Recent Progress of Chiral Mesoporous Silica Nanostructures: From Synthesis to Applications
Abstract
1. Introduction
2. Synthesis Strategy
2.1. Template-Directed Method
2.2. Chiral Transfer Strategy
2.3. Comparative Analysis of Synthesis Strategies
3. Application of Chiral Silica Nanostructures
3.1. Applications in Chiral Recognition
3.2. Applications in Chiral Separation
3.3. Application in Nanomedicine
3.4. Application in Drug Delivery
3.5. Application in Circularly Polarized Luminescence
3.6. Other Applications
4. Summary and Outlook
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Govan, J.E.; Gun’ko, Y.K. Recent progress in chiral inorganic nanostructures. SPR Nanosci. 2016, 3, 1–30. [Google Scholar] [CrossRef]
- Yin, Y.; Wei, W.; Zhang, K. Engineering chiral mesoporous silica nanoparticles: Template design and structural control for advanced applications. Supramol. Mater. V 2025, 4, 100095. [Google Scholar] [CrossRef]
- Ahn, H.-Y.; Yoo, S.; Cho, N.H.; Kim, R.M.; Kim, H.; Huh, J.-H.; Lee, S.; Nam, K.T. Bioinspired Toolkit Based on Intermolecular Encoder toward Evolutionary 4D Chiral Plasmonic Materials. Acc. Chem. Res. 2019, 52, 2768–2783. [Google Scholar] [CrossRef] [PubMed]
- Hao, C.; Xu, C.; Kuang, H. Chiral probes for biosensing. Chem. Commun. 2023, 59, 12959–12971. [Google Scholar] [CrossRef] [PubMed]
- Kotov, N.A.; Liz-Marzán, L.M.; Wang, Q. Chiral nanomaterials: Evolving rapidly from concepts to applications. Mater. Adv. 2022, 3, 3677–3679. [Google Scholar] [CrossRef]
- Cui, M.; Zhang, W.; Xie, L.; Chen, L.; Xu, L. Chiral Mesoporous Silica Materials: A Review on Synthetic Strategies and Applications. Molecules 2020, 25, 3899. [Google Scholar] [CrossRef]
- Gou, K.; Wang, Y.; Xie, L.; Guo, X.; Guo, Y.; Ke, J.; Wu, L.; Li, S.; Li, H. Synthesis, structural properties, biosafety and applications of chiral mesoporous silica nanostructures. Chem. Eng. J. 2021, 421, 127862. [Google Scholar] [CrossRef]
- Qiu, H.; Che, S. Chiral mesoporous silica: Chiral construction and imprinting via cooperative self-assembly of amphiphiles and silica precursors. Chem. Soc. Rev. 2011, 40, 1259–1268. [Google Scholar] [CrossRef]
- Shopsowitz, K.E.; Qi, H.; Hamad, W.Y.; MacLachlan, M.J. Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 2010, 468, 422–425. [Google Scholar] [CrossRef]
- Wang, B.; Chi, C.; Shan, W.; Zhang, Y.; Ren, N.; Yang, W.; Tang, Y. Chiral mesostructured silica nanofibers of MCM-41. Angew. Chem. 2006, 118, 2142–2144. [Google Scholar] [CrossRef]
- Che, S.; Liu, Z.; Ohsuna, T.; Sakamoto, K.; Terasaki, O.; Tatsumi, T. Synthesis and characterization of chiral mesoporous silica. Nature 2004, 429, 281–284. [Google Scholar] [CrossRef]
- Hano, N.; Zigon, N.; Kuppan, B.; Sturm, L.; Vanthuyne, N.; Pouget, E.; Nlate, S.; Bock, H.; Durola, F.; Avarvari, N.; et al. Hierarchical chirality observed from chiral supramolecular assembling of racemic and enantiopure helicene derivatives on silica nanohelix surfaces. Nanoscale 2025, 17, 5081–5089. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Battie, Y.; Okazaki, Y.; Ryu, N.; Pouget, E.; Nlate, S.; Sagawa, T.; Oda, R. Chiral optical scattering from helical and twisted silica nanoribbons. Chem. Commun. 2021, 57, 12024–12027. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Tian, J.; Poumellec, B.; Garcia-Caurel, E.; Ossikovski, R.; Zeng, X.; Lancry, M. Tailoring chiral optical properties by femtosecond laser direct writing in silica. Light Sci. Appl. 2023, 12, 46. [Google Scholar] [CrossRef]
- Levi, G.; Scolnik, Y.; Mastai, Y. Imprinting chirality in silica nanotubes by N-stearoyl-serine template. ACS Appl. Mater. Interfaces 2016, 8, 23356–23361. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Bi, L.; Wang, S.; Chen, Y.; Li, B.; Zhu, X.; Yang, Y. Preparation of helical mesoporous ethylene–silica nanofibers with lamellar mesopores on the surfaces. Chem. Commun. 2010, 46, 2680–2682. [Google Scholar] [CrossRef]
- Zhou, L.; Hong, G.; Qi, L.; Lu, Y. Seeding-growth of helical mesoporous silica nanofibers templated by achiral cationic surfactant. Langmuir 2009, 25, 6040–6044. [Google Scholar] [CrossRef]
- Ha, I.H.; Kim, R.M.; Han, J.H.; Im, S.W.; Jo, J.; Lee, Y.H.; Lv, J.; Lee, U.C.; Ahn, H.-Y.; Lee, H.-E.; et al. Synthesis of Chiral Ag, Pd, and Pt Helicoids inside Chiral Silica Mold. J. Am. Chem. Soc. 2024, 146, 30741–30747. [Google Scholar] [CrossRef]
- Xu, L.; Guo, M.; Hung, C.-T.; Shi, X.-L.; Yuan, Y.; Zhang, X.; Jin, R.-H.; Li, W.; Dong, Q.; Zhao, D. Chiral Skeletons of Mesoporous Silica Nanospheres to Mitigate Alzheimer’s β-Amyloid Aggregation. J. Am. Chem. Soc. 2023, 145, 7810–7819. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, F.; Jing, X.; Pan, M.; Liu, P.; Li, W.; Zhu, B.; Li, J.; Chen, H.; Wang, L. Complex silica composite nanomaterials templated with DNA origami. Nature 2018, 559, 593–598. [Google Scholar] [CrossRef]
- Wang, Y.; Qi, W.; Wang, J.; Li, Q.; Yang, X.; Zhang, J.; Liu, X.; Huang, R.; Wang, M.; Su, R. Columnar liquid crystals self-assembled by minimalistic peptides for chiral sensing and synthesis of ordered mesoporous silica. Chem. Mater. 2018, 30, 7902–7911. [Google Scholar] [CrossRef]
- Huang, Z.; Yao, Y.; Che, S. Design of Amphiphilic Peptide Geometry towards Biomimetic Self—Assembly of Chiral Mesoporous Silica. Chem. A Eur. J. 2014, 20, 3273–3276. [Google Scholar] [CrossRef]
- Duan, Y.; Che, S. Chiral mesostructured inorganic materials with optical chiral response. Adv. Mater. 2023, 35, 2205088. [Google Scholar] [CrossRef] [PubMed]
- Azhati, A.; Han, L.; Qu, Z.; Ren, Z.; Liu, X.; Chen, L.; Che, S. Insight on metal ions inducing chiral self-assembly of DNA in silica mineralization. Nano Res. 2023, 16, 3998–4003. [Google Scholar] [CrossRef]
- Cao, Y.; Kao, K.; Mou, C.; Han, L.; Che, S. Oriented chiral DNA–Silica film guided by a natural mica substrate. Angew. Chem. 2016, 128, 2077–2081. [Google Scholar] [CrossRef]
- Liu, B.; Cao, Y.; Huang, Z.; Duan, Y.; Che, S. Silica biomineralization via the self-assembly of helical biomolecules. Adv. Mater. 2015, 27, 479–497. [Google Scholar] [CrossRef]
- Liu, B.; Han, L.; Che, S. Silica mineralisation of DNA chiral packing: Helicity control and formation mechanism of impeller-like DNA–silica helical architectures. J. Mater. Chem. B 2013, 1, 2843–2850. [Google Scholar] [CrossRef]
- Manabe, K.; Tsai, S.-Y.; Kuretani, S.; Kometani, S.; Ando, K.; Agata, Y.; Ohta, N.; Chiang, Y.-W.; Lin, I.M.; Fujii, S.; et al. Chiral Silica with Preferred-Handed Helical Structure via Chiral Transfer. JACS Au 2021, 1, 375–379. [Google Scholar] [CrossRef]
- Guo, Z.; Du, Y.; Chen, Y.; Ng, S.-C.; Yang, Y. Understanding the mechanism of chirality transfer in the formation of a chiral MCM-41 mesoporous silica. J. Phys. Chem. C 2010, 114, 14353–14361. [Google Scholar] [CrossRef]
- Sujith, M.; Vishnu, E.K.; Sappati, S.; Oliyantakath Hassan, M.S.; Vijayan, V.; Thomas, K.G. Ligand-Induced Ground- and Excited-State Chirality in Silicon Nanoparticles: Surface Interactions Matter. J. Am. Chem. Soc. 2022, 144, 5074–5086. [Google Scholar] [CrossRef]
- Han, Y.; Kou, M.; Quan, K.; Wang, J.; Zhang, H.; Ihara, H.; Takafuji, M.; Qiu, H. Enantioselective Glutamic Acid Discrimination and Nanobiological Imaging by Chiral Fluorescent Silicon Nanoparticles. Anal. Chem. 2024, 96, 2173–2182. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Cheng, M.; Zhang, S.; Wu, Q.; Liu, Z.; Dhinakaran, M.K.; Liang, F.; Kovaleva, E.G.; Li, H. Recent advances in chiral discrimination on host–guest functionalized interfaces. Chem. Commun. 2021, 57, 7480–7492. [Google Scholar] [CrossRef]
- Dehghani, Z.; Akhond, M.; Jangi, S.R.H.; Absalan, G. Highly sensitive enantioselective spectrofluorimetric determination of R-/S-mandelic acid using l-tryptophan-modified amino-functional silica-coated N-doped carbon dots as novel high-throughput chiral nanoprobes. Talanta 2024, 266, 124977. [Google Scholar] [CrossRef] [PubMed]
- Kong, H.; Sun, X.; Yang, L.; Liu, X.; Yang, H.; Jin, R.-H. Chirality Detection by Raman Spectroscopy: The Case of Enantioselective Interactions between Amino Acids and Polymer-Modified Chiral Silica. Anal. Chem. 2020, 92, 14292–14296. [Google Scholar] [CrossRef]
- Bukhari, A.A.H. Preparation of molecularly imprinted silica particles with amino functionality for chiral separation of (±)-naproxen. Chirality 2023, 35, 311–322. [Google Scholar] [CrossRef]
- Huang, Y.; Vidal, X.; Garcia--Bennett, A.E. Chiral Resolution using Supramolecular--Templated Mesostructured Materials. Angew. Chem. 2019, 131, 10975–10978. [Google Scholar] [CrossRef]
- Levi, G.; Mastai, Y. Enantioselective Colloidosomes Based on Chiral Silica Nanoparticles. ChemNanoMat 2019, 5, 710–714. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Shi, C.; Zhao, L.; Li, Z.; Qiu, H. Chiral phenethylamine synergistic tricarboxylic acid modified β-cyclodextrin immobilized on porous silica for enantioseparation. Chin. Chem. Lett. 2023, 34, 107606. [Google Scholar] [CrossRef]
- Liu, Z.; Quan, K.; Li, H.; Chen, J.; Guan, M.; Qiu, H. Preparation of silica-based superficially porous silica and its application in enantiomer separations: A review. J. Anal. Test. 2021, 5, 242–257. [Google Scholar] [CrossRef]
- Cheng, M.; Zhu, F.; Xu, W.; Zhang, S.; Dhinakaran, M.K.; Li, H. Chiral nanochannels of ordered mesoporous silica constructed by a pillar[5]arene-based host–guest system. ACS Appl. Mater. Interfaces 2021, 13, 27305–27312. [Google Scholar] [CrossRef]
- Huang, Y.; Zeng, H.; Xie, L.; Gao, R.; Zhou, S.; Liang, Q.; Zhang, X.; Liang, K.; Jiang, L.; Kong, B. Super-Assembled Chiral Mesostructured Heteromembranes for Smart and Sensitive Couple-Accelerated Enantioseparation. J. Am. Chem. Soc. 2022, 144, 13794–13805. [Google Scholar] [CrossRef]
- Li, Y.-X.; Fu, S.-G.; Zhang, J.-H.; Xie, S.-M.; Li, L.; He, Y.-Y.; Zi, M.; Yuan, L.-M. A highly ordered chiral inorganic mesoporous material used as stationary phase for high-resolution gas chromatographic separations. J. Chromatogr. A 2018, 1557, 99–106. [Google Scholar] [CrossRef]
- Peng, B.; Fu, S.; Li, Y.; Zhang, J.; Xie, S.; Li, L.; Lyu, Y.; Duan, A.; Chen, X.; Yuan, L. Enantioseparation by HPLC using an inorganic chiral mesoporous silica with highly-ordered structure. Chem. Res. Chin. Univ. 2019, 35, 978–982. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, X.; Wang, Q.; He, P. Investigation of hydroxypropyl-β-cyclodextrin-based synergistic system with chiral nematic mesoporous silica as chiral stationary phase for enantiomeric separation in microchip electrophoresis. Talanta 2020, 218, 121121. [Google Scholar] [CrossRef]
- He, Y.Y.; Zhang, J.H.; Pu, Q.; Xie, S.M.; Li, Y.X.; Luo, L.; Chen, X.X.; Yuan, L.M. A novel chiral inorganic mesoporous silica used as a stationary phase in GC. Chirality 2019, 31, 1053–1059. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Li, H.; Shi, X.; Zhao, L.; Qiu, H. Chiral pillar[5]arene-functionalized silica microspheres: Synthesis, characterization and enantiomer separation. Chem. Commun. 2022, 58, 3362–3365. [Google Scholar] [CrossRef]
- Hong, T.; Zhou, Q.; Liu, Y.; Ji, Y.; Tan, S.; Zhou, W.; Cai, Z. Preparation of DNA nanoflower-modified capillary silica monoliths for chiral separation. Microchim. Acta 2024, 191, 584. [Google Scholar] [CrossRef]
- Wang, T.; Huang, X.-x.; Wu, L.-g.; Li, C.-j.; Zhu, D.-f. Fabrication of PVDF-blended ultrafiltration membranes incorporated by chiral mesoporous silica for enantioseparation. J. Ind. Eng. Chem. 2022, 109, 568–577. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Gou, K.; Kang, W.; Guo, X.; Zhu, K.; Li, S.; Li, H. pH/H2O2 dual-responsive chiral mesoporous silica nanorods coated with a biocompatible active targeting ligand for cancer therapy. ACS Appl. Mater. Interfaces 2021, 13, 35397–35409. [Google Scholar] [CrossRef]
- Li, S.; Wang, X.; Zhang, Z.; Wang, L.; Lin, F.; Wang, R.; Liu, X.; Sun, W.; Wang, P.; Xue, F. Uniformed mesoporous silica with unique chiral architecture for enhanced endocytosis and fluorescence imaging. Nano Res. 2025, 18, 94907353. [Google Scholar] [CrossRef]
- Xu, M.; Xin, W.; Xu, J.; Wang, A.; Ma, S.; Dai, D.; Wang, Y.; Yang, D.; Zhao, L.; Li, H. Biosilicification-mimicking chiral nanostructures for targeted treatment of inflammatory bowel disease. Nat. Commun. 2025, 16, 2551. [Google Scholar] [CrossRef]
- Fan, N.; Liu, R.; Ma, P.; Wang, X.; Li, C.; Li, J. The On-Off chiral mesoporous silica nanoparticles for delivering achiral drug in chiral environment. Colloids Surf. B Biointerfaces 2019, 176, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Cai, L.; Li, X.; Lin, K.; Wu, X.; Wang, Z.; Yu, D.; Li, J. Contribution of molecular chiral mesoporous silica nanoparticles in delivering drugs with chiral recognition ability. Mater. Sci. Eng. B 2022, 284, 115864. [Google Scholar] [CrossRef]
- Jiang, X.; Cui, M.; Zhang, W.; Xie, L.; Xu, L. Design of chiral mesoporous silica nanorods using ursodeoxycholic acid/chenodeoxycholic acid and CTAB as templates for chiral-selective release of achiral drugs. Mater. Lett. 2021, 285, 129144. [Google Scholar] [CrossRef]
- Li, J.; Xu, L.; Yang, B.; Bao, Z.; Pan, W.; Li, S. Biomimetic synthesized chiral mesoporous silica: Structures and controlled release functions as drug carrier. Mater. Sci. Eng. C 2015, 55, 367–372. [Google Scholar] [CrossRef]
- Rahman, M.; Singh, J.; Aodah, A.; Alrobaian, M.; Alruwaili, N.K.; Almalki, W.H.; Almujri, S.S.; Rab, S.O.; Madkhali, O.A.; Sahoo, A. Chiral nanosystem and chiral supraparticles for drug delivery: An expert opinion. Expert Opin. Drug Deliv. 2025, 22, 143–162. [Google Scholar] [CrossRef]
- Susanto, J.A.Y.; Widagdo, A.J.; Wijanarko, M.G.; Yuliana, M.; Hartono, S.B.; Santoso, S.P.; Kadja, G.T.M.; Wijaya, C.J.; Ayucitra, A.; Retnoningtyas, E.S. Twisted-chiral mesoporous silica from coconut husk waste designed for high-performance drug uptake and sustained release. Microporous Mesoporous Mater. 2024, 367, 112973. [Google Scholar] [CrossRef]
- Wang, Y.; Li, W.; Liu, T.; Xu, L.; Guo, Y.; Ke, J.; Li, S.; Li, H. Design and preparation of mesoporous silica carriers with chiral structures for drug release differentiation. Mater. Sci. Eng. C 2019, 103, 109737. [Google Scholar] [CrossRef] [PubMed]
- Yan, N.; Wu, X.; Wang, Z.; Wu, J.; Zhao, T.; Xue, Y.; Zhao, W.; Wang, L.; Wu, Z.; Zhang, W. Synthesis and drug loading and delivery applications of chiral mesoporous silica nanoparticles. Chin. J. Tissue Eng. Res. 2023, 27, 4890. [Google Scholar]
- Xin, W.; Wang, Y.; Bian, Y.; Lin, J.; Weng, W.; Zhao, X.; Gou, K.; Guo, X.; Li, H. Facile synthesis of PEI-based crystalline templated mesoporous silica with molecular chirality for improved oral delivery of the poorly water-soluble drug. Drug Deliv. 2021, 28, 894–905. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, C.; Fan, N.; Li, J.; Zhang, H.; Shang, L.; He, Z.; Sun, J. Amino functionalized chiral mesoporous silica nanoparticles for improved loading and release of poorly water-soluble drug. Asian J. Pharm. Sci. 2019, 14, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Gou, K.; Yang, B.; Wang, Y.; Pu, X.; Li, S.; Li, H. Enlarged pore size chiral mesoporous silica nanoparticles loaded poorly water-soluble drug perform superior delivery effect. Molecules 2019, 24, 3552. [Google Scholar] [CrossRef]
- Gao, Z.; Lv, X.; Fu, Y.; Zang, X.; Sun, Y.; Li, S.; Zhang, H.; Qiao, S.; Wang, L.; Sun, Y. Chiral mesoporous silica synthesized by a facile strategy for loading and releasing poorly water-soluble drug. Drug Dev. Ind. Pharm. 2020, 46, 1177–1184. [Google Scholar] [CrossRef]
- Gou, K.; Guo, X.; Wang, Y.; Wang, Y.; Sang, Z.; Ma, S.; Guo, Y.; Xie, L.; Li, S.; Li, H. Chiral microenvironment-responsive mesoporous silica nanoparticles for delivering indometacin with chiral recognition function. Mater. Des. 2022, 214, 110359. [Google Scholar] [CrossRef]
- Li, J.; Du, X.; Zheng, N.; Xu, L.; Xu, J.; Li, S. Contribution of carboxyl modified chiral mesoporous silica nanoparticles in delivering doxorubicin hydrochloride in vitro: pH-response controlled release, enhanced drug cellular uptake and cytotoxicity. Colloids Surf. B Biointerfaces 2016, 141, 374–381. [Google Scholar] [CrossRef] [PubMed]
- Gou, K.; Xin, W.; Lv, J.; Ma, Z.; Yang, J.; Zhao, L.; Cheng, Y.; Chen, X.; Zeng, R.; Li, H. A pH-responsive chiral mesoporous silica nanoparticles for delivery of doxorubicin in tumor-targeted therapy. Colloids Surf. B Biointerfaces 2023, 221, 113027. [Google Scholar] [CrossRef]
- Liu, R.; Wang, X.; Fan, N.; Song, H.; Ma, P.; Li, C.; Li, J.; Sun, J. Superiority of Chiral-handed mesoporous silica nanoparticles in delivering Nimesulide. Mater. Sci. Eng. B 2021, 269, 115161. [Google Scholar] [CrossRef]
- Guo, Y.; Wu, L.; Gou, K.; Wang, Y.; Hu, B.; Pang, Y.; Li, S.; Li, H. Functional mesoporous silica nanoparticles for delivering nimesulide with chiral recognition performance. Microporous Mesoporous Mater. 2020, 294, 109862. [Google Scholar] [CrossRef]
- Wu, L.; Gou, K.; Guo, X.; Guo, Y.; Chen, M.; Hou, J.; Li, S.; Li, H. Dual response to pH and chiral microenvironments for the release of a flurbiprofen-loaded chiral self-assembled mesoporous silica drug delivery system. Colloids Surf. B Biointerfaces 2021, 199, 111501. [Google Scholar] [CrossRef]
- Jiang, X.; Han, F.; Cui, M.; Zhang, W.; Wang, Y.; Xi, Z.; Xu, L. Alanine modified chiral-responsive mesoporous silica as nanocarriers for improved oral bioavailability of carvedilol. Microporous Mesoporous Mater. 2022, 330, 111634. [Google Scholar] [CrossRef]
- Chen, X.; Cheng, Y.; Pan, Q.; Wu, L.; Hao, X.; Bao, Z.; Li, X.; Yang, M.; Luo, Q.; Li, H. Chiral Nanosilica Drug Delivery Systems Stereoselectively Interacted with the Intestinal Mucosa to Improve the Oral Adsorption of Insoluble Drugs. ACS Nano 2023, 17, 3705–3722. [Google Scholar] [CrossRef] [PubMed]
- Xin, W.; Wang, L.; Lin, J.; Wang, Y.; Han, Y.; Bao, Z.; Zong, S.; Cheng, Y.; Chen, X.; Zhao, L. Mesoporous silica nanoparticles with chiral pattern topological structure function as “antiskid tires” on the intestinal mucosa to facilitate oral drugs delivery. Asian J. Pharm. Sci. 2023, 18, 100795. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, L.; Dai, Y.; Xu, M.; Zhou, R.; Zhou, B.; Gou, K.; Zeng, R.; Xu, L.; Li, H. Enantioselective Oral Absorption of Molecular Chiral Mesoporous Silica Nanoparticles. Adv. Mater. 2023, 35, 2307900. [Google Scholar] [CrossRef]
- Wang, Y.; Li, W.; He, Z.; Yin, W.; Chen, X.; Zhang, J.; Li, H. Multichiral Mesoporous Silica Screws with Chiral Differential Mucus Penetration and Mucosal Adhesion for Oral Drug Delivery. ACS Nano 2024, 18, 16166–16183. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Chen, W.; Okazaki, Y.; Battie, Y.; Brocard, L.; Decossas, M.; Pouget, E.; Müller-Buschbaum, P.; Kauffmann, B.; Pathan, S.; et al. Optically Active Perovskite CsPbBr3 Nanocrystals Helically Arranged on Inorganic Silica Nanohelices. Nano Lett. 2020, 20, 8453–8460. [Google Scholar] [CrossRef]
- Liu, P.; Battie, Y.; Decossas, M.; Tan, S.; Pouget, E.; Okazaki, Y.; Sagawa, T.; Oda, R. Chirality Induction to CdSe Nanocrystals Self-Organized on Silica Nanohelices: Tuning Chiroptical Properties. ACS Nano 2021, 15, 16411–16421. [Google Scholar] [CrossRef]
- Li, Z.; Yan, Y.; Ma, W.; Zhao, J.; Fan, Y.; Wang, Y. Chirality Transfer from Chiral Mesoporous Silica to Perovskite CsPbBr3. Nanocrystals: The Role of Chiral Confinement. CCS Chem. 2022, 4, 3447–3454. [Google Scholar] [CrossRef]
- Harada, T.; Yanagita, H.; Ryu, N.; Okazaki, Y.; Kuwahara, Y.; Takafuji, M.; Nagaoka, S.; Ihara, H.; Oda, R. Lanthanide ion-doped silica nanohelix: A helical inorganic network acts as a chiral source for metal ions. Chem. Commun. 2021, 57, 4392–4395. [Google Scholar] [CrossRef]
- Sakai, H.; Yung, T.-M.; Mure, T.; Kurono, N.; Fujii, S.; Nakamura, Y.; Hayakawa, T.; Li, M.-C.; Hirai, T. Controlling Circularly Polarized Luminescence Using Helically Structured Chiral Silica as a Nanosized Fused Quartz Cell. JACS Au 2023, 3, 2698–2702. [Google Scholar] [CrossRef]
- Knezevic, M.; Hoang, T.H.; Wang, C.; Johar, M.; Manjón, A.G.; Rauret, D.L.; Scheu, C.; Erard, M.; Berardan, D.; Arbiol, J.; et al. Amplified Photoluminescence of CsPbX3 Perovskites Confined in Silica Film with a Chiral Nematic Structure. Adv. Mater. Interfaces 2023, 11, 2300636. [Google Scholar] [CrossRef]
- Liu, P.; Battie, Y.; Kimura, T.; Okazaki, Y.; Pranee, P.; Wang, H.; Pouget, E.; Nlate, S.; Sagawa, T.; Oda, R. Chiral Perovskite Nanocrystal Growth inside Helical Hollow Silica Nanoribbons. Nano Lett. 2023, 23, 3174–3180. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zheng, H.; Ma, X.; Su, L.; Gao, X.; Tang, Z.; Xu, Y. On—Demand Circularly Polarized Room—Temperature Phosphorescence in Chiral Nematic Nanoporous Silica Films. Adv. Opt. Mater. 2022, 10, 2102015. [Google Scholar] [CrossRef]
- Alharthi, S.; Ali, A.; Santali, E.Y. Synthesis of chiral mesoporous silica nanoparticles for the adsorptive removal of the chiral insecticide sulfoxaflor from water. Nanoscale Adv. 2025, 7, 1432–1442. [Google Scholar] [CrossRef]
- Ye, Z.; Qian, J.; Zhang, J.; Yan, W. Delivery of chiral D-cysteine by pH-responsive mesoporous silica nanoparticles for effective bacterial inhibition. J. Microbiol. Methods 2023, 211, 106776. [Google Scholar] [CrossRef]
- Shukla, M.S.; Hande, P.E.; Chandra, S. Porous Silica Support for Immobilizing Chiral Metal Catalyst: Unravelling the Activity of Catalyst on Asymmetric Organic Transformations. ChemistrySelect 2022, 7, e202200549. [Google Scholar] [CrossRef]
- Negrín-Montecelo, Y.; Movsesyan, A.; Gao, J.; Burger, S.; Wang, Z.M.; Nlate, S.; Pouget, E.; Oda, R.; Comesaña-Hermo, M.; Govorov, A.O.; et al. Chiral Generation of Hot Carriers for Polarization-Sensitive Plasmonic Photocatalysis. J. Am. Chem. Soc. 2022, 144, 1663–1671. [Google Scholar] [CrossRef]
- Lakhani, P.; Modi, C.K. Spick-and-span protocol for designing of silica-supported enantioselective organocatalyst for the asymmetric aldol reaction. Mol. Catal. 2022, 525, 112359. [Google Scholar] [CrossRef]
- Ishitani, H.; Kanai, K.; Yoo, W.J.; Yoshida, T.; Kobayashi, S. A Nickel—Diamine/Mesoporous Silica Composite as a Heterogeneous Chiral Catalyst for Asymmetric 1,4—Addition Reactions. Angew. Chem. 2019, 131, 13447–13451. [Google Scholar] [CrossRef]
- Deimling, M.; Kousik, S.R.; Abitaev, K.; Frey, W.; Sottmann, T.; Koynov, K.; Laschat, S.; Atanasova, P. Hierarchical silica inverse opals as a catalyst support for asymmetric molecular heterogeneous catalysis with chiral Rh-diene complexes. ChemCatChem 2021, 13, 2242–2252. [Google Scholar] [CrossRef]












| Synthesis Method | Key Parameters | Resulting Chiral Structure | Advantages | Limitations | Typical Applications |
|---|---|---|---|---|---|
| Hard Template | Template morphology, Etching condition | Helical pores, Nanoscale chirality | Precise structural control | Complex process, Template removal | Chiral plasmonics, Nanomolding |
| Soft Template | Surfactant/Biopolymer type, Concentration, pH | Molecular-scale chiral skeleton, Mesoscale helical channels | Diversity, Tunability | Sensitivity to synthesis conditions | Drug delivery, Chiral separation |
| Molecular Grafting | Ligand type, Surface bonding chemistry | Molecular chiral surface (No long-range order) | Simple, Water-soluble NPs | Weak chirality, Stability issues | Chiral sensing, Bioimaging |
| System/Material | Synthesis Method | Analyte | Key Performance Metric | Ref. |
|---|---|---|---|---|
| Pillar[5]arene-silica | Grafting | Alanine/Valine | Enantioselectivity (α) > 1.5 | [46] |
| DNA nanoflower monolith | Biomolecular template | Atenolol, etc. | Resolution (Rs) > 1.78 | [47] |
| CMS/PVDF membrane | Soft template | DL-Tryptophan | Separation efficiency: 73% | [48] |
| Chiral mesoporous silica | Soft template | Pharmaceuticals | Chromatographic resolution: 1.2–2.5 | [43] |
| Drug | Drug Loading Capacity (wt%) | Release Profile | Key Enhancement | Ref. |
|---|---|---|---|---|
| Doxorubicin | ~24% | Sustained release (~60% in 24 h, SIF); pH-responsive; chiral-dependent release | Enhanced mucus penetration, cellular uptake, intestinal transport and oral bioavailability; improved antitumor effect | [73] |
| Flurbiprofen | ~12% | pH-dependent | Superior anti-inflammatory efficacy | [74] |
| Carvedilol | ~19.86% | Improved sustained release | Significantly improves oral bioavailability (230.18%) | [70] |
| Indometacin | ~32% | Chiral-recognitive release | Differential release for enantiomers | [64] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, C. Recent Progress of Chiral Mesoporous Silica Nanostructures: From Synthesis to Applications. Molecules 2025, 30, 4455. https://doi.org/10.3390/molecules30224455
Hao C. Recent Progress of Chiral Mesoporous Silica Nanostructures: From Synthesis to Applications. Molecules. 2025; 30(22):4455. https://doi.org/10.3390/molecules30224455
Chicago/Turabian StyleHao, Changlong. 2025. "Recent Progress of Chiral Mesoporous Silica Nanostructures: From Synthesis to Applications" Molecules 30, no. 22: 4455. https://doi.org/10.3390/molecules30224455
APA StyleHao, C. (2025). Recent Progress of Chiral Mesoporous Silica Nanostructures: From Synthesis to Applications. Molecules, 30(22), 4455. https://doi.org/10.3390/molecules30224455