Constructing High-Performance Solar Cells by Incorporating an A1-A2-Type Polymer Donor as a Guest Material
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Synthetic Procedures
3.3. Device Fabrication and Characterizations
3.4. Characterizations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yi, J.; Zhang, G.; Yu, H.; Yan, H. Advantages, challenges and molecular design of different material types used in organic solar cells. Nat. Rev. Mater. 2023, 9, 46–62. [Google Scholar] [CrossRef]
- Ran, X.; Zhang, C.; Qiu, D.; Tang, A.; Li, J.; Wang, T.; Zhang, J.; Wei, Z.; Lu, K. Cyanobenzene-Modified Quinoxaline-Based Acceptors with Optimal Excitonic Behavior Enable Efficient Organic Solar Cells. Adv. Mater. 2025, 37, 2504805. [Google Scholar] [CrossRef]
- Chen, H.; Lai, H.; Chen, Z.; Zhu, Y.; Wang, H.; Han, L.; Zhang, Y.; He, F. 17.1%-Efficient Eco-Compatible Organic Solar Cells from a Dissymmetric 3D Network Acceptor. Angew. Chem. Int. Ed. 2021, 60, 3238–3246. [Google Scholar] [CrossRef]
- Xu, C.; Yang, J.; Gámez-Valenzuela, S.; Lee, J.-W.; Che, J.; Chen, P.; Zhang, G.; Hu, D.; Wang, Y.; Lv, J.; et al. A Bithiophene Imide-Based Polymer Donor for Alloy-Like Ternary Organic Solar Cells with over 20.5% Efficiency and Enhanced Stability. Energy Environ. Sci. 2025, 18, 5913–5925. [Google Scholar] [CrossRef]
- Duan, X.; Song, J.; Zhang, J.; Zhuang, J.; Deng, J.; Wang, X.; Dai, G.; Song, B.; Qiao, J.; Hao, X.; et al. Green Solvent-Processed Organic Solar Cells Approaching 20.4% Efficiency via Active Layer Pre-Solidification. Adv. Mater. 2025, 37, 2503510. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Huang, Y.; Zhang, R.; Mou, H.; Ding, J.; Zhou, Z.; Wang, H.; Li, W.; Chen, J.; Zhu, R.; et al. Organic Solar Cells with 20.82% Efficiency and High Tolerance of Active Layer Thickness Through Crystallization Sequence Manipulation. Nat. Mater. 2025, 24, 444–453. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Wu, L.; Jia, T.; Zhang, H.; Song, J.; Xie, X.; Jee, M.H.; Ma, H.; Liu, S.; Lu, G.; et al. Aggregation-Enhanced-Emission Polymer Donor Improves the Efficiency of Organic Solar Cells by Suppressing Nonradiative Recombination. Angew. Chem. Int. Ed. 2025, 64, e202516421. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Li, Y.; Liao, C.; Xu, X.; Yu, L.; Li, R.; Peng, Q. Dielectric Constant Engineering of Nonfullerene Acceptors Enables A Record Fill Factor of 83.58%and A High Efficiency Of 20.80% in Organic Solar Cells. Energy Environ. Sci. 2025, 18, 4982. [Google Scholar] [CrossRef]
- Li, C.; Yao, G.; Gu, X.; Lv, J.; Hou, Y.; Lin, Q.; Yu, N.; Abbasi, M.S.; Zhang, X.; Zhang, J.; et al. Highly Efficient Organic Solar Cells Enabled by Suppressing Triplet Exciton Formation and Non-Radiative Recombination. Nat. Commun. 2024, 15, 8872. [Google Scholar] [CrossRef]
- Shi, Y.; Zhu, L.; Yan, Y.; Xie, M.; Liang, G.; Qiao, J.; Zhang, J.; Hao, X.; Lu, K.; Wei, Z. Small Energetic Disorder Enables Ultralow Energy Losses in Non-Fullerene Organic Solar Cells. Adv. Energy Mater. 2023, 13, 2300458. [Google Scholar] [CrossRef]
- Gu, X.; Wei, Y.; Zeng, R.; Lv, J.; Hou, Y.; Yu, N.; Tan, S.; Wang, Z.; Li, C.; Tang, Z.; et al. Suppressing Exciton–Vibration Coupling via Intramolecular Noncovalent Interactions for Low-Energy-Loss Organic Solar Cells. Angew. Chem. Int. Ed. 2024, 64, 202418926. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Zhang, M.; Xu, J.; Li, C.; Yan, J.; Zhou, G.; Zhong, W.; Hao, T.; Song, J.; Xue, X.; et al. Single-Junction Organic Solar Cells with Over 19% Efficiency Enabled by A Refined Double-Fibril Network Morphology. Nat. Mater. 2022, 21, 656. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Huang, B.; Wang, X.; Que, M.; Liu, J.; Li, L.; Jeong, S.Y.; Zhang, J.; Lan, A.; Woo, H.Y.; et al. High-Performance Photoactive Polymers: Innovations in Ternary Polymerization for Solar Applications. Adv. Energy Mater. 2025, 2405451. [Google Scholar] [CrossRef]
- Deng, X.; Huang, B.; Fang, Y.; Chen, D.; Cheng, Y.; Chen, S.; Zhang, J.; Zhang, L.; Jeong, S.; Wu, F.; et al. High-Performance Terpolymers with Well-Defined Structures Facilitate PCE over 19% for Polymer Solar Cells. Adv. Funct. Mater. 2024, 34, 2315476. [Google Scholar] [CrossRef]
- Fan, Q.; Wang, Y.; Zhang, M.; Wu, B.; Guo, X.; Jiang, Y.; Li, W.; Guo, B.; Ye, C.; Su, W.; et al. High-Performance As-Cast Nonfullerene Polymer Solar Cells with Thicker Active Layer and Large Area Exceeding 11% Power Conversion Efficiency. Adv. Mater. 2018, 30, 1704546. [Google Scholar] [CrossRef]
- Liu, Q.; Jiang, Y.; Jin, K.; Qin, J.; Xu, J.; Li, W.; Xiong, J.; Liu, J.; Xiao, Z.; Sun, K.; et al. 18% Efficiency Organic Solar Cells. Sci. Bull. 2020, 65, 272–275. [Google Scholar] [CrossRef]
- Wang, T.; Chen, M.; Sun, R.; Min, J. Recent Research Progress of All-Polymer Solar Cells Based on PSMA-Type Polymer Acceptors. Chem 2023, 9, 1702–1767. [Google Scholar] [CrossRef]
- Jin, J.; Wang, Q.; Ma, K.; Shen, W.; Belfiore, L.A.; Bao, X.; Tang, J. Recent Developments of Polymer Solar Cells with Photovoltaic Performance over 17%. Adv. Funct. Mater. 2023, 33, 2213324. [Google Scholar] [CrossRef]
- Zheng, Z.; Yao, H.; Ye, L.; Xu, Y.; Zhang, S.; Hou, J. PBDB-T and Its Derivatives: A Family of Polymer Donors Enables over 17% Efficiency in Organic Photovoltaics. Mater. Today 2020, 35, 115–130. [Google Scholar] [CrossRef]
- Yu, J.; Chen, P.; Koh, C.W.; Wang, H.; Yang, K.; Zhou, X.; Liu, B.; Liao, Q.; Chen, J.; Sun, H.; et al. Phthalimide-Based High Mobility Polymer Semiconductors for Efficient Nonfullerene Solar Cells with Power Conversion Efficiencies over 13%. Adv. Sci. 2019, 6, 1801743. [Google Scholar] [CrossRef]
- Yang, H.; Bao, S.; Cui, N.; Fan, H.; Hu, K.; Cui, C.; Li, Y. Morphology Optimization of the Photoactive Layer through Crystallinity and Miscibility Regulation for High-performance Polymer Solar Cells. Angew. Chem. Int. Ed. 2023, 62, e202216338. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, M.; Zhang, L.; Jeong, S.Y.; Geng, S.; Woo, H.Y.; Zhang, J.; Zhang, F.; Ma, X. Over 19.1% Efficiency for Sequentially Spin-Coated Polymer Solar Cells by Employing Ternary Strategy. Chem. Eng. J. 2023, 471, 144711. [Google Scholar] [CrossRef]
- Chen, T.; Zheng, X.; Wang, D.; Zhu, Y.; Ouyang, Y.; Xue, J.; Wang, M.; Wang, S.; Ma, W.; Zhang, C.; et al. Delayed Crystallization Kinetics Allowing High-Efficiency All-Polymer Photovoltaics with Superior Upscaled Manufacturing. Adv. Mater. 2024, 36, 2308061. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; He, C.; Chen, T.; Zheng, J.; Sun, R.; Fang, J.; Chen, Y.; Pan, Y.; Yan, K.; Li, C.-Z.; et al. Refined Molecular Microstructure and Optimized Carrier Management of Multicomponent Organic Photovoltaics Toward 19.3% Certified Efficiency. Energy Environ. Sci. 2023, 16, 2262. [Google Scholar] [CrossRef]
- Yao, Z.; Cao, X.; Bi, X.; He, T.; Li, Y.; Jia, X.; Liang, H.; Guo, Y.; Long, G.; Kan, B.; et al. Complete Peripheral Fluorination of the Small-Molecule Acceptor in Organic Solar Cells Yields Efficiency over 19 %. Angew. Chem. Int. Ed. 2023, 62, 202312630. [Google Scholar] [CrossRef]
- Guo, H.; Huang, B.; Zhang, L.; Chen, L.; Xie, Q.; Liao, Z.; Huang, S.; Chen, Y. Double Acceptor Block-Containing Copolymers with Deep HOMO Levels for Organic Solar Cells: Adjusting Carboxylate Substituent Position for Planarity. ACS Appl. Mater. Interfaces 2019, 11, 15853–15860. [Google Scholar] [CrossRef]
- Huang, W.; Cheng, P.; Yang, Y.; Li, G.; Yang, Y. High-Performance Organic Bulk-Heterojunction Solar Cells Based on Multiple-Donor or Multiple-Acceptor Components. Adv Mater. 2018, 30, 1705706. [Google Scholar] [CrossRef] [PubMed]
- Gasparini, N.; Salleo, A.; McCulloch, I.; Baran, D. The Role of the Third Component in Ternary Organic Solar Cells. Nat. Rev. Mater. 2019, 4, 229–242. [Google Scholar] [CrossRef]
- Fang, Y.; Deng, X.; Lu, J.; Huang, B.; Chen, S.; Liu, K.; Zhang, J.; Jeong, S.; Yang, C.; Liu, J. Constructing High-Performance Ternary Device Using Analogous Polymer Donors. Small 2023, 19, 2304996. [Google Scholar] [CrossRef]
- Ma, R.; Fan, Q.; Dela Peña, T.A.; Wu, B.; Liu, H.; Wu, Q.; Wei, Q.; Wu, J.; Lu, X.; Li, M.; et al. Unveiling the Morphological and Physical Mechanism of Burn-in Loss Alleviation by Ternary Matrix Toward Stable and Efficient All-Polymer Solar Cells. Adv. Mater. 2023, 35, 2212275. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, Y.; Yao, H.; Zhang, J.; Bi, P.; Chen, Z.; Wang, J.; Cui, Y.; Ma, L.; Xian, K.; et al. Suppressing the Energetic Disorder of All-Polymer Solar Cells Enables over 18% Efficiency. Energy Environ. Sci. 2023, 16, 1581–1589. [Google Scholar] [CrossRef]
- Zeng, L.; Hu, R.; Zhang, M.; Lee, S.; Wang, Q.; Meng, S.; Chen, Q.; Liu, J.; Xue, L.; Mi, L.; et al. Halogen-Substituted Phenazine Cores Reduce Energy Losses and Optimize Carrier Dynamics in Tethered Acceptors for 19.8% Efficient and Stable Polymer Solar Cells. Energy Environ. Sci. 2025, 18, 6754–6763. [Google Scholar] [CrossRef]
- Leong, W.L.; Cowan, S.R.; Heeger, A.J. Differential Resistance Analysis of Charge Carrier Losses in Organic Bulk Heterojunction Solar Cells: Observing the Transition from Bimolecular to Trap-Assisted Recombination and Quantifying the Order of Recombination. Adv. Energy Mater. 2011, 1, 517–522. [Google Scholar] [CrossRef]
- Cowan, S.R.; Roy, A.; Heeger, A.J. Recombination in Polymer-Fullerene Bulk Heterojunction Solar Cells. Phys. Rev. B 2010, 82, 245207. [Google Scholar] [CrossRef]
- Shuttle, C.G.; O’Regan, B.; Ballantyne, A.M.; Nelson, J.; Durrant, J.R. Bimolecular Recombination Losses in Polythiophene: Fullerene Solar Cells. Phys. Rev. B 2008, 78, 113201. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, C.; Duan, C.; Li, M.; Hu, Z.; Wang, J.; Liu, F.; Li, N.; Brabec, C.J.; Janssen, R.A.J.; et al. Morphology Optimization via Side Chain Engineering Enables All-Polymer Solar Cells with Excellent Fill Factor and Stability. J. Am. Chem. Soc. 2018, 140, 8934–8943. [Google Scholar] [CrossRef]
- Peng, Z.; Zhang, Y.; Sun, X.; Zhao, W.; Bian, F.; Geng, Y.; Ye, L.; Yang, C. Real-Time Probing and Unraveling the Morphology Formation of Blade-Coated Ternary Nonfullerene Organic Photovoltaics with In Situ X-Ray Scattering. Adv. Funct. Mater. 2023, 33, 2213248. [Google Scholar] [CrossRef]






| Polymers | λmax [nm] a | λonset [nm] b | [eV] c | HOMO [eV] d | LUMO [eV] e |
|---|---|---|---|---|---|
| PM6 | 585.8 | 683 | 1.82 | −5.37 | −3.55 |
| M1 | 617.6 | 706 | 1.76 | −5.54 | −3.78 |
| Active Layers | Voc (V) | Jsc (mA cm−2) | Jcal (mA cm−2) a | FF (%) | PCE (%) b |
|---|---|---|---|---|---|
| PM6:L8-BO | 0.88 | 26.92 | 26.11 | 80.3 | 19.02 (19.01 ± 0.01) |
| PM6:M1(5%):L8-BO | 0.90 | 26.96 | 26.53 | 81.2 | 19.70 (19.26 ± 0.34) |
| PM6:M1(10%):L8-BO | 0.90 | 26.85 | 26.35 | 79.3 | 19.16 (18.89 ± 0.27) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Chen, G.; Lan, A.; Chung, S.; Que, M.; Cho, Y.; Huang, B. Constructing High-Performance Solar Cells by Incorporating an A1-A2-Type Polymer Donor as a Guest Material. Molecules 2025, 30, 4755. https://doi.org/10.3390/molecules30244755
Li M, Chen G, Lan A, Chung S, Que M, Cho Y, Huang B. Constructing High-Performance Solar Cells by Incorporating an A1-A2-Type Polymer Donor as a Guest Material. Molecules. 2025; 30(24):4755. https://doi.org/10.3390/molecules30244755
Chicago/Turabian StyleLi, Min, Guo Chen, Ai Lan, Sein Chung, Mingming Que, Yongjoon Cho, and Bin Huang. 2025. "Constructing High-Performance Solar Cells by Incorporating an A1-A2-Type Polymer Donor as a Guest Material" Molecules 30, no. 24: 4755. https://doi.org/10.3390/molecules30244755
APA StyleLi, M., Chen, G., Lan, A., Chung, S., Que, M., Cho, Y., & Huang, B. (2025). Constructing High-Performance Solar Cells by Incorporating an A1-A2-Type Polymer Donor as a Guest Material. Molecules, 30(24), 4755. https://doi.org/10.3390/molecules30244755

