Optimized Extraction of Bioactive Polysaccharides from Wild Mushrooms: Toward Enhanced Yield and Antioxidant Activity
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Method
3.2.1. Experimental Design
| Run | Independent Variables | TCC, mg/g | RS, µmol/mL | DPPH | ABTS | H2O2 | |||
|---|---|---|---|---|---|---|---|---|---|
| Time (X3), h | Temperature (X2), °C | Liquid/Solid Ratio (X1) v/w | % | ||||||
| 1 | Suillus luteus (L.) Roussel | 3 | 70 | 100 | 6.246 ± 0.036 | 1.967 ± 0.019 | 4.20 ± 0.25 | 36.52 ± 3.41 | 33.33 ± 1.48 |
| 2 | 3 | 80 | 50 | 5.826 ± 0.033 | 2.985 ± 0.043 | 7.36 ± 0.21 | 48.36 ± 0.76 | 26.80 ± 1.62 | |
| 3 | 3 | 80 | 150 | 6.777 ± 0.231 | 1.733 ± 0.033 | 5.67 ± 1.04 | 32.49 ± 2.39 | 22.98 ± 0.56 | |
| 4 | 3 | 90 | 100 | 7.310 ± 0.037 | 2.010 ± 0.020 | 8.81 ± 0.21 | 44.21 ± 4.38 | 46.93 ± 0.56 | |
| 5 | 4 | 70 | 150 | 9.233 ± 0.334 | 2.017 ± 0.073 | 7.24 ± 0.36 | 33.00 ± 2.65 | 8.74 ± 0.97 | |
| 6 | 4 | 90 | 50 | 6.214 ± 0.034 | 2.917 ± 0.081 | 9.41 ± 0.42 | 41.56 ± 1.51 | 35.28 ± 3.68 | |
| 7 | 4 | 90 | 150 | 11.837 ± 0.380 | 2.128 ± 0.056 | 4.23 ± 0.22 | 45.14 ± 4.05 | 8.51 ± 1.06 | |
| 8 | 4 | 80 | 100 | 5.499 ± 0.782 | 2.744 ± 0.121 | 7.11 ± 0.21 | 44.02 ± 2.08 | 12.01 ± 1.19 | |
| 9 | 4 | 70 | 50 | 6.942 ± 0.749 | 5.446 ± 0.621 | 5.55 ± 0.42 | 41.41 ± 2.10 | 27.83 ± 2.24 | |
| 10 | 5 | 70 | 100 | 8.450 ± 0.074 | 2.393 ± 0.086 | 11.34 ± 0.75 | 46.28 ± 3.23 | 4.13 ± 0.21 | |
| 11 | 5 | 80 | 50 | 3.851 ± 0.061 | 4.447 ± 0.106 | 12.12 ± 0.26 | 46.25 ± 3.60 | 70.21 ± 8.71 | |
| 12 | 5 | 80 | 150 | 28.242 ± 0.379 | 2.245 ± 0.106 | 0.36 ± 0.02 | 43.83 ± 4.21 | 19.39 ± 1.63 | |
| 13 | 5 | 90 | 100 | 12.798 ± 0.589 | 2.794 ± 0.475 | 10.25 ± 0.55 | 47.04 ± 2.34 | 7.37 ± 1.39 | |
| 14 | 80 | 100 | 100 | 5.771 ± 0.432 | 2.744 ± 0.631 | 7.10 ± 0.20 | 43.32 ± 1.90 | 11.70 ± 1.06 | |
| 15 | 80 | 100 | 100 | 5.228 ± 0.816 | 2.794 ± 0.085 | 7.11 ± 0.21 | 43.58 ± 2.31 | 11.65 ± 0.99 | |
| 1 | Tricholoma equestre (L.) P. Kumm. | 3 | 70 | 100 | 7.778 ± 0.064 | 6.994 ± 0.089 | 3.56 ± 0.38 | 86.57 ± 0.46 | 32.38 ± 0.92 |
| 2 | 3 | 80 | 50 | 3.921 ± 0.051 | 11.692 ± 0.035 | 5.13 ± 0.48 | 49.70 ± 3.94 | 54.29 ± 0.95 | |
| 3 | 3 | 80 | 150 | 11.766 ± 0.255 | 6.559 ± 0.020 | 8.94 ± 0.89 | 65.56 ± 0.46 | 16.19 ± 0.94 | |
| 4 | 3 | 90 | 100 | 7.867 ± 0.115 | 13.489 ± 0.035 | 3.28 ± 0.34 | 53.54 ± 1.85 | 7.62 ± 0.98 | |
| 5 | 4 | 70 | 150 | 11.705 ± 0.191 | 6.935 ± 0.247 | 4.29 ± 0.31 | 64.24 ± 0.61 | 55.87 ± 2.91 | |
| 6 | 4 | 90 | 50 | 3.928 ± 0.051 | 11.105 ± 0.054 | 3.44 ± 0.13 | 61.43 ± 1.17 | 39.05 ± 1.90 | |
| 7 | 4 | 90 | 150 | 7.905 ± 0.004 | 11.093 ± 0.176 | 11.31 ± 0.63 | 60.20 ± 0.17 | 64.44 ± 1.45 | |
| 8 | 4 | 80 | 100 | 7.854 ± 0.009 | 7.640 ± 0.282 | 2.38 ± 0.21 | 83.33 ± 0.30 | 42.54 ± 4.89 | |
| 9 | 4 | 70 | 50 | 7.922 ± 0.01 | 7.886 ± 0.282 | 6.28 ± 0.58 | 80.81 ± 0.35 | 27.30 ± 1.98 | |
| 10 | 5 | 70 | 100 | 11,620 ± 0.006 | 7.546 ± 0.300 | 5.55 ± 0.28 | 79.70 ± 1.21 | 51.43 ± 2.86 | |
| 11 | 5 | 80 | 50 | 11.780 ± 0.191 | 11.844 ± 0.405 | 5.13 ± 0.46 | 51.82 ± 3.15 | 70.16 ± 3.34 | |
| 12 | 5 | 80 | 150 | 7.870 ± 0.163 | 7.182 ± 0.176 | 4.61 ± 0.48 | 65.15 ± 0.61 | 26.03 ± 2.40 | |
| 13 | 5 | 90 | 100 | 3.947 ± 0.081 | 11.046 ± 0.370 | 6.63 ± 0.58 | 72.42 ± 0.00 | 94.29 ± 1.90 | |
| 14 | 4 | 80 | 100 | 11.833 ± 0.287 | 7.640 ± 0.282 | 2.42 ± 0.20 | 83.38 ± 0.23 | 40.48 ± 3.33 | |
| 15 | 4 | 80 | 100 | 7.915 ± 0.1711 | 7.640 ± 0.282 | 2.27 ± 0.04 | 83.18 ± 0.15 | 43.65 ± 3.10 | |
| 1 | Hydnum repandum L. | 3 | 70 | 100 | 16.571 ± 0.247 | 7.872 ± 0.343 | 6.46 ± 0.23 | 6.81 ± 0.67 | 45.87 ± 2.90 |
| 2 | 3 | 80 | 50 | 8.405 ± 0.413 | 9.778 ± 0.367 | 6.46 ± 0.64 | 19.40 ± 1.29 | 48.54 ± 3.36 | |
| 3 | 3 | 80 | 150 | 23.543 ± 0.428 | 7.575 ± 0.272 | 7.28 ± 0.35 | 1.73 ± 0.19 | 43.45 ± 1.46 | |
| 4 | 3 | 90 | 100 | 15.814 ± 0.258 | 8.547 ± 0.296 | 4.64 ± 0.41 | 12.80 ± 1.29 | 31.72 ± 5.69 | |
| 5 | 4 | 70 | 150 | 23.270 ± 0.300 | 8.111 ± 0.382 | 4.72 ± 0.51 | 7.74 ± 0.62 | 45.63 ± 4.12 | |
| 6 | 4 | 90 | 50 | 7.879 ± 0.0415 | 12.538 ± 2.615 | 8.78 ± 0.87 | 65.43 ± 2.19 | 57.52 ± 4.78 | |
| 7 | 4 | 90 | 150 | 23.358 ± 0.053 | 8.289 ± 0.213 | 3.99 ± 0.12 | 25.75 ± 1.04 | 25.24 ± 0.97 | |
| 8 | 4 | 80 | 100 | 15.784 ± 0.194 | 9.183 ± 1.109 | 8.14 ± 1.31 | 17.34 ± 2.17 | 69.42 ± 2.80 | |
| 9 | 4 | 70 | 50 | 7.937 ± 0.101 | 9.838 ± 0.661 | 7.51 ± 0.23 | 26.01 ± 1.38 | 27.51 ± 7.16 | |
| 10 | 5 | 70 | 100 | 15.768 ± 0.233 | 7.892 ± 0.342 | 3.79 ± 0.30 | 30.03 ± 2.75 | 13.59 ± 1.68 | |
| 11 | 5 | 80 | 50 | 8.114 ± 0.4087 | 11.565 ± 1.159 | 4.38 ± 0.55 | 60.84 ± 2.18 | 11.65 ± 0.97 | |
| 12 | 5 | 80 | 150 | 23.407 ± 0.271 | 7.098 ± 0.000 | 1.79 ± 0.11 | 28.64 ± 2.39 | 65.29 ± 0.93 | |
| 13 | 5 | 90 | 100 | 15.414 ± 0.041 | 6.860 ± 0.000 | 0.94 ± 0.81 | 16.87 ± 4.11 | 20.71 ± 3.12 | |
| 14 | 4 | 80 | 100 | 15.836 ± 0.241 | 8.170 ± 0.000 | 8.63 ± 1.00 | 16.61 ± 1.66 | 69.26 ± 3.41 | |
| 15 | 4 | 80 | 100 | 15.731 ± 0.166 | 10.195 ± 0.000 | 8.47 ± 1.24 | 18.42 ± 1.08 | 70.55 ± 2.02 | |
3.2.2. Extraction Process
3.2.3. Total Carbohydrate Content Analysis
3.2.4. Analysis of Reducing Sugar Content
3.2.5. DPPH Radical Scavenging Activity
3.2.6. ABTS Radical Scavenging Activity
3.2.7. Hydroxyl Radicals Scavenging Activity Assay
3.2.8. Validation of the Model
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Zhao, J.; Jiang, L.; Zhang, L.; Raghavan, V.; Wang, J. A Comprehensive Review on Novel Synthetic Foods: Potential Risk Factors, Detection Strategies, and Processing Technologies. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13371. [Google Scholar] [CrossRef]
- Tan, Y.Q.; Ong, H.C.; Yong, A.M.H.; Fattori, V.; Mukherjee, K. Addressing the Safety of New Food Sources and Production Systems. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13341. [Google Scholar] [CrossRef]
- Çakmakçı, S.; Polatoğlu, B.; Çakmakçı, R. Foods of the Future: Challenges, Opportunities, Trends, and Expectations. Foods 2024, 13, 2663. [Google Scholar] [CrossRef]
- Iqbal, B.; Alabbosh, K.F.; Jalal, A.; Suboktagin, S.; Elboughdiri, N. Sustainable Food Systems Transformation in the Face of Climate Change: Strategies, Challenges, and Policy Implications. Food Sci. Biotechnol. 2025, 34, 871–883. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulou, M.; Chinou, I.; Gortzi, O. A Systematic Review of the Seven Most Cultivated Mushrooms: Production Processes, Nutritional Value, Bioactive Properties and Impact on Non-Communicable Diseases. Agriculture 2025, 15, 1329. [Google Scholar] [CrossRef]
- Guerin-Laguette, A. Successes and Challenges in the Sustainable Cultivation of Edible Mycorrhizal Fungi—Furthering the Dream. Mycoscience 2021, 62, 10–28. [Google Scholar] [CrossRef] [PubMed]
- Yamada, A. Cultivation Studies of Edible Ectomycorrhizal Mushrooms: Successful Establishment of Ectomycorrhizal Associations In Vitro and Efficient Production of Fruiting Bodies. Mycoscience 2022, 63, 235–246. [Google Scholar] [CrossRef]
- Vieira, B.M.; Silva, G.N.d.M.e.; Silva, M.I. Nutritional Elements I: Nutrients, Proteins, Carbohydrates, and Lipids. In Fundamentals of Drug and Non-Drug Interactions: Physiopathological Perspectives and Clinical Approaches; Fajemiroye, J.O., Ed.; Springer Nature: Cham, Switzerland, 2025; pp. 35–56. ISBN 978-3-031-80107-5. [Google Scholar]
- Lee, H.; Song, J.; Lee, B.; Cha, J.; Lee, H. Food Carbohydrates in the Gut: Structural Diversity, Microbial Utilization, and Analytical Strategies. Food Sci. Biotechnol. 2024, 33, 2123–2140. [Google Scholar] [CrossRef]
- Rathore, H.; Prasad, S.; Sharma, S. Mushroom Nutraceuticals for Improved Nutrition and Better Human Health: A Review. PharmaNutrition 2017, 5, 35–46. [Google Scholar] [CrossRef]
- Cheung, P.C.K. The Nutritional and Health Benefits of Mushrooms. Nutr. Bull. 2010, 35, 292–299. [Google Scholar] [CrossRef]
- Kalač, P. Minor Constituents. In Edible Mushrooms; Kalač, P., Ed.; Academic Press: London, UK, 2016; Chapter 3; pp. 71–136. [Google Scholar] [CrossRef]
- Kalač, P. Proximate Composition and Nutrients. In Edible Mushrooms; Kalač, P., Ed.; Academic Press: London, UK, 2016; Chapter 2; pp. 7–69. [Google Scholar] [CrossRef]
- Khalil, A.S.E.; Lukasiewicz, M. The Optimization of the Hot Water Extraction of the Polysaccharide-Rich Fraction from Agaricus Bisporus. Molecules 2024, 29, 4783. [Google Scholar] [CrossRef]
- Pildain, M.B.; Marchelli, P.; Azpilicueta, M.M.; Starik, C.; Barroetaveña, C. Understanding Introduction History: Genetic Structure and Diversity of the Edible Ectomycorrhizal Fungus, Suillus Luteus, in Patagonia (Argentina). Mycologia 2021, 113, 715–724. [Google Scholar] [CrossRef]
- Aytar, E.C.; Akata, İ.; Açık, L. Antioxidant, antimicrobial and anti-proliferative activity of Suillus luteus (L.) roussel extracts. J. Fac. Pharm. Ank. Univ. 2020, 44, 373–387. [Google Scholar] [CrossRef]
- Jaworska, G.; Pogoń, K.; Bernaś, E.; Skrzypczak, A.; Kapusta, I. Vitamins, Phenolics and Antioxidant Activity of Culinary Prepared Suillus luteus (L.) Roussel Mushroom. LWT—Food Sci. Technol. 2014, 59, 701–706. [Google Scholar] [CrossRef]
- Heilmann-Clausen, J.; Christensen, M.; Frøslev, T.G.; Kjøller, R. Taxonomy of Tricholoma in Northern Europe Based on ITS Sequence Data and Morphological Characters. Persoonia—Mol. Phylogeny Evol. Fungi 2017, 38, 38–57. [Google Scholar] [CrossRef]
- Kalamees, K. Taxonomy and ecology of the species of the Tricholoma equestre group in the Nordic and Baltic countries. Folia Cryptogam. Est. 2001, 38, 13–23. [Google Scholar]
- Rzymski, P.; Klimaszyk, P. Is the Yellow Knight Mushroom Edible or Not? A Systematic Review and Critical Viewpoints on the Toxicity of Tricholoma Equestre. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1309–1324. [Google Scholar] [CrossRef] [PubMed]
- Muszyńska, B.; Kała, K.; Radović, J.; Sułkowska-Ziaja, K.; Krakowska, A.; Gdula-Argasińska, J.; Opoka, W.; Kundaković, T. Study of Biological Activity of Tricholoma Equestre Fruiting Bodies and Their Safety for Human. Eur. Food Res. Technol. 2018, 244, 2255–2264. [Google Scholar] [CrossRef]
- Kim, J.S.; Lee, W.; Kim, C.; Park, H.; Kim, C.S.; Lim, Y.W. Unveiling the Diversity of Hydnum in the Republic of Korea with One New Species, Hydnum Paucispinum. Mycobiology 2023, 51, 300–312. [Google Scholar] [CrossRef]
- Sitta, N.; Davoli, P. Edible Ectomycorrhizal Mushrooms: International Markets and Regulations. In Edible Ectomycorrhizal Mushrooms: Current Knowledge and Future Prospects; Pérez-Moreno, J., Guerin-Laguette, A., Flores-Arzú, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 355–380. [Google Scholar] [CrossRef]
- Rašeta, M.; Mišković, J.; Berežni, S.; Kostić, S.; Kebert, M.; Matavulj, M.; Karaman, M. Antioxidant Proficiency in Serbian Mushrooms: A Comparative Study on Hydnum repandum L. 1753 from Mycorrhizal and Edible Niches. Nat. Prod. Res. 2025, 39, 3525–3532. [Google Scholar] [CrossRef]
- Sułkowska-Ziaja, K.; Muszyńska, B.; Szewczyk, A. Antioxidant Components of Selected Indigenous Edible Mushrooms of the Obsolete Order Aphyllophorales. Rev. Iberoam. Micol. 2015, 32, 99–102. [Google Scholar] [CrossRef]
- Tubić, J.; Grujičić, D.; Jakovljević, M.; Ranković, B.; Kosanić, M.; Stanojković, T.; Milošević-Djordjević, O. Investigation of Biological Activities and Secondary Metabolites of Hydnum repandum Acetone Extract. Farmacia 2019, 67, 174–183. [Google Scholar] [CrossRef]
- Dizeci, N.; Karaca, B.; Onar, O.; Cihan, A.C.; Akata, I.; Yildirim, O. The Remarkable Antibiofilm Activity of the Sweet Tooth Mushroom, Hydnum repandum (Agaricomycetes), Displaying Synergetic Interactions with Antibiotics. Int. J. Med. Mushrooms 2021, 23, 45–60. [Google Scholar] [CrossRef]
- Liu, X.; Luo, D.; Guan, J.; Chen, J.; Xu, X. Mushroom Polysaccharides with Potential in Anti-Diabetes: Biological Mechanisms, Extraction, and Future Perspectives: A Review. Front. Nutr. 2022, 9, 1087826. [Google Scholar] [CrossRef]
- Vetter, J. The Mushroom Glucans: Molecules of High Biological and Medicinal Importance. Foods 2023, 12, 1009. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Cheung, P.C.K. Mushroom Dietary Fiber from the Fruiting Body of Pleurotus Tuber-Regium: Fractionation and Structural Elucidation of Nondigestible Cell Wall Components. J. Agric. Food Chem. 2014, 62, 2891–2899. [Google Scholar] [CrossRef] [PubMed]
- Heleno, S.A.; Barros, L.; Martins, A.; Queiroz, M.J.R.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Phenolic, Polysaccharidic, and Lipidic Fractions of Mushrooms from Northeastern Portugal: Chemical Compounds with Antioxidant Properties. J. Agric. Food Chem. 2012, 60, 4634–4640. [Google Scholar] [CrossRef]
- Vaz, J.A.; Barros, L.; Martins, A.; Santos-Buelga, C.; Vasconcelos, M.H.; Ferreira, I.C.F.R. Chemical Composition of Wild Edible Mushrooms and Antioxidant Properties of Their Water Soluble Polysaccharidic and Ethanolic Fractions. Food Chem. 2011, 126, 610–616. [Google Scholar] [CrossRef]
- Parí, S.M.; Saldaña, E.; Rios-Mera, J.D.; Quispe Angulo, M.F.; Huaman-Castilla, N.L. Emerging Technologies for Extracting Antioxidant Compounds from Edible and Medicinal Mushrooms: An Efficient and Sustainable Approach. Compounds 2025, 5, 29. [Google Scholar] [CrossRef]
- Luan, F.; Peng, X.; Zhao, G.; Zeng, J.; Zou, J.; Rao, Z.; Liu, Y.; Zhang, X.; Ma, H.; Zeng, N. Structural Diversity and Bioactivity of Polysaccharides from Medicinal Mushroom Phellinus spp.: A Review. Food Chem. 2022, 397, 133731. [Google Scholar] [CrossRef]
- Zannat, A.; Shamshina, J.L. Chitin Isolation from Crustaceans and Mushrooms: The Need for Quantitative Assessment. Carbohydr. Polym. 2025, 348, 122882. [Google Scholar] [CrossRef]
- Badoni, P.; Siddiqui, S.A. Metamorphosis of Mushroom Production from Tradition to Automation. Discov. Appl. Sci. 2025, 7, 974. [Google Scholar] [CrossRef]
- Ethier, J.; Antoniuk, E.R.; Brettmann, B. Predicting Polymer Solubility from Phase Diagrams to Compatibility: A Perspective on Challenges and Opportunities. Soft Matter 2024, 20, 5652–5669. [Google Scholar] [CrossRef]
- Pammi, S.S.S.; Suresh, B.; Giri, A. Antioxidant Potential of Medicinal Plants. J. Crop Sci. Biotechnol. 2023, 26, 13–26. [Google Scholar] [CrossRef]
- Lemoni, Z.; Kalantzi, S.; Lymperopoulou, T.; Tzani, A.; Stavropoulos, G.; Detsi, A.; Mamma, D. Optimization of Bioactive Compounds Extraction from Rosa canina L. Pseudofruit Through the Action of Two Hydrolytic Enzyme Preparations. J. Chem. Technol. Biotechnol. 2025. [Google Scholar] [CrossRef]
- Shahidi, F.; Athiyappan, K.D. Polyphenol-Polysaccharide Interactions: Molecular Mechanisms and Potential Applications in Food Systems—A Comprehensive Review. Food Prod. Process. Nutr. 2025, 7, 42. [Google Scholar] [CrossRef] [PubMed]
- Moore, E.; Cortese, Y.J.; Colbert, D.M. A Review of Sterilization Methods and Their Commercial Impacts on Polysaccharide-Based Biomaterials. Macromol 2025, 5, 45. [Google Scholar] [CrossRef]
- Chen, S.-K.; Wang, X.; Guo, Y.-Q.; Song, X.-X.; Yin, J.-Y.; Nie, S.-P. Exploring the Partial Degradation of Polysaccharides: Structure, Mechanism, Bioactivities, and Perspectives. Compr. Rev. Food Sci. Food Saf. 2023, 22, 4831–4870. [Google Scholar] [CrossRef]
- Elmastas, M.; Isildak, O.; Turkekul, I.; Temur, N. Determination of Antioxidant Activity and Antioxidant Compounds in Wild Edible Mushrooms. J. Food Compos. Anal. 2007, 20, 337–345. [Google Scholar] [CrossRef]
- Woldegiorgis, A.Z.; Abate, D.; Haki, G.D.; Ziegler, G.R. Antioxidant Property of Edible Mushrooms Collected from Ethiopia. Food Chem. 2014, 157, 30–36. [Google Scholar] [CrossRef]
- Zhang, X.; Duan, Y.; Xue, J.; Chen, S.; Wang, H. Edible Mushroom Polysaccharides: Structural Characteristics, Chemical Modification Strategies, and Structure-Activity Relationship: A Review. Int. J. Biol. Macromol. 2025, 320, 145888. [Google Scholar] [CrossRef] [PubMed]
- Floegel, A.; Kim, D.-O.; Chung, S.-J.; Koo, S.I.; Chun, O.K. Comparison of ABTS/DPPH Assays to Measure Antioxidant Capacity in Popular Antioxidant-Rich US Foods. J. Food Compos. Anal. 2011, 24, 1043–1048. [Google Scholar] [CrossRef]
- Fernando, C.D.; Soysa, P. Optimized Enzymatic Colorimetric Assay for Determination of Hydrogen Peroxide (H2O2) Scavenging Activity of Plant Extracts. MethodsX 2015, 2, 283–291. [Google Scholar] [CrossRef]
- Mukhopadhyay, D.; Dasgupta, P.; Roy, D.S.; Palchoudhuri, S.; Chatterjee, I.; Ali, S.; Dastidar, S.G. A Sensitive In Vitro Spectrophotometric Hydrogen Peroxide Scavenging Assay Using 1,10-Phenanthroline. Free Radic. Antioxid. 2016, 6, 124–132. [Google Scholar] [CrossRef]
- Pk, M.M.U.; Islam, M.S.; Pervin, R.; Dutta, S.; Talukder, R.I.; Rahman, M. Optimization of Extraction of Antioxidant Polysaccharide from Pleurotus ostreatus (Jacq.) P. Kumm and Its Cytotoxic Activity against Murine Lymphoid Cancer Cell Line. PLoS ONE 2019, 14, e0209371. [Google Scholar] [CrossRef]
- Weremfo, A.; Abassah-Oppong, S.; Adulley, F.; Dabie, K.; Seidu-Larry, S. Response Surface Methodology as a Tool to Optimize the Extraction of Bioactive Compounds from Plant Sources. J. Sci. Food Agric. 2023, 103, 26–36. [Google Scholar] [CrossRef]
- Sangthong, S.; Pintathong, P.; Pongsua, P.; Jirarat, A.; Chaiwut, P. Polysaccharides from Volvariella Volvacea Mushroom: Extraction, Biological Activities and Cosmetic Efficacy. J. Fungi 2022, 8, 572. [Google Scholar] [CrossRef]
- Deveci, E.; Tel-Çayan, G.; Çayan, F.; Yılmaz Altınok, B.; Aktaş, S. Characterization of Polysaccharide Extracts of Four Edible Mushrooms and Determination of In Vitro Antioxidant, Enzyme Inhibition and Anticancer Activities. ACS Omega 2024, 9, 25887–25901. [Google Scholar] [CrossRef]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Lam, H.-H.; Nguyen, T.-M.-T.; Do, T.-A.-S.; Dinh, T.-H.; Dang-Bao, T. Quantification of Total Sugars and Reducing Sugars of Dragon Fruit-Derived Sugar-Samples by UV-Vis Spectrophotometric Method. IOP Conf. Ser. Earth Environ. Sci. 2021, 947, 012041. [Google Scholar] [CrossRef]
- Eweys, A.S.; Zhao, Y.-S.; Darwesh, O.M. Improving the Antioxidant and Anticancer Potential of Cinnamomum cassia via Fermentation with Lactobacillus plantarum. Biotechnol. Rep. 2022, 36, e00768. [Google Scholar] [CrossRef] [PubMed]
- Darwesh, O.M.; Eweys, A.S.; Zhao, Y.-S.; Matter, I.A. Application of Environmental-Safe Fermentation with Saccharomyces Cerevisiae for Increasing the Cinnamon Biological Activities. Bioresour. Bioprocess. 2023, 10, 12. [Google Scholar] [CrossRef] [PubMed]
| Suilus luteus | Tricholoma equestre | Hydnum repandum | |
|---|---|---|---|
| Intercept | |||
| β0 | 5.499 | 7.905 | 15.784 |
| Linear | |||
| β1 | 8.314 | 5.917 | 15.418 |
| β2 | 1.822 | 1.975 | −0.378 |
| β3 | 6.766 | p > 0.01 | −0.407 |
| Quadratic | |||
| β11 | 5.530 | 1.862 | p > 0.01 |
| β22 | p > 0.01 | 1.845 | p > 0.01 |
| β33 | 5.819 | −1.939 | p > 0.01 |
| Mixed | |||
| β12 | p > 0.01 | −3.809 | p > 0.01 |
| β13 | 11.719 | p > 0.01 | p > 0.01 |
| β23 | p > 0.01 | p > 0.01 | p > 0.01 |
| R2 | 0.878 | 0.872 | 0.997 |
| Maximal, mg/g | ±95% CI for Mean | ±95% CI for 99% Population | ||
|---|---|---|---|---|
| Suillus luteus | ||||
| Time, h | 5.00 | 27.446 | 25.311–29.581 | 19.131–35.759 |
| Temperature, °C | 89.92 | |||
| Ratio, v/w | 150,00 | |||
| Tricholoma equestre | ||||
| Time, h | 3.98 | 12.634 | 12.480–14.788 | 9.018–18.250 |
| Temperature, °C | 70.07 | |||
| Ratio, v/w | 149.89 | |||
| Hydnum repandum | ||||
| Time, h | 3.00 | 23.921 | 23.761–24.081 | 22.913–24.929 |
| Temperature, °C | 70,01 | |||
| Ratio, v/w | 149.76 | |||
| Suillus luteus | Tricholoma equestre | Hydnum repandum | |
|---|---|---|---|
| Intercept | |||
| β0 | 2.744 | 7.640 | 8.695 |
| Linear | |||
| β1 | −1.903 | −2.690 | −3.161 |
| β2 | −0.478 | 4.343 | p > 0.01 |
| β3 | 0.796 | p > 0.01 | p > 0.01 |
| Quadratic | |||
| β11 | 0.959 | p > 0.01 | 2.210 |
| β22 | p > 0.01 | 2.064 | −1.592 |
| β33 | −0.743 | 2.193 | p > 0.01 |
| Mixed | |||
| β12 | 1.350 | p > 0.01 | −1.261 |
| β13 | −0.475 | p > 0.01 | −1.132 |
| β23 | p > 0.01 | −1.498 | p > 0.01 |
| R2 | 0.876 | 0.840 | 0.763 |
| Predicted Response | ||||
|---|---|---|---|---|
| Reducing Sugars | Minimal, µmol/mL | ±95% CI for Mean | ±95% CI for 99% Population | |
| Suilus luteus | ||||
| Time, h | 3.05 | 1.383 | 1.046–1.721 | 0.219–2.786 |
| Temperature, °C | 70.11 | |||
| Ratio, v/w | 147.15 | |||
| Tricholoma equestre | ||||
| Time, h | 4.98 | 6.207 | 5.446–6.967 | 2.591–9.822 |
| Temperature, °C | 88.32 | |||
| Ratio, v/w | 141.10 | |||
| Hydnum repandum | ||||
| Time, h | 3.76 | 6.037 | 5.389–6.686 | 2.229–9.846 |
| Temperature, °C | 74.72 | |||
| Ratio, v/w | 133.80 | |||
| Suilus luteus | Tricholoma equestre | Hydnum repandum | |||||||
|---|---|---|---|---|---|---|---|---|---|
| DPPH | ABTS | H2O2 | DPPH | ABTS | H2O2 | DPPH | ABTS | H2O2 | |
| Intercept | |||||||||
| β0 | 7.117 | 44.018 | 11.964 | 2.358 | 83.314 | 42.245 | 8.208 | 17.337 | 69.417 |
| Linear | |||||||||
| β1 | −4.299 | −5.776 | −23.739 | 2.292 | p > 0.01 | p > 0.01 | −2522 | −25.220 | 8.213 |
| β2 | p > 0.01 | 5.296 | p > 0.01 | 1.245 | −15.930 | p > 0.01 | −0.854 | 13.218 | p > 0.01 |
| β3 | 1.854 | 5.821 | p > 0.01 | p > 0.01 | p > 0.01 | 32.857 | −3.365 | 22.827 | −14.525 |
| Quadratic | |||||||||
| β11 | −3.052 | −4.702 | 18.643 | 5.167 | −31.643 | p > 0.01 | p > 0.01 | 26.410 | −15.476 |
| β22 | 1.805 | p > 0.01 | p > 0.01 | 2.776 | p > 0.01 | p > 0.01 | −3.016 | p > 0.01 | −45.406 |
| β33 | p > 0.01 | p > 0.01 | 24.344 | 2.019 | −18.873 | p > 0.01 | −5699 | p > 0.01 | −36.599 |
| Mixed | |||||||||
| β12 | −3.216 | 5.471 | p > 0.01 | 4.926 | 7.669 | p > 0.01 | p > 0.01 | −11.550 | −25.202 |
| β13 | −2.835 | 6.606 | −26.274 | −2.164 | p > 0.01 | p > 0.01 | −1.707 | p > 0.01 | 30.369 |
| β23 | −5.383 | −3.506 | p > 0.01 | p > 0.01 | 12.879 | 33.810 | p > 0.01 | −10.116 | 11.523 |
| R2 | 0.821 | 0.719 | 0.540 | 0.824 | 0.845 | 0.536 | 0.854 | 0.821 | 0.854 |
| Maximal, % | ±95% CI for Mean | ±95% CI for 99% Population | ||
|---|---|---|---|---|
| Suilus luteus | ||||
| Time, h | 4.90 | 12.606 | 11.115–14.097 | 6.640–18.572 |
| Temperature, °C | 88.17 | |||
| Ratio, v/w | 53.29 | |||
| Tricholoma equestre | ||||
| Time, h | 3.02 | 12.048 | 10.465–13.631 | 6.964–17.132 |
| Temperature, °C | 89.89 | |||
| Ratio, v/w | 149.42 | |||
| Hydnum repandum | ||||
| Time, h | 3.85 | 9.152 | 8.408–9.896 | 5.154–13.150 |
| Temperature, °C | 80.58 | |||
| Ratio, v/w | 50.00 | |||
| Predicted Response | ||||
|---|---|---|---|---|
| Maximal, % | ±95% CI for Mean | ±95% CI for 99% Population | ||
| Suilus luteus | ||||
| Time, h | 5.00 | 48.450 | 45.932–50.964 | 36.414–60.485 |
| Temperature, °C | 86.63 | |||
| Ratio, v/w | 123.68 | |||
| Tricholoma equestre | ||||
| Time, h | 4.05 | 87.701 | 84.033–91.370 | 66.973–108.609 |
| Temperature, °C | 73.87 | |||
| Ratio, v/w | 95.27 | |||
| Hydnum repandum | ||||
| Time, h | 5.00 | 65.064 | 55.057–75.071 | 30.945–99.184 |
| Temperature, °C | 89.98 | |||
| Ratio, v/w | 50.01 | |||
| Predicted Response | ||||
|---|---|---|---|---|
| Maximal, % | ±95% CI for Mean | ±95% CI for 99% Population | ||
| Hydnum Repandum | ||||
| Time, h | 3.86 | 70.237 | 64.456–76.017 | 39.322–101.151 |
| Temperature, °C | 79.56 | |||
| Ratio, v/w | 108.42 | |||
| Dependent Variables | Predicted Value | Experimental Value | %CV |
|---|---|---|---|
| Suillus luteus | |||
| TCC 1, mg/g | 27.422 | 28.536 | 14.56 |
| RS 2, µmol/mL | 1.383 | 1.736 | 9.78 |
| DPPH 3, % | 12.606 | 12.309 | 10.05 |
| ABTS 4, % | 48.450 | 49.871 | 6.85 |
| Tricholoma equestre | |||
| TCC, mg/g | 12.634 | 12.116 | 11.63 |
| RS, µmol/mL | 6.207 | 6.859 | 11.25 |
| DPPH, % | 12.048 | 11.938 | 13.39 |
| ABTS, % | 87.701 | 86.972 | 7.98 |
| Hydnum repandum | |||
| TCC, mg/g | 23.921 | 23.890 | 1.84 |
| RS, µmol/mL | 6.037 | 6.199 | 10.84 |
| DPPH, % | 9.152 | 9.620 | 12.00 |
| ABTS, % | 65.064 | 63.92 | 13.14 |
| H2O2 5, % | 70.237 | 72.82 | 9.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalil, A.S.E.; Lukasiewicz, M. Optimized Extraction of Bioactive Polysaccharides from Wild Mushrooms: Toward Enhanced Yield and Antioxidant Activity. Molecules 2025, 30, 4647. https://doi.org/10.3390/molecules30234647
Khalil ASE, Lukasiewicz M. Optimized Extraction of Bioactive Polysaccharides from Wild Mushrooms: Toward Enhanced Yield and Antioxidant Activity. Molecules. 2025; 30(23):4647. https://doi.org/10.3390/molecules30234647
Chicago/Turabian StyleKhalil, Aya Samy Ewesys, and Marcin Lukasiewicz. 2025. "Optimized Extraction of Bioactive Polysaccharides from Wild Mushrooms: Toward Enhanced Yield and Antioxidant Activity" Molecules 30, no. 23: 4647. https://doi.org/10.3390/molecules30234647
APA StyleKhalil, A. S. E., & Lukasiewicz, M. (2025). Optimized Extraction of Bioactive Polysaccharides from Wild Mushrooms: Toward Enhanced Yield and Antioxidant Activity. Molecules, 30(23), 4647. https://doi.org/10.3390/molecules30234647

