Preparation and Characterization of Brassica rapa L. Polysaccharide–Zein Nanoparticle Delivery System Loaded with Capsaicin
Abstract
1. Introduction
2. Results and Discussion
2.1. Effect of the Zein-to-BP Ratio on Nanoparticle Properties
2.2. Encapsulation Efficiency and Drug-Loading Capacity of Nanoparticles
2.3. FTIR Analysis
2.4. Fluorescence Spectroscopy
2.5. XRD Analysis
2.6. Morphological Observation
2.7. Stability
2.7.1. Effect of pH
2.7.2. Storage Stability Analysis
2.7.3. Ionic Strength Stability Analysis
2.8. In Vitro Simulated Digestion and Release
2.9. Effect of Nanoparticles on
3. Materials and Methods
3.1. Chemicals
3.2. Preparation of Nanoparticles
3.2.1. Preparation of BP–Zein Nanoparticles
3.2.2. Preparation of BP–Zein–CAP Nanoparticles
3.3. Determination of Particle Size, Polydispersity Index (PDI), and Zeta Potential
3.4. Determination of Encapsulation Efficiency (EE) and Drug Loading (LC)
3.5. Fourier Transform Infrared (FTIR) Spectroscopy
3.6. Fluorescence Spectroscopy (FS)
3.7. X-Ray Diffraction (XRD) Analysis
3.8. Scanning Electron Microscopy (SEM)
3.9. Transmission Electron Microscopy (TEM)
3.10. Stability Tests
3.10.1. pH Stability
3.10.2. Storage Stability
3.10.3. Ionic Strength Stability
3.10.4. In Vitro Simulated Digestion
3.11. Xylene-Induced Ear Edema in Mice
3.12. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| BP | Brassica rapa L. polysaccharide |
| CAP | Capsaicin |
| Zein–CAP | Capsaicin-loaded Zein |
| BZC | Capsaicin-loaded Brassica rapa L. polysaccharide–Zein |
| PDI | Polydispersity index |
| FTIR | Fourier transform infrared spectroscopy |
| XRD | X-ray diffraction |
| SEM | Scanning electron microscope |
| TEM | Transmission electron microscopy |
| SGF | Simulated gastric fluid |
| SIF | Simulated intestinal fluid |
| UV–Vis | UV-visible spectrum |
| LC | Load volume |
| EE | Encapsulation rate |
| SWD | Swelling degree |
| IR | Inhibition rate |
References
- Sharma, S.K.; Vij, A.S.; Sharma, M. Mechanisms and Clinical Uses of Capsaicin. Eur. J. Pharmacol. 2013, 720, 55–62. [Google Scholar] [CrossRef]
- Batiha, G.E.-S.; Alqahtani, A.; Ojo, O.A.; Shaheen, H.M.; Wasef, L.; Elzeiny, M.; Ismail, M.; Shalaby, M.; Murata, T.; Zaragoza-Bastida, A.; et al. Biological Properties, Bioactive Constituents, and Pharmacokinetics of Some Capsicum Spp. and Capsaicinoids. Int. J. Mol. Sci. 2020, 21, 5179. [Google Scholar] [CrossRef]
- Arora, V.; Campbell, J.N.; Chung, M.-K. Fight Fire with Fire: Neurobiology of Capsaicin-Induced Analgesia for Chronic Pain. Pharmacol. Ther. 2021, 220, 107743. [Google Scholar] [CrossRef]
- Chen, Y.-S.; Lian, Y.Z.; Chen, W.-C.; Chang, C.-C.; Tinkov, A.A.; Skalny, A.V.; Chao, J.C.-J. Lycium Barbarum Polysaccharides and Capsaicin Inhibit Oxidative Stress, Inflammatory Responses, and Pain Signaling in Rats with Dextran Sulfate Sodium-Induced Colitis. Int. J. Mol. Sci. 2022, 23, 2423. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Y.; Fan, J.; Feng, Z.; Song, X. Pharmacological Activity of Capsaicin: Mechanisms and Controversies (Review). Mol. Med. Rep. 2024, 29, 38. [Google Scholar] [CrossRef]
- Chen, M.; Xiao, C.; Jiang, W.; Yang, W.; Qin, Q.; Tan, Q.; Lian, B.; Liang, Z.; Wei, C. Capsaicin Inhibits Proliferation and Induces Apoptosis in Breast Cancer by Down-Regulating FBI-1-Mediated NF-κB Pathway. Drug Des. Dev. Ther. 2021, 15, 125–140. [Google Scholar] [CrossRef] [PubMed]
- Chaiyasit, K.; Khovidhunkit, W.; Wittayalertpanya, S. Pharmacokinetic and the Effect of Capsaicin in Capsicum Frutescens on Decreasing Plasma Glucose Level. J. Med. Assoc. Thai. 2009, 92, 108–113. [Google Scholar]
- Smutzer, G.; Jacob, J.C.; Tran, J.T.; Shah, D.I.; Gambhir, S.; Devassy, R.K.; Tran, E.B.; Hoang, B.T.; McCune, J.F. Detection and Modulation of Capsaicin Perception in the Human Oral Cavity. Physiol. Behav. 2018, 194, 120–131. [Google Scholar] [CrossRef] [PubMed]
- Al-Samydai, A.; Alshaer, W.; Al-Dujaili, E.A.S.; Azzam, H.; Aburjai, T. Preparation, Characterization, and Anticancer Effects of Capsaicin-Loaded Nanoliposomes. Nutrients 2021, 13, 3995. [Google Scholar] [CrossRef]
- Wang, X.-R.; Gao, S.-Q.; Niu, X.-Q.; Li, L.-J.; Ying, X.-Y.; Hu, Z.-J.; Gao, J.-Q. Capsaicin-Loaded Nanolipoidal Carriers for Topical Application: Design, Characterization, and in Vitro/in Vivo Evaluation. Int. J. Nanomed. 2017, 12, 3881–3898. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Zhang, S.; Liu, X.; Xiao, C. Fabrication of Capsaicin Emulsions: Improving the Stability of the System and Relieving the Irritation to the Gastrointestinal Tract of Rats. J. Sci. Food Agric. 2020, 100, 129–138. [Google Scholar] [CrossRef]
- Yuan, Y.; Liu, Y.; He, Y.; Zhang, B.; Zhao, L.; Tian, S.; Wang, Q.; Chen, S.; Li, Z.; Liang, S.; et al. Intestinal-Targeted Nanotubes-in-Microgels Composite Carriers for Capsaicin Delivery and Their Effect for Alleviation of Salmonella Induced Enteritis. Biomaterials 2022, 287, 121613. [Google Scholar] [CrossRef]
- Cao, Q.; Wang, G.; Peng, Y. A Critical Review on Phytochemical Profile and Biological Effects of Turnip (Brassica rapa L.). Front. Nutr. 2021, 8, 721733. [Google Scholar] [CrossRef]
- Wufuer, R.; Bai, J.; Liu, Z.; Zhou, K.; Taoerdahong, H. Biological Activity of Brassica rapa L. Polysaccharides on RAW264.7 Macrophages and on Tumor Cells. Bioorg. Med. Chem. 2020, 28, 115330. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, Q.; Liu, Y.; Liu, Y.; Luo, J.; Liu, J.; Yu, S. Brassica rapa L. (Tibetan Turnip) Polysaccharide Improves the Immune Function and Regulates Intestinal Microbiota in Immunosuppressive Mice. J. Food Sci. 2024, 89, 9816–9834. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Wang, C.; Mayhesumu, X.; Pan, L.; Dang, Y.; Yili, A.; Abuduwaili, A.; Mansur, S. Isolation, Structural Elucidation, Antioxidant and Hypoglycemic Activity of Polysaccharides of Brassica rapa L. Molecules 2022, 27, 3002. [Google Scholar] [CrossRef]
- Yan, X.; Li, M.; Xu, X.; Liu, X.; Liu, F. Zein-Based Nano-Delivery Systems for Encapsulation and Protection of Hydrophobic Bioactives: A Review. Front. Nutr. 2022, 9, 999373. [Google Scholar] [CrossRef]
- Hu, L.; Zhao, P.; Wei, Y.; Lei, Y.; Guo, X.; Deng, X.; Zhang, J. Preparation and Characterization Study of Zein–Sodium Caseinate Nanoparticle Delivery Systems Loaded with Allicin. Foods 2024, 13, 3111. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhu, B.-W.; Sun, R.; Li, X.; Wu, D.; Hu, J.-N. Colon-Targeting Angelica Sinensis Polysaccharide Nanoparticles with Dual Responsiveness for Alleviation of Ulcerative Colitis. ACS Appl. Mater. Interfaces 2023, 15, 26298–26315. [Google Scholar] [CrossRef]
- Feng, Y.; Wu, C.; Chen, H.; Zheng, T.; Ye, H.; Wang, J.; Zhang, Y.; Gao, J.; Li, Y.; Dong, Z. Rhubarb Polysaccharide and Berberine Co-Assembled Nanoparticles Ameliorate Ulcerative Colitis by Regulating the Intestinal Flora. Front. Pharmacol. 2023, 14, 1184183. [Google Scholar] [CrossRef]
- Chen, S.; Han, Y.; Wang, Y.; Yang, X.; Sun, C.; Mao, L.; Gao, Y. Zein-Hyaluronic Acid Binary Complex as a Delivery Vehicle of Quercetagetin: Fabrication, Structural Characterization, Physicochemical Stability and in Vitro Release Property. Food Chem. 2019, 276, 322–332. [Google Scholar] [CrossRef]
- Lepeltier, E.; Bourgaux, C.; Couvreur, P. Nanoprecipitation and the “Ouzo Effect”: Application to Drug Delivery Devices. Adv. Drug Deliv. Rev. 2014, 71, 86–97. [Google Scholar] [CrossRef]
- Yin, W.; Li, K.; Ma, L.; Chen, F.; Liao, X.; Hu, X.; Ji, J. Preparation and Stability Analysis of Capsaicin-Loaded Thiolated Chitosan-Zein Nanoparticles. Food Sci. 2023, 44, 8–14. [Google Scholar]
- Tao, X.; Zhan, L.; Huang, Y.; Li, J.; Wang, X.; Chen, S. Preparation, Characterization and Evaluation of Capsaicin-Loaded Indica Rice Starch Nanoparticles. Food Chem. 2022, 386, 132692. [Google Scholar] [CrossRef]
- El-Kaaby, E.; Al Hattab, Z.; AI-Anny Jenan, A. FT-IR Identification of Capsaicin from Callus and Seedling of Chilli Pepper Plants Capsicum annuum L. in Vitro. Int. J. Multidiscip. Curr. Res 2016, 4, 1144–1146. [Google Scholar]
- Dai, L.; Sun, C.; Wang, D.; Gao, Y. The Interaction between Zein and Lecithin in Ethanol-Water Solution and Characterization of Zein–Lecithin Composite Colloidal Nanoparticles. PLoS ONE 2016, 11, e0167172. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Wei, Y.; Sun, C.; Mao, L.; McClements, D.J.; Gao, Y. Development of Protein-Polysaccharide-Surfactant Ternary Complex Particles as Delivery Vehicles for Curcumin. Food Hydrocoll. 2018, 85, 75–85. [Google Scholar] [CrossRef]
- Alshawwa, S.Z.; Kassem, A.A.; Farid, R.M.; Mostafa, S.K.; Labib, G.S. Nanocarrier Drug Delivery Systems: Characterization, Limitations, Future Perspectives and Implementation of Artificial Intelligence. Pharmaceutics 2022, 14, 883. [Google Scholar] [CrossRef] [PubMed]
- Abdelsalam, A.M.; Somaida, A.; Ayoub, A.M.; Alsharif, F.M.; Preis, E.; Wojcik, M.; Bakowsky, U. Surface-Tailored Zein Nanoparticles: Strategies and Applications. Pharmaceutics 2021, 13, 1354. [Google Scholar] [CrossRef]
- Hu, K.; McClements, D.J. Fabrication of Biopolymer Nanoparticles by Antisolvent Precipitation and Electrostatic Deposition: Zein–Alginate Core/Shell Nanoparticles. Food Hydrocoll. 2015, 44, 101–108. [Google Scholar] [CrossRef]
- Afonso, B.S.; Azevedo, A.G.; Gonçalves, C.; Amado, I.R.; Ferreira, E.C.; Pastrana, L.M.; Cerqueira, M.A. Bio-Based Nanoparticles as a Carrier of β-Carotene: Production, Characterisation and In Vitro Gastrointestinal Digestion. Molecules 2020, 25, 4497. [Google Scholar] [CrossRef] [PubMed]
- Chang, D.; Cao, J.; Ren, N.; Wang, H.; Sun, Y.; Shen, W.; Sendi, S. Zein-Gum Arabic Loaded with Dihydromyricetin: Preparation and Analysis of Nanoparticles. Sci. Technol. Food Ind. 2025, 46, 30–40. [Google Scholar] [CrossRef]
- He, X.; Yang, Y.; Yuan, X.; Sun, Y.; Li, Y. Anti-Nociceptive and Anti-Inflammatory Activities of the Ethyl Acetate Extract of Belamcanda chinensis (L.) Redouté in Raw 264.7 Cells in Vitro and Mouse Model in Vivo. J. Pain Res. 2022, 15, 1221–1232. [Google Scholar] [CrossRef] [PubMed]














| Zein:CAP | Particle Size (nm) | PDI | ζ-Potential (mV) | EE (%) | LC (μg/mg) |
|---|---|---|---|---|---|
| 2.5:1 | 203.05 ± 2.71 b | 0.138 ± 0.02 a | −44.9 ± 1.8 a | 54.03 ± 0.11 b | 184.57 ± 0.74 a |
| 5:1 | 209.52 ± 1.69 b | 0.129 ± 0.004 b | −44.4 ± 0.9 a | 38.06 ± 0.87 c | 68.48 ± 1.56 b |
| 10:1 | 243.36 ± 1.25 a | 0.109 ± 0.01 b | −40.5 ± 1.2 b | 61.75 ± 1.34 a | 57.89 ± 1.22 c |
| 20:1 | 192.66 ± 1.47 c | 0.128 ± 0.01 b | −43.6 ± 2.2 a | 33.21 ± 0.86 cd | 16.20 ± 0.42 d |
| 30:1 | 191.33 ± 2.04 c | 0.116 ± 0.003 b | −42.0 ± 1.5 ab | 31.85 ± 2.59 d | 10.68 ± 0.86 e |
| Group | Swelling Degree (SWD, mg) | Inhibition Rate (IR, %) |
|---|---|---|
| Control | 7.92 ± 1.03 | - |
| CAP | 4.63 ± 1.61 ** | 41.5% |
| DXM | 3.59 ± 1.66 ** | 54.7% |
| NP-L | 5.15 ± 1.28 ** | 35.0% |
| NP-M | 4.30 ± 1.28 ** | 45.7% |
| NP-H | 3.82 ± 1.35 ** | 51.8% |
| BP–Zein | 7.14 ± 1.13 | 15.8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, M.; Chen, L.; Hasimu, H.; Hu, M.; Yang, X. Preparation and Characterization of Brassica rapa L. Polysaccharide–Zein Nanoparticle Delivery System Loaded with Capsaicin. Molecules 2025, 30, 4459. https://doi.org/10.3390/molecules30224459
Yuan M, Chen L, Hasimu H, Hu M, Yang X. Preparation and Characterization of Brassica rapa L. Polysaccharide–Zein Nanoparticle Delivery System Loaded with Capsaicin. Molecules. 2025; 30(22):4459. https://doi.org/10.3390/molecules30224459
Chicago/Turabian StyleYuan, Mi, Lele Chen, Hamulati Hasimu, Mengying Hu, and Xiaojun Yang. 2025. "Preparation and Characterization of Brassica rapa L. Polysaccharide–Zein Nanoparticle Delivery System Loaded with Capsaicin" Molecules 30, no. 22: 4459. https://doi.org/10.3390/molecules30224459
APA StyleYuan, M., Chen, L., Hasimu, H., Hu, M., & Yang, X. (2025). Preparation and Characterization of Brassica rapa L. Polysaccharide–Zein Nanoparticle Delivery System Loaded with Capsaicin. Molecules, 30(22), 4459. https://doi.org/10.3390/molecules30224459
