Wheat Lines With Altered Gliadin Compositions. Front. Plant Sci. 2020, 11, 600489. [Google Scholar] [CrossRef] [PubMed]
- Ferranti, P.; Mamone, G.; Picariello, G.; Addeo, F. Mass spectrometry analysis of gliadins in celiac disease. J. Mass Spectrom. 2007, 42, 1531–1548. [Google Scholar] [CrossRef]
- Mamone, G.; Addeo, F.; Chianese, L.; Di Luccia, A.; De Martino, A.; Nappo, A.; Formisano, A.; De Vivo, P.; Ferranti, P. Characterization of wheat gliadin proteins by combined two-dimensional gel electrophoresis and tandem mass spectrometry. Proteomics 2005, 5, 2859–2865. [Google Scholar] [CrossRef] [PubMed]
- Hurkman, W.J.; Tanaka, C.K.; Vensel, W.H.; Thilmony, R.; Altenbach, S.B. Comparative proteomic analysis of the effect of temperature and fertilizer on gliadin and glutenin accumulation in the developing endosperm and flour from Triticum aestivum L. cv. Butte 86. Proteome Sci. 2013, 11, 8. [Google Scholar] [CrossRef]
- Gao, L.; Ma, W.; Chen, J.; Wang, K.; Li, J.; Wang, S.; Bekes, F.; Appels, R.; Yan, Y. Characterization and comparative analysis of wheat high molecular weight glutenin subunits by SDS-PAGE, RP-HPLC, HPCE, and MALDI-TOF-MS. J. Agric. Food Chem. 2010, 58, 2777–2786. [Google Scholar] [CrossRef]
- Taleuzzaman, M.; Ali, S.; Gilani, S.J.; Imam, S.S.; Hafeez, A. Ultra performance liquid chromatography (UPLC)—A review. Austin J. Anal. Pharm. Chem. 2015, 2, 1056. [Google Scholar]
- Lee, S.B.; Yang, Y.J.; Lim, S.H.; Gu, Y.Q.; Lee, J.Y. A Rapid, Reliable RP-UPLC Method for Large-Scale Analysis of Wheat HMW-GS Alleles. Molecules 2021, 26, 6174. [Google Scholar] [CrossRef]
- Metakovsky, E.; Melnik, V.A.; Rodriguez-Quijano, M.; Upelniek, V.P.; Carrillo, J.M. A catalog of gliadin alleles: Polymorphism of 20th-century common wheat germplasm. Crop J. 2018, 6, 629–641. [Google Scholar] [CrossRef]
- Metakovsky, E.V. Gliadin allele identification in common wheat. II. Catalogue of gliadin alleles in common wheat. J. Genet. Breed. 1991, 45, 325–344. [Google Scholar]
- Metakovsky, E.V.; Ng, K.W.; Chernakov, V.M.; Pogna, N.E.; Bushuk, W. Gliadin alleles in Canada western red spring wheat cultivars: Use of two different procedures of APAGE for gliadin separation. Genome 1993, 36, 743–749. [Google Scholar] [CrossRef]
- Metakovsky, E.V.; Branlard, G. Genetic diversity of French common wheat germplasm studied using gliadin alleles. Theor. Appl. Genet. 1998, 96, 209–218. [Google Scholar] [CrossRef]
- Metakovsky, E.V.; Pogna, N.E.; Biancardi, A.M.; Redaelli, R. Gliadin allele composition of common wheat cultivars grown in Italy. J. Genet. Breed. 1994, 48, 55–66. [Google Scholar]
- Metakovsky, E.V.; Gòmez, M.; Vàzquez, J.F.; Carrillo, J.M. High genetic diversity of Spanish common wheats as judged from gliadin alleles. Plant Breed. 2000, 119, 37–42. [Google Scholar] [CrossRef]
- Ruiz, M.; Metakovsky, E.V.; Rodriguez-Quijano, M.; Vazquez, J.F.; Carrillo, J.M. Assessment of storage protein variation in relation to some morphological characters in a sample of Spanish landraces of common wheat (Triticum aestivum L. ssp. aestivum). Genet. Resour. Crop. Evol. 2002, 49, 371–382. [Google Scholar] [CrossRef]
- Kozub, N.A.; Sozinov, I.A.; Sobko, T.A.; Kolyuchii, V.T.; Kuptsov, S.V.; Sozinov, A.A. Variation at storage protein loci in winter common wheat cultivars of the central forest-steppe of Ukraine. Cytol. Genet. 2009, 43, 69–77. [Google Scholar] [CrossRef]
- Metakovsky, E.V.; Knezevic, D.; Javornik, B. Gliadin allele composition of Yugoslav winter wheat cultivars. Euphytica 1991, 54, 285–295. [Google Scholar] [CrossRef]
- Metakovsky, E.; Melnik, V.A.; Pascual, L.; Wrigley, C.W. Gliadin genotypes worldwide for spring wheats (Triticum aestivum L.) 1. Genetic diversity and grain-quality gliadin alleles during the 20th century. J. Cereal Sci. 2019, 87, 172–177. [Google Scholar] [CrossRef]
- Metakovsky, E.; Melnik, V.A.; Pascual, L.; Wrigley, C.W. Gliadin genotypes worldwide for spring wheats (Triticum aestivum L.) 2. Strong differentiation of polymorphism between countries and regions of origin. J. Cereal Sci. 2019, 87, 311–317. [Google Scholar] [CrossRef]
- Popovych, Y.; Chebotar, S.; Melnik, V.; Rodriguez-Quijano, M.; Pascual, L.; Rogers, W.J.; Metakovsky, E. Congruity of the Polymorphisms in the Expressed and Noncoding Parts of the Gli-B1 Locus in Common Wheat. Agronomy 2020, 10, 1510. [Google Scholar] [CrossRef]
- Matsuo, H.; Morita, E.; Tatham, A.S.; Morimoto, K.; Horikawa, T.; Osuna, H.; Ikezawa, Z.; Kaneko, S.; Kohno, K.; Dekio, S. Identification of the IgE-binding epitope in omega-5 gliadin, a major allergen in wheat-dependent exercise-induced anaphylaxis. J. Biol. Chem. 2004, 279, 12135–12140. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, S.-R.; Park, J.H.; Park, K.-H.; Jeong, K.Y.; Lee, J.-H.; Kang, C.-S.; Kim, K.-H.; Park, J.-W. Evaluation of Allergenicity on a ω-5 Gliadin-Deficient Cultivar in Wheat-Dependent Exercise-Induced Anaphylaxis. Allergy Asthma Immunol. Res. 2022, 14, 379–392. [Google Scholar] [CrossRef]
- Jang, Y.-R.; Kang, C.-S.; Lim, S.-H.; Lee, J.-Y. Screening and Identification of Omega-5 Gliadin Mutants in Wheat Doubled-Haploid Lines. Korean J. Breed. Sci. 2018, 50, 181–192. [Google Scholar] [CrossRef]
- Han, C.; Lu, X.; Yu, Z.; Li, X.; Ma, W.; Yan, Y. Rapid separation of seed gliadins by reversed-phase ultra performance liquid chromatography (RP-UPLC) and its application in wheat cultivar and germplasm identification. Biosci. Biotechnol. Biochem. 2015, 79, 808–815. [Google Scholar] [CrossRef] [PubMed]
- Cvjetkovic, V.S.G.; Grujic, R.D.; Marjanovic-Balaban, Z.R.; Stanojevic, L.P.; Stanojevic, J.S.; Cakic, M.D. Gliadin Analysis by Reversed-Phase High Performance Liquid Chromatography. Adv. Technol. 2019, 8, 30–36. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, W.; Han, C.; Cao, H.; Xu, Y.; Zhang, W.; Yan, Y. Synthesis and Accumulation of Glutenin Subunits during Grain Development in Bread Wheat as Revealed by Reversed-phase Ultra-performance Liquid Chromatography (RP-UPLC). Cereal Res. Commun. 2016, 44, 461–471. [Google Scholar] [CrossRef]
Gliadins | Peak No. | Retention Time (min) | RSD% 1 | RSD% 2 |
---|---|---|---|---|
Omega-5 | 1 | 5.082 * ± 0.024 ** | 0.465 | 0.932 |
2 | 5.329 ± 0.029 | 0.551 | 0.831 | |
3 | 5.790 ± 0.027 | 0.475 | 0.641 | |
4 | 7.428 ± 0.031 | 0.418 | 0.365 | |
5 | 7.777 ± 0.029 | 0.374 | 0.311 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-Y.; Yang, Y.-J.; So, J.; Kim, S.; Cho, K. Allelic Analysis of the Gli-B1 Locus in Hexaploid Wheat Using Reverse-Phase–Ultra-Performance Liquid Chromatography. Molecules 2025, 30, 609. https://doi.org/10.3390/molecules30030609
Lee J-Y, Yang Y-J, So J, Kim S, Cho K. Allelic Analysis of the Gli-B1 Locus in Hexaploid Wheat Using Reverse-Phase–Ultra-Performance Liquid Chromatography. Molecules. 2025; 30(3):609. https://doi.org/10.3390/molecules30030609
Chicago/Turabian StyleLee, Jong-Yeol, Yu-Jeong Yang, Jinpyo So, Sewon Kim, and Kyoungwon Cho. 2025. "Allelic Analysis of the Gli-B1 Locus in Hexaploid Wheat Using Reverse-Phase–Ultra-Performance Liquid Chromatography" Molecules 30, no. 3: 609. https://doi.org/10.3390/molecules30030609
APA StyleLee, J.-Y., Yang, Y.-J., So, J., Kim, S., & Cho, K. (2025). Allelic Analysis of the Gli-B1 Locus in Hexaploid Wheat Using Reverse-Phase–Ultra-Performance Liquid Chromatography. Molecules, 30(3), 609. https://doi.org/10.3390/molecules30030609