Efficient Glycolysis of Polyethylene Terephthalate (PET) Catalyzed by Cyclic(alkyl)(amino)carbene Copper Complexes
Abstract
1. Introduction
2. Results
2.1. Synthesis of CAAC-Cu Complex
2.2. General Procedure for the PET Glycolysis
2.3. CAAC-Cu Performance in PET Glycolysis
2.4. Kinetic of PET Glycolysis Catalyzed by CAAC-Cu
2.5. Proposed Mechanism of PET Glycolysis
3. Materials and Methods
3.1. Materials
3.2. Characterization of Catalysts and Products
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cao, J.; Liang, H.; Yang, J.; Zhu, Z.; Deng, J.; Li, X.; Elimelech, M.; Lu, X. Depolymerization mechanisms and closed-loop assessment in polyester waste recycling. Nat. Commun. 2024, 15, 6266. [Google Scholar] [CrossRef] [PubMed]
- Dong, Q.; Lele, A.D.; Zhao, X.; Li, S.; Cheng, S.; Wang, Y.; Cui, M.; Guo, M.; Brozena, A.H.; Lin, Y.; et al. Depolymerization of plastics by means of electrified spatiotemporal heating. Nature 2023, 616, 488–494. [Google Scholar] [CrossRef] [PubMed]
- Savage, P.E. Renewable fuels and chemical recycling of plastics via hydrothermal liquefaction. Acc. Chem. Res. 2024, 57, 3386–3396. [Google Scholar] [CrossRef] [PubMed]
- Abedsoltan, H. A focused review on recycling and hydrolysis techniques of polyethylene terephthalate. Polym. Eng. Sci. 2023, 63, 2651–2674. [Google Scholar] [CrossRef]
- Gan, Y.; Tang, J.-T.; Li, X.; Nie, X.-S.; Ye, B. Valorization of polyester plastics and biomass into amines through a dual zirconium catalysis. ACS Sustain. Chem. Eng. 2025, 13, 3089–3096. [Google Scholar] [CrossRef]
- Kopperi, H.; Mamidi, V.; Suresh, G.; Mohan, S.V. Tandem chemical hydrolysis and bioelectrochemical upcycling of waste polyethylene terephthalate (PET) for sustainable biobutanol and ethanol production ensuring plastics circularity. Green. Chem. 2025, 27, 2359–2373. [Google Scholar] [CrossRef]
- Luo, X.; Li, Q.; Chen, X. Mechanistic investigation on hydrolysis, alcoholysis, and ammonolysis of polyethylene terephthalate initiated by participation of calcium ions. Process Saf. Environ. 2025, 194, 1584–1596. [Google Scholar] [CrossRef]
- Li, F.; Yao, X.; Ding, R.; Bao, Y.; Zhou, Q.; Yan, D.; Li, Y.; Xu, J.; Xin, J.; Lu, X. Directional glycolysis of waste PET using deep eutectic solvents for preparation of aromatic-based polyurethane elastomers. Green Chem. 2024, 26, 9802–9813. [Google Scholar] [CrossRef]
- Zhou, L.; Qin, E.; Huang, H.; Wang, Y.; Li, M. PET glycolysis to bhet efficiently catalyzed by stable and recyclable Pd-Cu/γ-Al2O3. Molecules 2024, 29, 4305. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, X.; Yao, H.; Zhou, Q.; Xin, J.; Lu, X.; Zhang, S. Degradation of poly(ethylene terephthalate) catalyzed by metal-free choline-based ionic liquids. Green Chem. 2020, 22, 3122–3131. [Google Scholar] [CrossRef]
- Ha, G.-S.; Al Mamunur Rashid, M.; Ha, J.-M.; Yoo, C.-J.; Jeon, B.-H.; Jeong, K.; Kim, K.H. Enhancing polyethylene terephthalate conversion through efficient microwave-assisted deep eutectic solvent-catalyzed glycolysis. Chemosphere 2024, 349, 140781. [Google Scholar] [CrossRef] [PubMed]
- Achilias, D.S.; Redhwi, H.H.; Siddiqui, M.N.; Nikolaidis, A.K.; Bikiaris, D.N.; Karayannidis, G.P. Glycolytic depolymerization of PET waste in a microwave reactor. J. Appl. Polym. Sci. 2010, 118, 3066–3073. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, C.Z.; Feng, J.; Wang, X.; Ding, Z.; He, L.; Zhang, Q.; Chen, J.; Yin, Y. Integrated photochromic-photothermal processes for catalytic plastic upcycling. Angew. Chem. 2023, 62, e202308930. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Fu, W.; Lu, X.; Zhou, Q.; Zhang, S. Lewis acid–base synergistic catalysis for polyethylene terephthalate degradation by 1,3-dimethylurea/Zn(OAc)2 deep eutectic solvent. ACS Sustain. Chem. Eng. 2018, 7, 3292–3300. [Google Scholar] [CrossRef]
- Zhou, L.; Lu, X.; Ju, Z.; Liu, B.; Yao, H.; Xu, J.; Zhou, Q.; Hu, Y.; Zhang, S. Alcoholysis of polyethylene terephthalate to produce dioctyl terephthalate using choline chloride-based deep eutectic solvents as efficient catalysts. Green Chem. 2019, 21, 897–906. [Google Scholar] [CrossRef]
- Ju, Z.; Zhou, L.; Lu, X.; Li, Y.; Yao, X.; Cheng, S.; Chen, G.; Ge, C. Mechanistic insight into the roles of anions and cations in the degradation of poly(ethylene terephthalate) catalyzed by ionic liquids. Phys. Chem. Chem. Phys. 2021, 23, 18659–18668. [Google Scholar] [CrossRef]
- Jang, M.; Jung, E.; Yang, Y.; Noh, J.; Song, H.; Kim, H.; Kang, H.; Choe, S.; Choi, T.-L.; Lee, E. Air and thermally stable cyclic (alkyl)(amino)carbene ruthenium complexes for efficient ring expansion metathesis polymerization. J. Am. Chem. Soc. 2025, 147, 2571–2578. [Google Scholar] [CrossRef]
- Lombardi, B.M.P.; Faas, M.R.; West, D.; Suvinen, R.A.; Tuononen, H.M.; Roesler, R. An isolable, chelating bis cyclic (alkyl)(amino)carbene stabilizes a strongly bent, dicoordinate Ni(0) complex. Nat. Commun. 2024, 15, 3417. [Google Scholar] [CrossRef]
- Majumder, C.; Sharma, A.; Das, B.; Yadav, R.; Kundu, S. Cyclic (alkenyl)(amino)carbene (SMeCAenAC): Introducing a member to the cyclic (alkyl)(amino)carbenes family featuring a narrow energy gap. J. Am. Chem. Soc. 2025, 147, 6905–6913. [Google Scholar] [CrossRef]
- Yang, Y.; Jang, M.; Kang, H.; Choe, S.; Lee, E.; Choi, T.-L. Synthesis of linear and cyclic poly(allenamer)s by powerful cyclic-alkyl-amino-carbene (CAAC) ruthenium catalysts and facile post-modification. Angew. Chem. 2025, 137, e202425648. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, D.; Hu, J.; Wu, Y.; Geng, J.; Hu, X. Thermal dehydrogenation and hydrolysis of BH3NH3 catalyzed by cyclic (alkyl)(amino)carbene iridium complexes under mild conditions. Organometallics 2021, 40, 2643–2650. [Google Scholar] [CrossRef]
- Hu, X.; Soleilhavoup, M.; Melaimi, M.; Chu, J.; Bertrand, G. Air-stable (CAAC)CuCl and (CAAC)CuBH4 complexes as catalysts for the hydrolytic dehydrogenation of bh3nh3. Angew. Chem. 2015, 54, 6008–6011. [Google Scholar] [CrossRef]
- Liu, P.; Hensen, E.J. Highly efficient and robust Au/MgCuCr2O4 catalyst for gas-phase oxidation of ethanol to acetaldehyde. J. Am. Chem. Soc. 2013, 135, 14032–14035. [Google Scholar] [CrossRef]
- Yang, Y.; Rioux, R.M. Highly stereoselective anti-markovnikov hydrothiolation of alkynes and electron-deficient alkenes by a supported Cu-NHC complex. Green Chem. 2014, 16, 3916–3925. [Google Scholar] [CrossRef]
- Lima, G.R.; Monteiro, W.F.; Ligabue, R.; Santana, R.M.C. Titanate nanotubes as new nanostrutured catalyst for depolymerization of PET by glycolysis reaction. Mater. Res. 2017, 20, 588–595. [Google Scholar] [CrossRef]
- Somayeh, M.; Bouldo, M.G.; Mojtaba, E. Controlled glycolysis of poly(ethylene terephthalate) to oligomers under microwave irradiation using antimony(III) oxide. ACS Appl. Polym. Mater. 2023, 5, 6574–6584. [Google Scholar] [CrossRef]
- Sean Najmi, D.H.; Duncan, A.; Slanac, D.; Hutchenson, K.; Hughes, J.; Poladi, R.; Dionisios, G. Vlachos. Closed-loop chemical recycling of polyethylene furan-2,5-dicarboxylate (PEF) under microwave-assisted heating. Green Chem. 2025, 27, 5753–5763. [Google Scholar] [CrossRef]
- Al-Sabagh, A.M.; Yehia, F.Z.; Eissa, A.M.F.; Moustafa, M.E.; Eshaq, G.; Rabie, A.M.; ElMetwally, A.E. Cu- and Zn-acetate-containing ionic liquids as catalysts for the glycolysis of poly(ethylene terephthalate). Polym. Degrad. Stab. 2014, 110, 364–377. [Google Scholar] [CrossRef]
- López-Fonseca, R.; Duque-Ingunza, I.; de Rivas, B.; Flores-Giraldo, L.; Gutiérrez-Ortiz, J.I. Kinetics of catalytic glycolysis of PET wastes with sodium carbonate. Chem. Eng. J. 2011, 168, 312–320. [Google Scholar] [CrossRef]
- Sean Najmi, B.C.V.; Selvam, E.; Huang, D.; Dionisios, G. Vlachos. Controlling PET oligomers vs monomers via microwave-induced heating and swelling. Chem. Eng. J. 2023, 471, 144712. [Google Scholar] [CrossRef]
- Toshiaki Yoshioka, N.O.; Okuwaki, A. Kinetics of hydrolysis of PET powder in nitric acid by a modified shrinking-core model. Ind. Eng. Chem. Res. 1998, 37, 336–340. [Google Scholar] [CrossRef]
- Nguyet Thi Ho, L.; Minh Ngo, D.; Cho, J.; Jung, H.M. Enhanced catalytic glycolysis conditions for chemical recycling of glycol-modified poly(ethylene terephthalate). Polym. Degrad. Stab. 2018, 155, 15–21. [Google Scholar] [CrossRef]
- Yue, Q.; Xiao, L.; Zhang, M.; Bai, X. The glycolysis of poly(ethylene terephthalate) waste: Lewis acidic ionic liquids as high efficient catalysts. Polymers 2013, 5, 1258–1271. [Google Scholar] [CrossRef]
- Wang, Q.; Geng, Y.; Lu, X.; Zhang, S. First-row transition metal-containing ionic liquids as highly active catalysts for the glycolysis of poly(ethylene terephthalate) (PET). ACS Sustain. Chem. Eng. 2015, 3, 340–348. [Google Scholar] [CrossRef]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, L.; Purnawan, I.; Fithriyah, N.H.; Li, M.; Huang, H.; He, J.; Wang, Y. Efficient Glycolysis of Polyethylene Terephthalate (PET) Catalyzed by Cyclic(alkyl)(amino)carbene Copper Complexes. Molecules 2025, 30, 4521. https://doi.org/10.3390/molecules30234521
Zhou L, Purnawan I, Fithriyah NH, Li M, Huang H, He J, Wang Y. Efficient Glycolysis of Polyethylene Terephthalate (PET) Catalyzed by Cyclic(alkyl)(amino)carbene Copper Complexes. Molecules. 2025; 30(23):4521. https://doi.org/10.3390/molecules30234521
Chicago/Turabian StyleZhou, Lei, Irfan Purnawan, Nurul Hidayati Fithriyah, Mingxin Li, Hao Huang, Jiaqin He, and Yuanyou Wang. 2025. "Efficient Glycolysis of Polyethylene Terephthalate (PET) Catalyzed by Cyclic(alkyl)(amino)carbene Copper Complexes" Molecules 30, no. 23: 4521. https://doi.org/10.3390/molecules30234521
APA StyleZhou, L., Purnawan, I., Fithriyah, N. H., Li, M., Huang, H., He, J., & Wang, Y. (2025). Efficient Glycolysis of Polyethylene Terephthalate (PET) Catalyzed by Cyclic(alkyl)(amino)carbene Copper Complexes. Molecules, 30(23), 4521. https://doi.org/10.3390/molecules30234521

