Green Synthesis of Silica Nanoparticles from Sugarcane Bagasse Ash for Stable Pickering Oil-in-Water Emulsions
Abstract
1. Introduction
2. Results
2.1. Nanoparticle Characterization
2.1.1. Field Emission Scanning Electron Microscopy (FESEM)
2.1.2. Attenuated Total Reflection–Fourier Transform Infrared Spectroscopy (ATR–FTIR)
2.2. Emulsion Characterization
2.2.1. Physical Stability
2.2.2. Emulsification Index
2.2.3. Particle Size Distribution
3. Materials and Methods
3.1. Materials
3.2. Nanoparticle Synthesis
3.3. Adsorption Modification of Nanoparticles
3.4. Nanoparticles Characterization
3.4.1. Field Emission Scanning Electron Microscope (FESEM)
3.4.2. Attenuated Total Reflection–Fourier Transform Infrared Spectroscopy (ATR–FTIR)
3.5. Pickering Emulsions Fabrication
3.6. Pickering Emulsions Characterization
3.6.1. Physical Stability
3.6.2. Emulsification Index
3.6.3. Particle Size Distribution
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| SBA | Sugarcane Bagasse Ash |
| SiO2 NPs | Silica nanoparticles |
| O/W | Oil/Water |
| W/O | Water/Oil |
| ATR-FTIR | Attenuated total reflection—Fourier transform infrared spectroscopy |
| FESEM-EDS | Field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy |
| HCl | Hydrochloric acid |
| NaOH | Sodium hydroxide |
References
- FAO. FAOSTAT: Food Supply Quantity—Crops and Livestock Products [Internet]. 2024. Available online: https://www.fao.org/faostat/en/#home (accessed on 31 July 2025).
- Chindaprasirt, P.; Rattanasak, U. Eco-production of silica from sugarcane bagasse ash for use as a photochromic pigment filler. Sci. Rep. 2020, 10, 9890. Available online: https://www.nature.com/articles/s41598-020-66885-y (accessed on 12 October 2025). [CrossRef] [PubMed]
- September, L.A.; Kheswa, N.; Seroka, N.S.; Khotseng, L. Green synthesis of silica and silicon from agricultural residue sugarcane bagasse ash—A mini review. RSC Adv. 2023, 13, 1370–1380. [Google Scholar] [CrossRef] [PubMed]
- Falk, G.; Shinhe, G.P.; Teixeira, L.B.; Moraes, E.G.; de Oliveira, A.P.N. Synthesis of silica nanoparticles from sugarcane bagasse ash and nano-silicon via magnesiothermic reactions. Ceram. Int. 2019, 45, 21618–21624. [Google Scholar] [CrossRef]
- Muñoz, J.L.T.; Carranza, B.H.; Cortés, Y.P.C.; Rodríguez, L.A.A. Comprehensive characterization of high Andean sugarcane production systems (Saccharum officinarum) for panela production in Colombia. Rev. Ceres 2024, 71, e71036. [Google Scholar] [CrossRef]
- Sales, A.; Lima, S.A. Use of Brazilian sugarcane bagasse ash in concrete as sand replacement. Waste Manag. 2010, 30, 1114–1122. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0956053X10000681?via%3Dihub (accessed on 12 October 2025). [CrossRef] [PubMed]
- Joshaghani, A.; Moeini, M.A. Evaluating the effects of sugar cane bagasse ash (SCBA) and nanosilica on the mechanical and durability properties of mortar. Constr. Build. Mater. 2017, 152, 818–831. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0950061817313776?via%3Dihub (accessed on 12 October 2025). [CrossRef]
- Ungureanu, N.; Vlăduț, V.; Biriș, S.-Ș. Sustainable Valorization of Waste and By-Products from Sugarcane Processing. Sustainability 2022, 14, 11089. Available online: https://www.mdpi.com/2071-1050/14/17/11089/htm (accessed on 12 October 2025). [CrossRef]
- Norsuraya, S.; Fazlena, H.; Norhasyimi, R. Sugarcane Bagasse as a Renewable Source of Silica to Synthesize Santa Barbara Amorphous-15 (SBA-15). Procedia Eng. 2016, 148, 839–846. [Google Scholar] [CrossRef]
- Nayl, A.A.; Abd-Elhamid, A.I.; Aly, A.A.; Bräse, S. Recent progress in the applications of silica-based nanoparticles. RSC Adv. 2022, 12, 13706. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC9073631/ (accessed on 9 November 2024). [CrossRef]
- Nakashima, H.; Omae, K.; Sakai, T.; Yamazaki, K.; Sakurai, H. Acute and subchronic inhalation toxicity of tetraethoxysilane (TEOS) in mice. Arch. Toxicol. 1994, 68, 277–283. Available online: https://link.springer.com/article/10.1007/s002040050069 (accessed on 12 October 2025). [CrossRef]
- Nakashima, H. Time course of effects of tetraethoxysilane (TEOS) on the kidney and blood silicon concentration in mice. Arch. Toxicol. 1994, 69, 59–64. Available online: https://link.springer.com/article/10.1007/s002040050138 (accessed on 12 October 2025). [CrossRef] [PubMed]
- Cáceres-Zambrano, J.; Ramírez-Gil, J.G.; Barrios, D. Validating Technologies and Evaluating the Technological Level in Avocado Production Systems: A Value Chain Approach. Agronomy 2022, 12, 3130. Available online: https://www.mdpi.com/2073-4395/12/12/3130/htm (accessed on 9 November 2025). [CrossRef]
- Martins, R.; Fernandes De Oliveira, S.; Martinho, H.; Santos, L.D.; Fernandes, S.S.; Buranelo Egea, M. Exploring Plant Agro-Industrial By-Products as a Source of Fibrous Food Ingredients: A Review of Extraction Methods and Technological Properties. Food Sci. 2025, 90, e70408. [Google Scholar] [CrossRef]
- Moreno Choconta, L.N. Aprovechamiento del Bagazo de la Caña Procedente de la Industria Panelera, a Través del Tratamiento Hidrotermal. Master’s Thesis, Universidad Nacional de Colombia, Bogotá, Colombia, 2024. Available online: https://repositorio.unal.edu.co/handle/unal/86262 (accessed on 7 November 2025).
- Mod, B.; Baskar, A.V.; Bahadur, R.; Tavakkoli, E.; Van Zwieten, L.; Singh, G.; Vinu, A. From cane to nano: Advanced nanomaterials derived from sugarcane products with insights into their synthesis and applications. Sci. Technol. Adv. Mater. 2024, 25, 2393568. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC11376298/ (accessed on 9 November 2025). [CrossRef]
- UN Office for Partnerships. Sustainable Development Goals—Briefing Book 2023; United Nations: New York, NY, USA, 2023. [Google Scholar]
- Berton-Carabin, C.C.; Schroën, K. Pickering emulsions for food applications: Background, trends, and challenges. Annu. Rev. Food Sci. Technol. 2015, 6, 263–297. Available online: https://pubmed.ncbi.nlm.nih.gov/25705932/ (accessed on 20 April 2025). [CrossRef]
- Heidari, F.; Jafari, S.M.; Ziaiifar, A.M.; Anton, N. Preparation of Pickering Emulsions Stabilized by Modified Silica Nanoparticles via the Taguchi Approach. Pharmaceutics 2022, 14, 1561. Available online: https://www.mdpi.com/1999-4923/14/8/1561/htm (accessed on 10 June 2024). [CrossRef]
- Zhao, H.; Yang, Y.; Chen, Y.; Li, J.; Wang, L.; Li, C. A review of multiple Pickering emulsions: Solid stabilization, preparation, particle effect, and application. Chem. Eng. Sci. 2022, 248, 117085. [Google Scholar] [CrossRef]
- Björkegren, S.; Nordstierna, L.; Törncrona, A.; Palmqvist, A. Hydrophilic and hydrophobic modifications of colloidal silica particles for Pickering emulsions. J. Colloid Interface Sci. 2017, 487, 250–257. Available online: https://www.sciencedirect.com/science/article/abs/pii/S002197971630786X?via%3Dihub (accessed on 12 October 2025). [CrossRef]
- Sadeghpour, A.; Pirolt, F.; Glatter, O. Submicrometer-sized pickering emulsions stabilized by silica nanoparticles with adsorbed oleic acid. Langmuir 2013, 29, 6004–6012. [Google Scholar] [CrossRef] [PubMed]
- Premaratne, W.A.P.J.; Priyadarshana, W.M.G.I.; Gunawardena, S.H.P.; De Alwis, A.A.P. Synthesis of nanosilica from paddy husk ash and their surface functionalization. J. Sci. Univ. Kelaniya 2013, 8, 33–48. [Google Scholar] [CrossRef]
- Future Market Insights. Oleic Acid Industry Outlook from 2024 to 2034 [Internet]. 2023. Available online: https://www.futuremarketinsights.com/reports/oleic-acid-market (accessed on 26 September 2024).
- Li, Z.; Zhu, Y. Surface-modification of SiO2 nanoparticles with oleic acid. Appl. Surf. Sci. 2003, 211, 315–320. [Google Scholar] [CrossRef]
- Nistor, C.L.; Ianchis, R.; Ghiurea, M.; Nicolae, C.A.; Spataru, C.I.; Culita, D.C.; Pandele Cusu, J.; Fruth, V.; Oancea, F.; Donescu, D. Aqueous Dispersions of Silica Stabilized with Oleic Acid Obtained by Green Chemistry. Nanomaterials 2016, 6, 9. Available online: https://www.mdpi.com/2079-4991/6/1/9/htm (accessed on 12 October 2025). [CrossRef]
- Mohd, N.K.; Wee, N.N.A.N.; Azmi, A.A. Green synthesis of silica nanoparticles using sugarcane bagasse. AIP Conf. Proc. 2017, 1885, 020123. [Google Scholar]
- Rovani, S.; Santos, J.J.; Corio, P.; Fungaro, D.A. An alternative and simple method for the preparation of bare silica nanoparticles using sugarcane waste ash, an abundant and despised residue in the Brazilian industry. J. Braz. Chem. Soc. 2019, 30, 1524–1533. [Google Scholar] [CrossRef]
- Bortolotto Teixeira, L.; Guzi de Moraes, E.; Paolinelli Shinhe, G.; Falk, G.; Novaes de Oliveira, A.P. Obtaining Biogenic Silica from Sugarcane Bagasse and Leaf Ash. Waste Biomass Valoriz. 2021, 12, 3205–3221. [Google Scholar] [CrossRef]
- Ni’mah, Y.L.; Muhaiminah, Z.H.; Suprapto, S. Synthesis of Silica Nanoparticles from Sugarcane Bagasse by Sol-Gel Method. Nano Part. 2023, 4, 4–8. [Google Scholar] [CrossRef]
- Ying, S.; Guan, Z.; Ofoegbu, P.C.; Clubb, P.; Rico, C.; He, F.; Hong, J. Green synthesis of nanoparticles: Current developments and limitations. Environ. Technol. Innov. 2022, 26, 102336. [Google Scholar] [CrossRef]
- Yang, Y.; Fang, Z.; Chen, X.; Zhang, W.; Xie, Y.; Chen, Y.; Liu, Z.; Yuan, W. An overview of pickering emulsions: Solid-particle materials, classification, morphology, and applications. Front. Pharmacol. 2017, 8, 235054. Available online: www.frontiersin.org (accessed on 10 June 2024). [CrossRef]
- Santamaría, E.; Maestro, A.; Vilchez, S.; González, C. Study of nanoemulsions using carvacrol/MCT-(Oleic acid-potassium oleate)/ Tween 80 ®- water system by low energy method. Heliyon 2023, 9, e16967. Available online: https://pubmed.ncbi.nlm.nih.gov/37332948/ (accessed on 10 November 2025). [CrossRef]
- Oba, N.; Sugimura, H.; Umehara, Y.; Yoshida, M.; Kimura, T.; Yamaguchi, T. Evaluation of an oleic acid water-in-oil-in-water-type multiple emulsion as potential drug carrier via the enteral route. Lipids 1992, 27, 701–705. Available online: https://pubmed.ncbi.nlm.nih.gov/1487968/ (accessed on 12 October 2025). [CrossRef]
- González-González, A.; Sánchez-Arribas, N.; Santini, E.; Rodríguez-Villafuerte, J.L.; Carbone, C.; Ravera, F.; Ortega, F.; Liggieri, L.; Rubio, R.G.; Guzmán, E. Effects of Oil Phase on the Inversion of Pickering Emulsions Stabilized by Palmitic Acid Decorated Silica Nanoparticles. Colloids Interfaces 2022, 6, 27. Available online: https://www.mdpi.com/2504-5377/6/2/27/htm (accessed on 16 October 2023). [CrossRef]
- Lin, Z.; Zhang, Z.; Li, Y.; Deng, Y. Magnetic nano-Fe3O4 stabilized Pickering emulsion liquid membrane for selective extraction and separation. Chem. Eng. J. 2016, 288, 305–311. [Google Scholar] [CrossRef]
- Oyola-Oliveras, M. Understanding the Surface Interaction Between Silica and Oleic Acid. Master’s Thesis, The Ohio State University, Columbus, OH, USA, 2005. Available online: https://etd.ohiolink.edu/acprod/odb_etd/ws/send_file/send?accession=osu1730298184582362&disposition=inline#page=75.08 (accessed on 10 November 2025).
- Liu, W.; Chen, S. An investigation of the tribological behaviour of surface-modified ZnS nanoparticles in liquid paraffin. Wear 2000, 238, 120–124. [Google Scholar] [CrossRef]
- Capek, I. Degradation of kinetically-stable o/w emulsions. Adv. Colloid Interface Sci. 2004, 107, 125–155. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhang, Y.; He, Y.; Xu, X.; Zhao, X. Oil density and viscosity affect emulsion stability and destabilization mechanism. J. Food Eng. 2024, 366, 111864. [Google Scholar] [CrossRef]
- Tan, H.; Han, L.; Yang, C. Effect of oil type and β-carotene incorporation on the properties of gelatin nanoparticle-stabilized pickering emulsions. LWT 2021, 141, 110903. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, F.; Ma, C.; Yuan, F.; Gao, Y. Effect of carrier oils on the physicochemical properties of orange oil beverage emulsions. Food Res. Int. 2015, 74, 260–268. [Google Scholar] [CrossRef]
- Huang, Z.; Wu, Y.; Chen, L.; Jiang, H.; Tian, C.; Fu, M.; Lyu, C. Effect of hazelnut protein oxidation on O/W emulsion stability, interfacial properties and lipid oxidation based on hazelnut protein oxidation. J. Stored Prod. Res. 2025, 111, 102534. Available online: https://www.sciencedirect.com/science/article/pii/S0022474X24002911?via%3Dihub#bib32 (accessed on 10 November 2025). [CrossRef]
- Gao, J.; Bu, X.; Zhou, S.; Wang, X.; Bilal, M.; Hassan, F.U.; Hassanzadeh, A.; Xie, G.; Chelgani, S.C. Pickering emulsion prepared by nano-silica particles—A comparative study for exploring the effect of various mechanical methods. Ultrason. Sonochem. 2022, 83, 105928. [Google Scholar] [CrossRef]
- Yi, J.; Ning, J.; Zhu, Z.; Cui, L.; Decker, E.A.; McClements, D.J. Impact of interfacial composition on co-oxidation of lipids and proteins in oil-in-water emulsions: Competitive displacement of casein by surfactants. Food Hydrocoll. 2019, 87, 20–28. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0268005X18306672 (accessed on 23 April 2025). [CrossRef]
- McDonald, C. The solubility of dodecane in water-amide mixtures. J. Pharm. Pharmacol. 1970, 22, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.; Xu, A.; Zhang, T.; Hong, L. Tailoring the Wettability of Colloidal Particles for Pickering Emulsions via Surface Modification and Roughness. Front. Chem. 2018, 6, 225. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC6018170/ (accessed on 13 April 2024). [CrossRef] [PubMed]
- de Carvalho-Guimarães, F.B.; Correa, K.L.; de Souza, T.P.; Rodríguez Amado, J.R.; Ribeiro-Costa, R.M.; Silva-Júnior, J.O.C. A Review of Pickering Emulsions: Perspectives and Applications. Pharmaceuticals 2022, 15, 1413. Available online: https://www.mdpi.com/1424-8247/15/11/1413/htm (accessed on 10 June 2024). [CrossRef]
- Gómez Hoyos, C.; Botero, L.D.; Flórez-Caro, A.; Velásquez-Cock, J.A.; Zuluaga, R. Nanocellulose from Cocoa Shell in Pickering Emulsions of Cocoa Butter in Water: Effect of Isolation and Concentration on Its Stability and Rheological Properties. Polymers 2023, 15, 4157. Available online: https://www.mdpi.com/2073-4360/15/20/4157/htm (accessed on 11 March 2024). [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. Available online: https://www.nature.com/articles/nmeth.2019 (accessed on 15 October 2025). [CrossRef]
- Mikulcová, V.; Bordes, R.; Kašpárková, V. On the preparation and antibacterial activity of emulsions stabilized with nanocellulose particles. Food Hydrocoll. 2016, 61, 780–792. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, H.; Sun, X.; Fan, F. Development and Characterization of Pickering Emulsion Stabilized by Walnut Protein Isolate Nanoparticles. Molecules 2023, 28, 5434. [Google Scholar] [CrossRef]
- Mugabi, J.; Igura, N.; Shimoda, M. Effect of process parameters on oil-in-water emulsion droplet size and distribution in swirl flow membrane emulsification. J. Chem. Eng. Jpn. 2018, 51, 229–236. [Google Scholar] [CrossRef]








| Sample | Emulsification Index (EI) (%) | |
|---|---|---|
| 1 d | 15 d | |
| D-LM | 99.092 ± 1.573 a | 64.125 ± 6.337 b |
| D-LH | 98.163 ± 1.597 a | 59.758 ± 7.735 b |
| D-HM | 99.221 ± 1.345 a | 66.858 ± 10.985 b |
| D-HH | 98.718 ± 1.122 a | 58.296 ± 1.794 b |
| P-LM | 100.000 ± 0.000 a | 88.638 ± 0.639 c |
| P-LH | 100.000 ± 0.000 a | 93.998 ± 0.923 d |
| P-HM | 100.000 ± 0.000 a | 90.179 ± 1.875 cd |
| P-HH | 100.000 ± 0.000 a | 93.828 ± 2.908 da |
| Average Diameter | Sample | |||||
|---|---|---|---|---|---|---|
| P-HH-0d | P-HH-1d | P-HH-7d | D-HH-0d | D-HH-1d | D-HH-7d | |
| d10 (μm) | 0.197 ± 0.106 ab | 0.223 ± 0.012 a | 0.306 ± 0.075 ad | 0.109 ± 0.003 b | 0.160 ± 0.013 c | 0.223 ± 0.016 d |
| d50 (μm) | 0.455 ± 0.298 ab | 0.523 ± 0.153 ac | 0.643 ± 0.079 ad | 0.174 ± 0.006 b | 0.300 ± 0.035 c | 0.576 ± 0.042 d |
| d90 (μm) | 0.919 ± 0.312 ab | 0.907 ± 0.145 a | 1.082 ± 0.028 a | 0.260 ± 0.012 b | 0.465 ± 0.048 c | 0.826 ± 0.047 d |
| 4,3 (μm) | 0.512 ± 0.257 ab | 0.546 ± 0.111 ac | 0.675 ± 0.047 a | 0.181 ± 0.007 b | 0.332 ± 0.014 c | 0.558 ± 0.039 d |
| δ | 1.822 ± 0.539 ab | 1.331 ± 0.116 a | 1.231 ± 0.292 ae | 0.870 ± 0.024 b | 1.016 ± 0.003 cd | 1.049 ± 0.027 de |
| Sample | Oil Phase | Silica Nanoparticles Concentration (wt.%) | Oleic Acid Concentration (wt.%) |
|---|---|---|---|
| P-LL | Liquid paraffin | 0.5 | 0.0 |
| P-LM | Liquid paraffin | 0.5 | 10.0 |
| P-LH | Liquid paraffin | 0.5 | 20.0 |
| P-HL | Liquid paraffin | 1.0 | 0.0 |
| P-HM | Liquid paraffin | 1.0 | 10.0 |
| P-HH | Liquid paraffin | 1.0 | 20.0 |
| D-LL | Dodecane | 0.5 | 0.0 |
| D-LM | Dodecane | 0.5 | 10.0 |
| D-LH | Dodecane | 0.5 | 20.0 |
| D-HL | Dodecane | 1.0 | 0.0 |
| D-HM | Dodecane | 1.0 | 10.0 |
| D-HH | Dodecane | 1.0 | 20.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaramillo-Vélez, D.; Ochoa-Castaño, M.; Flórez-Caro, A.; Botero, L.D.; Ureña-Benavides, E.; Valencia-Cardona, R.A.; Velásquez-Cock, J.A.; Gómez-Hoyos, C. Green Synthesis of Silica Nanoparticles from Sugarcane Bagasse Ash for Stable Pickering Oil-in-Water Emulsions. Molecules 2025, 30, 4464. https://doi.org/10.3390/molecules30224464
Jaramillo-Vélez D, Ochoa-Castaño M, Flórez-Caro A, Botero LD, Ureña-Benavides E, Valencia-Cardona RA, Velásquez-Cock JA, Gómez-Hoyos C. Green Synthesis of Silica Nanoparticles from Sugarcane Bagasse Ash for Stable Pickering Oil-in-Water Emulsions. Molecules. 2025; 30(22):4464. https://doi.org/10.3390/molecules30224464
Chicago/Turabian StyleJaramillo-Vélez, Daniel, Mariana Ochoa-Castaño, Andrea Flórez-Caro, Luis David Botero, Esteban Ureña-Benavides, Raúl Adolfo Valencia-Cardona, Jorge Andrés Velásquez-Cock, and Catalina Gómez-Hoyos. 2025. "Green Synthesis of Silica Nanoparticles from Sugarcane Bagasse Ash for Stable Pickering Oil-in-Water Emulsions" Molecules 30, no. 22: 4464. https://doi.org/10.3390/molecules30224464
APA StyleJaramillo-Vélez, D., Ochoa-Castaño, M., Flórez-Caro, A., Botero, L. D., Ureña-Benavides, E., Valencia-Cardona, R. A., Velásquez-Cock, J. A., & Gómez-Hoyos, C. (2025). Green Synthesis of Silica Nanoparticles from Sugarcane Bagasse Ash for Stable Pickering Oil-in-Water Emulsions. Molecules, 30(22), 4464. https://doi.org/10.3390/molecules30224464

