Enhanced Microwave Commutation Quality Factor of Tunable Capacitors Based on SrTiO3 Thin Films
Abstract
1. Introduction
2. Results and Discussion
2.1. Structural Characterization
2.2. Electrical Characterization
3. Experiment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martin, L.W.; Rappe, A.M. Thin-Film Ferroelectric Materials and Their Applications. Nat. Rev. Mater. 2016, 2, 16087. [Google Scholar] [CrossRef]
- Huang, J.; Gao, X.; MacManus-Driscoll, J.L.; Wang, H. Ferroelectric Thin Films and Nanostructures: Current and Future. In Nanostructures in Ferroelectric Films for Energy Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 19–39. ISBN 978-0-12-813856-4. [Google Scholar]
- Vendik, O.G. Ferroelectrics Find Their “Niche” among Microwave Control Devices. Phys. Solid. State 2009, 51, 1529–1534. [Google Scholar] [CrossRef]
- Gu, Z.; Pandya, S.; Samanta, A.; Liu, S.; Xiao, G.; Meyers, C.J.G.; Damodaran, A.R.; Barak, H.; Dasgupta, A.; Saremi, S.; et al. Resonant Domain-Wall-Enhanced Tunable Microwave Ferroelectrics. Nature 2018, 560, 622–627. [Google Scholar] [CrossRef]
- Chen, D.; Nisnevich, S.; Wu, L.; Gu, Z.; Carroll, J.; Jiang, Y.; Meyers, C.J.G.; Coleman, K.; Hanrahan, B.M.; Martin, L.W.; et al. Colossal and Tunable Dielectric Tunability in Domain-Engineered Barium Strontium Titanate. Nat. Commun. 2025, 16, 8486. [Google Scholar] [CrossRef]
- Fernandez, A.; Acharya, M.; Lee, H.; Schimpf, J.; Jiang, Y.; Lou, D.; Tian, Z.; Martin, L.W. Thin-Film Ferroelectrics. Adv. Mater. 2022, 34, 2108841. [Google Scholar] [CrossRef]
- Tkach, A.; Okhay, O.; Reaney, I.M.; Vilarinho, P.M. Mechanical Strain Engineering of Dielectric Tunability in Polycrystalline SrTiO3 Thin Films. J. Mater. Chem. C 2018, 6, 2467–2475. [Google Scholar] [CrossRef]
- Astafiev, K.; Sherman, V.; Tagantsev, A.; Setter, N.; Rivkin, T.; Ginley, D. Investigation of Electrical Degradation Effects in Ferroelectric Thin Film Based Tunable Microwave Components. Integr. Ferroelectr. 2002, 49, 103–112. [Google Scholar] [CrossRef]
- Vorotilov, K.A.; Sigov, A.S. Ferroelectric Memory. Phys. Solid. State 2012, 54, 894–899. [Google Scholar] [CrossRef]
- Nguyen, M.D.; Vo, D.D.; Vu, T.V.; Houwman, E.P. Energy Storage Performance of Silicon-Integrated Sr0.98Mn0.02TiO3 Thin Film Capacitors. Mater. Chem. Phys. 2025, 332, 130290. [Google Scholar] [CrossRef]
- Chen, J.; Harmer, M.P.; Smyth, D.M. Compositional Control of Ferroelectric Fatigue in Perovskite Ferroelectric Ceramics and Thin Films. J. Appl. Phys. 1994, 76, 5394–5398. [Google Scholar] [CrossRef]
- Vendik, I.B.; Vendik, O.G.; Kollberg, E.L. Commutation quality factor of two-state switchable devices. Inst. Electr. Electron. Eng. Trans. Microw. Theory Tech. 2000, 48, 802–808. [Google Scholar] [CrossRef]
- Mikheev, E.; Kajdos, A.P.; Hauser, A.J.; Stemmer, S. Electric Field-Tunable BaxSr1−xTiO3 Films with High Figures of Merit Grown by Molecular Beam Epitaxy. Appl. Phys. Lett. 2012, 101, 252906. [Google Scholar] [CrossRef]
- Meyers, C.J.G.; Freeze, C.R.; Stemmer, S.; York, R.A. (Ba,Sr)TiO3 Tunable Capacitors with RF Commutation Quality Factors Exceeding 6000. Appl. Phys. Lett. 2016, 109, 112902. [Google Scholar] [CrossRef]
- Kozyrev, A.; Keis, V.; Buslov, O.; Ivanov, A.; Soldatenkov, O.; Loginov, V.; Taricin, A.; Graul, J. Microwave Properties of Ferroelectric Film Planar Varactors. Integr. Ferroelectr. 2001, 34, 271–278. [Google Scholar] [CrossRef]
- Kozyrev, A.B.; Soldatenkov, O.I.; Samoilova, T.B.; Ivanov, A.V.; Mueller, C.H.; Rivkin, T.V.; Koepf, G.A. Response Time and Power Handling Capability of Tunable Microwave Devices Using Ferroelectric Films. Integr. Ferroelectr. 1998, 22, 329–340. [Google Scholar] [CrossRef]
- Tumarkin, A.; Altynnikov, A.; Platonov, R.; Gagarin, A.; Sapego, E.; Bogdan, A.; Karamov, A. 30 GHz ferroelectric phase shifter on silicon carbide. Ferroelectrics 2023, 612, 114–122. [Google Scholar] [CrossRef]
- Tumarkin, A.; Sapego, E.; Gagarin, A.; Bogdan, A.; Karamov, A.; Serenkov, I.; Sakharov, V. SrTiO3 Thin Films on Dielectric Substrates for Microwave Applications. Coatings 2023, 14, 3. [Google Scholar] [CrossRef]
- Petrov, P.K.; Alford, N.M.; Astafiev, K.F.; Tagantsev, A.K.; Setter, N.; Kaydanova, T.; Ginley, D.S. Structural Investigation of Thin SrTiO3 Films Grown on MgO and LaAlO3 Substrates. Integr. Ferroelectr. 2003, 53, 465–473. [Google Scholar] [CrossRef]
- Loginov, V.E.; Tumarkin, A.V.; Sysa, M.V.; Buslov, O.U.; Gaidukov, M.M.; Ivanov, A.I.; Kozyrev, A.B. The Influence of Synthesis Temperature on Structure Properties of SrTiO3 Ferroelectric Films. Integr. Ferroelectr. 2001, 39, 375–381. [Google Scholar] [CrossRef]
- Panomsuwan, G.; Saito, N. Thickness-Dependent Strain Evolution of Epitaxial SrTiO3 Thin Films Grown by Ion Beam Sputter Deposition. Cryst. Res. Technol. 2018, 53, 1700211. [Google Scholar] [CrossRef]
- Sangle, A.L.; Lee, O.J.; Kursumovic, A.; Zhang, W.; Chen, A.; Wang, H.; MacManus-Driscoll, J.L. Very High Commutation Quality Factor and Dielectric Tunability in Nanocomposite SrTiO3 Thin Films with Tc Enhanced to >300 °C. Nanoscale 2018, 10, 3460–3468. [Google Scholar] [CrossRef]
- Cai, H.L.; Wu, X.S.; Gao, J. Effect of Oxygen Content on Structural and Transport Properties in SrTiO3−δ Thin Films. Chem. Phys. Lett. 2009, 467, 313–317. [Google Scholar] [CrossRef]
- Taylor, T.R.; Hansen, P.J.; Pervez, N.; Acikel, B.; York, R.A.; Speck, J.S. Influence of Stoichiometry on the Dielectric Properties of Sputtered Strontium Titanate Thin Films. J. Appl. Phys. 2003, 94, 3390–3396. [Google Scholar] [CrossRef]
- Tumarkin, A.V.; Volpyas, V.A.; Zlygostov, M.V.; Odinets, A.A.; Sapego, E.N. Varying the Composition of Ferroelectric Films during Ion-Plasma Sputtering: Simulation and Experiment. Bull. Russ. Acad. Sci. Phys. 2018, 82, 346–351. [Google Scholar] [CrossRef]
- Kukushkin, S.A. Evolution Processes in Multicomponent and Multiphase Films. Thin Solid. Film. 1992, 207, 302–312. [Google Scholar] [CrossRef]
- Pierson, H.O. Handbook of Carbon, Graphite, Diamond, and Fullerenes: Properties, Processing, and Applications; Materials Science and Process Technology Series. Electronic Materials and Process Technology; Noyes Publications: Park Ridge, NJ, USA, 1993; ISBN 978-0-8155-1738-2. [Google Scholar]
- Tumarkin, A.V.; Al’myashev, V.I.; Razumov, S.V.; Gaidukov, M.M.; Gagarin, A.G.; Altynnikov, A.G.; Kozyrev, A.B. Structural Properties of Barium Strontium Titanate Films Grown under Different Technological Conditions. Phys. Solid State 2015, 57, 553–557. [Google Scholar] [CrossRef]
- Cava, R.J.; Takagi, H.; Krajewski, J.J.; Peck, W.F.; Hwang, H.Y. Oxygen-Deficient Barium Lead Oxide Perovskites. Phys. Rev. B 1993, 47, 11525–11528. [Google Scholar] [CrossRef] [PubMed]
- Buban, J.P.; Iddir, H.; Öğüt, S. Structural and Electronic Properties of Oxygen Vacancies in Cubic and Antiferrodistortive Phases of SrTiO3. Phys. Rev. B 2004, 69, 180102. [Google Scholar] [CrossRef]
- Luo, W.; Duan, W.; Louie, S.G.; Cohen, M.L. Structural and Electronic Properties of n -Doped and p -Doped SrTiO3. Phys. Rev. B 2004, 70, 214109. [Google Scholar] [CrossRef]
- Vendik, O.G.; Razumov, S.V.; Tumarkin, A.V.; Nikol’skii, M.A.; Gaidukov, M.M.; Gagarin, A.G. Experimental Evidence of Correctness of Improved Model of Ferroelectric Planar Capacitor. Appl. Phys. Lett. 2005, 86, 022902. [Google Scholar] [CrossRef]
- Tumarkin, A.; Sapego, E.; Bogdan, A.; Karamov, A.; Serenkov, I.; Sakharov, V. Enhanced Crystallinity of SrTiO3 Films on a Silicon Carbide Substrate: Structural and Microwave Characterization. Appl. Sci. 2024, 14, 9672. [Google Scholar] [CrossRef]
- Kozyrev, A.; Ivanov, A.; Prudan, A.; Soldatenkov, O.; Hollmann, E.; Loginov, V.; Ginley, D.; Rivkin, T. Microwave phase shifter employing SrTiO3 ferroelectric varactors. Integr. Ferroelectr. 1999, 24, 287–295. [Google Scholar] [CrossRef]
- Niu, F.; Wessels, B.W. Surface and Interfacial Structure of Epitaxial SrTiO3 Thin Films on (001) Si Grown by Molecular Beam Epitaxy. J. Cryst. Growth 2007, 300, 509–518. [Google Scholar] [CrossRef]
- Gol’tsman, B.M.; Yarmarkin, V.K.; Lemanov, V.V. Influence of Mobile Charged Defects on the Dielectric Non-Linearity of Thin Ferroelectric PZT Films. Phys. Solid State 2000, 42, 1116–1119. [Google Scholar] [CrossRef]
- Kozyrev, A.; Gaidukov, M.; Gagarin, A.; Altynnikov, A.; Osadchy, V.; Tumarkin, A.; Petrov, P.K.; Alford, N.M. Evaluation of the Space Charge Trap Energy Levels in the Ferroelectric Films. J. Appl. Phys. 2009, 106, 014108. [Google Scholar] [CrossRef]
- Kozyrev, A.B.; Gaĭdukov, M.M.; Gagarin, A.G.; Altynnikov, A.G.; Razumov, S.V.; Tumarkin, A.V. Influence of Metal-Ferroelectric Contacts on the Space Charge Formation in Ferroelectric Thin Film Capacitors. Tech. Phys. Lett. 2009, 35, 585–588. [Google Scholar] [CrossRef]
- Lu, J.; Schmidt, S.; Ok, Y.-W.; Keane, S.P.; Stemmer, S. Contributions to the Dielectric Losses of Textured SrTiO3 Thin Films with Pt Electrodes. J. Appl. Phys. 2005, 98, 054101. [Google Scholar] [CrossRef]
- Cole, M.W.; Nothwang, W.D.; Hubbard, C.; Ngo, E.; Ervin, M. Low Dielectric Loss and Enhanced Tunability of Ba0.6Sr0.4TiO3 Based Thin Films via Material Compositional Design and Optimized Film Processing Methods. J. Appl. Phys. 2003, 93, 9218–9225. [Google Scholar] [CrossRef]
- Su, B.; Button, T.W. Microstructure and Dielectric Properties of Mg-Doped Barium Strontium Titanate Ceramics. J. Appl. Phys. 2004, 95, 1382–1385. [Google Scholar] [CrossRef]
- Shibagaki, S.; Fukushima, K. XPS Analysis on Nb–SrTiO3 Thin Films Deposited with Pulsed Laser Ablation Technique. J. Eur. Ceram. Soc. 1999, 19, 1423–1426. [Google Scholar] [CrossRef]
- Shkabko, A.; Aguirre, M.H.; Marozau, I.; Lippert, T.; Chou, Y.-S.; Douthwaite, R.E.; Weidenkaff, A. Synthesis and Transport Properties of SrTiO3−xNy/SrTiO3−δ Layered Structures Produced by Microwave-Induced Plasma Nitridation. J. Phys. D Appl. Phys. 2009, 42, 145202. [Google Scholar] [CrossRef]
- Pal, P.; Kumar, P.; Aswin, V.; Dogra, A.; Joshi, A.G. Chemical Potential Shift and Gap-State Formation in SrTiO3−δ Revealed by Photoemission Spectroscopy. J. Appl. Phys. 2014, 116, 053704. [Google Scholar] [CrossRef]
- Hoshina, T.; Sase, R.; Nishiyama, J.; Takeda, H.; Tsurumi, T. Effect of Oxygen Vacancies on Intrinsic Dielectric Permittivity of Strontium Titanate Ceramics. J. Ceram. Soc. Jpn. 2018, 126, 263–268. [Google Scholar] [CrossRef]
- Boikov, Y.A.; Goltsman, B.M.; Yarmarkin, V.K.; Lemanov, V.V. Slow Capacitance Relaxation in (BaSr)TiO3 Thin Films Due to the Oxygen Vacancy Redistribution. Appl. Phys. Lett. 2001, 78, 3866–3868. [Google Scholar] [CrossRef]
- Lemanov, V.V.; Goltsman, B.M.; Yarmarkin, V.K.; Boikov, Y.A. Slow Dielectric Relaxation in SrRuO3/Ba0.8Sr0.2 TiO3/SrRuO3 Ferroelectric Thin Film Capacitor Structures. Ferroelectrics 2003, 286, 251–259. [Google Scholar] [CrossRef]






| Element | Weight % | Sigma Weight % | At. % | Sigma At % |
|---|---|---|---|---|
| O | 28.79 | 0.04 | 59.65 | |
| Al | 8.10 | 0.03 | 9.95 | 0.05 |
| Ca | 0.06 | 0.01 | 0.05 | 0.02 |
| Ti | 20.70 | 0.04 | 14.33 | 0.07 |
| Sr | 42.35 | 0.06 | 16.02 | 0.07 |
| Total | 100.00 | 100.00 |
| Substrate | Material | Design | E (V/µm) | tan δ (U0) | tan δ (Umax) | n (%) | CQF (f) | Ref. |
|---|---|---|---|---|---|---|---|---|
| SmScO3 | BST | planar | 5 | 0.02 | 0.2 | 92 | 2750 (2 GHz) | [4] |
| SmScO3/SrRuO3 | BST | MDM | 10 | 0.33 | 0.09 | 98 | 2800 (100 kHz) | [5] |
| Alumina | STO | planar | 60 | 0.009 | 0.014 | 46 | 3100 (1 GHz) | [18] |
| Sapphire/Pt | STO | 4 electrodes | 100 | 0.015 | 0.01 | 41 | 1730 (1 GHz) | [20] |
| STO:Nb/SrRuO3 | STO | MDM | 100 | 0.01 | 0.019 | 49 | 3300 (1 MHz) | [22] |
| SiC | STO | planar | 50 | 0.008 | 0.009 | 36 | 2550 (2 GHz) | [33] |
| Sapphire/Pt | STO | 4 electrodes | 100 | 0.015 | 0.011 | 45 | 1921 (1 GHz) | [34] |
| Alumina | STO | planar | 60 | 0.009 | 0.009 | 40 | 3300 (2 GHz) | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tumarkin, A.; Bogdan, A.; Sapego, E.; Korepanov, O.; Karamov, A. Enhanced Microwave Commutation Quality Factor of Tunable Capacitors Based on SrTiO3 Thin Films. Molecules 2025, 30, 4593. https://doi.org/10.3390/molecules30234593
Tumarkin A, Bogdan A, Sapego E, Korepanov O, Karamov A. Enhanced Microwave Commutation Quality Factor of Tunable Capacitors Based on SrTiO3 Thin Films. Molecules. 2025; 30(23):4593. https://doi.org/10.3390/molecules30234593
Chicago/Turabian StyleTumarkin, Andrei, Alexey Bogdan, Eugeny Sapego, Oleg Korepanov, and Artem Karamov. 2025. "Enhanced Microwave Commutation Quality Factor of Tunable Capacitors Based on SrTiO3 Thin Films" Molecules 30, no. 23: 4593. https://doi.org/10.3390/molecules30234593
APA StyleTumarkin, A., Bogdan, A., Sapego, E., Korepanov, O., & Karamov, A. (2025). Enhanced Microwave Commutation Quality Factor of Tunable Capacitors Based on SrTiO3 Thin Films. Molecules, 30(23), 4593. https://doi.org/10.3390/molecules30234593

