Development of Long-Term Stable MXene-Based Gas Sensing Material
Abstract
1. Introduction

2. Factors Affecting MXene Degradation
2.1. Oxidation Mechanism

2.2. Hydrolysis Mechanism

3. Long-Term Stability Improvement Strategies
3.1. Optimize the Preparation Method

3.2. Surface Protection and Modification


3.3. Composite Construction



3.4. Other Improvement Strategies


4. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kumar, A.N.; Pal, K. Amine-Functionalized Stable Nb2CTx MXene toward Room Temperature Ultrasensitive NO2 Gas Sensor. Mater. Adv. 2022, 3, 5151–5162. [Google Scholar] [CrossRef]
- Zhou, Q.; Zeng, W.; Chen, W.; Xu, L.; Kumar, R.; Umar, A. High Sensitive and Low-Concentration Sulfur Dioxide (SO2) Gas Sensor Application of Heterostructure NiO-ZnO Nanodisks. Sens. Actuators B Chem. 2019, 298, 126870. [Google Scholar] [CrossRef]
- Wu, Z.-Y.; Liu, Y.-F.; Zhang, C.; Zheng, X.-H. Electron Sensitization and Chemical Sensitization of ZnWO4/WO3 Nanorod Heterojunctions for High Performance Triethylamine Sensor. Sens. Actuators B Chem. 2025, 424, 136870. [Google Scholar] [CrossRef]
- Zhang, D.; Jiang, J.; Wang, T.; Li, F.; Yu, H.; Dong, X.; Yang, Y. Flexible Room Temperature Gas Sensor Based on α-Fe2O3/Ti3C2Tx MXene Composites for Ppb-Level H2S Detection. Sens. Actuators B Chem. 2024, 421, 136543. [Google Scholar] [CrossRef]
- Hermawan, A.; Zhang, B.; Taufik, A.; Asakura, Y.; Hasegawa, T.; Zhu, J.; Shi, P.; Yin, S. CuO Nanoparticles/Ti3C2Tx MXene Hybrid Nanocomposites for Detection of Toluene Gas. ACS Appl. Nano Mater. 2020, 3, 4755–4766. [Google Scholar] [CrossRef]
- Shin, K.Y.; Mirzaei, A.; Oum, W.; Kim, E.B.; Kim, H.M.; Moon, S.; Kim, S.S.; Kim, H.W. Enhanced NO2 Gas Response of ZnO–Ti3C2Tx MXene Nanocomposites by Microwave Irradiation. Sens. Actuators B Chem. 2024, 409, 135605. [Google Scholar] [CrossRef]
- Lin, L.-Z.; Chen, J.-H.; Yu, Y.-J.; Dong, G.-H. Ambient Air Pollution and Infant Health: A Narrative Review. eBioMedicine 2023, 93, 104609. [Google Scholar] [CrossRef]
- Bai, H.; Guo, H.; Wang, J.; Dong, Y.; Liu, B.; Guo, F.; Chen, D.; Zhang, R.; Zheng, Y. Hydrogen Gas Sensor Based on SnO2 Nanospheres Modified with Sb2O3 Prepared by One-Step Solvothermal Route. Sens. Actuators B Chem. 2021, 331, 129441. [Google Scholar] [CrossRef]
- Luo, S.; Chen, R.; Wang, J.; Xiang, L. ZnO/Pd@ZIF-7-Based Gas Sensors for Selective Methane Sensing. ACS Appl. Nano Mater. 2023, 6, 5808–5816. [Google Scholar] [CrossRef]
- Wang, J.; Hu, C.; Xia, Y.; Zhang, B. Mesoporous ZnO Nanosheets with Rich Surface Oxygen Vacancies for UV-Activated Methane Gas Sensing at Room Temperature. Sens. Actuators B Chem. 2021, 333, 129547. [Google Scholar] [CrossRef]
- Li, Z.; Yao, Z.; Haidry, A.A.; Plecenik, T.; Xie, L.; Sun, L.; Fatima, Q. Resistive-Type Hydrogen Gas Sensor Based on TiO2: A Review. Int. J. Hydrogen Energy 2018, 43, 21114–21132. [Google Scholar] [CrossRef]
- Najafi, P.; Ghaemi, A. Chemiresistor Gas Sensors: Design, Challenges, and Strategies: A Comprehensive Review. Chem. Eng. J. 2024, 498, 154999. [Google Scholar] [CrossRef]
- Hong, T.; Culp, J.T.; Kim, K.-J.; Devkota, J.; Sun, C.; Ohodnicki, P.R. State-of-the-Art of Methane Sensing Materials: A Review and Perspectives. TrAC Trends Anal. Chem. 2020, 125, 115820. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Kuai, Y.; Jian, M. “Visualization” Gas—Gas Sensors Based on High Performance Novel MXenes Materials. Small 2024, 20, 2305250. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, C.; Zhang, X.; Jiang, L.; Wu, R. Advances in Two-Dimensional Layered Materials for Gas Sensing. Mater. Sci. Eng. R Rep. 2024, 161, 100872. [Google Scholar] [CrossRef]
- Duan, X.; Xu, D.; Jia, W.; Sun, B.; Li, R.; Yan, R.; Zhao, W. Pt and Black Phosphorus Co-Modified Flower-like WS2 Composites for Fast NO2 Gas Detection at Low Temperature. Nanoscale 2024, 16, 2478–2489. [Google Scholar] [CrossRef]
- Govind, A.; Bharathi, P.; Mathankumar, G.; Mohan, M.K.; Archana, J.; Harish, S.; Navaneethan, M. Enhanced Charge Transfer in 2D Carbon- Rich g-C3N4 Nanosheets for Highly Sensitive NO2 Gas Sensor Applications. Diam. Relat. Mater. 2022, 128, 109205. [Google Scholar] [CrossRef]
- Tian, W.; Wang, Y.; Zhang, Y.; Cao, J.; Guan, R.-F. WO3 Nanoflakes Coupled with Hexagonal Boron Nitride Nanosheets for Triethylamine Sensing. ACS Appl. Nano Mater. 2021, 4, 6316–6327. [Google Scholar] [CrossRef]
- Yang, C.-R.; Cheng, P.-W.; Tseng, S.-F. Highly Responsive and Selective NO2 Gas Sensors Based on Titanium Metal Organic Framework (Ti-MOF) with Pyromellitic Acid. Sens. Actuators Phys. 2023, 354, 114301. [Google Scholar] [CrossRef]
- Kim, S.J.; Koh, H.-J.; Ren, C.E.; Kwon, O.; Maleski, K.; Cho, S.-Y.; Anasori, B.; Kim, C.-K.; Choi, Y.-K.; Kim, J.; et al. Metallic Ti3C2Tx MXene Gas Sensors with Ultrahigh Signal-to-Noise Ratio. ACS Nano 2018, 12, 986–993. [Google Scholar] [CrossRef]
- VahidMohammadi, A.; Rosen, J.; Gogotsi, Y. The World of Two-Dimensional Carbides and Nitrides (MXenes). Science 2021, 372, eabf1581. [Google Scholar] [CrossRef]
- Zhang, S.; Meng, L.; Hu, Y.; Yuan, Z.; Li, J.; Liu, H. Green Synthesis and Biosafety Assessment of MXene. Small 2024, 20, 2308600. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, Y.; Sun, H.; Zhou, J.; Yang, F.; Li, H.; Chen, H.; Chen, Y.; Liu, Z.; Qiu, Z.; et al. Progress and Perspective: MXene and MXene-Based Nanomaterials for High-Performance Energy Storage Devices. Adv. Electron. Mater. 2021, 7, 2000967. [Google Scholar] [CrossRef]
- Feng, C.; Ou, K.; Zhang, Z.; Liu, Y.; Huang, Y.; Wang, Z.; Lv, Y.; Miao, Y.-E.; Wang, Y.; Lan, Q.; et al. Dual-Layered Covalent Organic Framework/MXene Membranes with Short Paths for Fast Water Treatment. J. Membr. Sci. 2022, 658, 120761. [Google Scholar] [CrossRef]
- Yadav, M.; Kumar, M.; Sharma, A. Review of Ti3C2Tx MXene Nanosheets and Their Applications. ACS Appl. Nano Mater. 2024, 7, 9847–9867. [Google Scholar] [CrossRef]
- Kou, Y.; Hua, L.; Chen, W.-J.; Xu, X.; Song, L.; Yu, S.; Lu, Z. Material Design and Application Progress of Flexible Chemiresistive Gas Sensors. J. Mater. Chem. A 2024, 12, 21583–21604. [Google Scholar] [CrossRef]
- Zhou, H.; Chen, Z.; López, A.V.; López, E.D.; Lam, E.; Tsoukalou, A.; Willinger, E.; Kuznetsov, D.A.; Mance, D.; Kierzkowska, A.; et al. Engineering the Cu/Mo2CTx (MXene) Interface to Drive CO2 Hydrogenation to Methanol. Nat. Catal. 2021, 4, 860–871. [Google Scholar] [CrossRef]
- Liu, N.; Li, Q.; Wan, H.; Chang, L.; Wang, H.; Fang, J.; Ding, T.; Wen, Q.; Zhou, L.; Xiao, X. High-Temperature Stability in Air of Ti3C2Tx MXene-Based Composite with Extracted Bentonite. Nat. Commun. 2022, 13, 5551. [Google Scholar] [CrossRef]
- Tan, A.Y.S.; Awan, H.T.A.; Cheng, F.; Zhang, M.; Tan, M.T.T.; Manickam, S.; Khalid, M.; Muthoosamy, K. Recent Advances in the Use of MXenes for Photoelectrochemical Sensors. Chem. Eng. J. 2024, 482, 148774. [Google Scholar] [CrossRef]
- Kruger, D.D.; García, H.; Primo, A. Molten Salt Derived MXenes: Synthesis and Applications. Adv. Sci. 2024, 11, 2307106. [Google Scholar] [CrossRef]
- Soomro, R.A.; Zhang, P.; Fan, B.; Wei, Y.; Xu, B. Progression in the Oxidation Stability of MXenes. Nano-Micro Lett. 2023, 15, 108. [Google Scholar] [CrossRef]
- Cao, F.; Zhang, Y.; Wang, H.; Khan, K.; Tareen, A.K.; Qian, W.; Zhang, H.; Ågren, H. Recent Advances in Oxidation Stable Chemistry of 2D MXenes. Adv. Mater. 2022, 34, 2107554. [Google Scholar] [CrossRef]
- Li, J.; Chen, X.; Zhu, X.; Jiang, Y.; Chang, X.; Sun, S. Two-Dimensional Transition Metal MXene-Based Gas Sensors: A Review. Chin. Chem. Lett. 2024, 35, 108286. [Google Scholar] [CrossRef]
- Xia, Q.; Fan, Y.; Li, S.; Zhou, A.; Shinde, N.; Mane, R.S. MXene-Based Chemical Gas Sensors: Recent Developments and Challenges. Diam. Relat. Mater. 2023, 131, 109557. [Google Scholar] [CrossRef]
- Lee, E.; VahidMohammadi, A.; Yoon, Y.S.; Beidaghi, M.; Kim, D.-J. Two-Dimensional Vanadium Carbide MXene for Gas Sensors with Ultrahigh Sensitivity Toward Nonpolar Gases. ACS Sens. 2019, 4, 1603–1611. [Google Scholar] [CrossRef]
- Li, Y.; Shao, H.; Lin, Z.; Lu, J.; Liu, L.; Duployer, B.; Persson, P.O.Å.; Eklund, P.; Hultman, L.; Li, M.; et al. A General Lewis Acidic Etching Route for Preparing MXenes with Enhanced Electrochemical Performance in Non-Aqueous Electrolyte. Nat. Mater. 2020, 19, 894–899. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, H.; Xu, Z.; Li, Z.; Zhang, L.; Wan, P. Flexible Conformally Bioadhesive MXene Hydrogel Electronics for Machine Learning-Facilitated Human-Interactive Sensing. Adv. Mater. 2024, 36, 2401035. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, Z.; Liang, T.; Zheng, D.; Yang, Z.; Wang, Z.; Zhou, J.; Wang, S. The Mechanism of Room-Temperature Oxidation of a HF-Etched Ti3C2Tx MXene Determined via Environmental Transmission Electron Microscopy and Molecular Dynamics. InfoMat 2024, 6, e12536. [Google Scholar] [CrossRef]
- Cao, W.; Nie, J.; Cao, Y.; Gao, C.; Wang, M.; Wang, W.; Lu, X.; Ma, X.; Zhong, P. A Review of How to Improve Ti3C2Tx MXene Stability. Chem. Eng. J. 2024, 496, 154097. [Google Scholar] [CrossRef]
- Persson, I.; Halim, J.; Hansen, T.W.; Wagner, J.B.; Darakchieva, V.; Palisaitis, J.; Rosen, J.; Persson, P.O.Å. How Much Oxygen Can a MXene Surface Take Before It Breaks? Adv. Funct. Mater. 2020, 30, 1909005. [Google Scholar] [CrossRef]
- Mashtalir, O.; Cook, K.M.; Mochalin, V.N.; Crowe, M.; Barsoum, M.W.; Gogotsi, Y. Dye Adsorption and Decomposition on Two-Dimensional Titanium Carbide in Aqueous Media. J. Mater. Chem. A 2014, 2, 14334–14338. [Google Scholar] [CrossRef]
- Yang, X.; Yao, Y.; Wang, Q.; Zhu, K.; Ye, K.; Wang, G.; Cao, D.; Yan, J. 3D Macroporous Oxidation-Resistant Ti3C2Tx MXene Hybrid Hydrogels for Enhanced Supercapacitive Performances with Ultralong Cycle Life. Adv. Funct. Mater. 2022, 32, 2109479. [Google Scholar] [CrossRef]
- Zhang, C.J.; Pinilla, S.; McEvoy, N.; Cullen, C.P.; Anasori, B.; Long, E.; Park, S.-H.; Seral-Ascaso, A.; Shmeliov, A.; Krishnan, D.; et al. Oxidation Stability of Colloidal Two-Dimensional Titanium Carbides (MXenes). Chem. Mater. 2017, 29, 4848–4856. [Google Scholar] [CrossRef]
- Wu, T.; Kent, P.R.C.; Gogotsi, Y.; Jiang, D. How Water Attacks MXene. Chem. Mater. 2022, 34, 4975–4982. [Google Scholar] [CrossRef]
- Hou, P.; Tian, Y.; Xie, Y.; Du, F.; Chen, G.; Vojvodic, A.; Wu, J.; Meng, X. Unraveling the Oxidation Behaviors of MXenes in Aqueous Systems by Active-Learning-Potential Molecular-Dynamics Simulation. Angew. Chem. Int. Ed. 2023, 62, e202304205. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Z.; Qiu, J. Stabilizing MXene by Hydration Chemistry in Aqueous Solution. Angew. Chem. Int. Ed. 2021, 60, 26587–26591. [Google Scholar] [CrossRef]
- Tian, Y.; Hou, P.; Zhang, H.; Xie, Y.; Chen, G.; Li, Q.; Du, F.; Vojvodic, A.; Wu, J.; Meng, X. Theoretical Insights on Potential-Dependent Oxidation Behaviors and Antioxidant Strategies of MXenes. Nat. Commun. 2024, 15, 10099. [Google Scholar] [CrossRef]
- Habib, T.; Zhao, X.; Shah, S.A.; Chen, Y.; Sun, W.; An, H.; Lutkenhaus, J.L.; Radovic, M.; Green, M.J. Oxidation Stability of Ti3C2Tx MXene Nanosheets in Solvents and Composite Films. npj 2D Mater. Appl. 2019, 3, 8. [Google Scholar] [CrossRef]
- Jin, Y.H.; Han, J.-H.; Park, J.; Kim, M.; Seok, S.-H.; Chae, Y.; Sim, Y.; Seo, S.; Lee, H.; Wang, J.; et al. Water- and Oxidation-Resistant MXenes for Advanced Electromagnetic Interference Shielding Applications. InfoMat 2025, 7, e70034. [Google Scholar] [CrossRef]
- Bai, W.; Shi, L.; Li, Z.; Liu, D.; Liang, Y.; Han, B.; Qi, J.; Li, Y. Recent Progress on the Preparation and Application in Photocatalysis of 2D MXene-Based Materials. Mater. Today Energy 2024, 41, 101547. [Google Scholar] [CrossRef]
- Liu, P.; Pan, R.; Li, B.; Su, Z.; Lin, B.; Tong, M. Mild and Efficient Method for the In Situ Preparation of High-Quality MXene Materials Enabled by Hexafluoro Complex Anion Contained Salts Etching. Adv. Funct. Mater. 2024, 34, 2308532. [Google Scholar] [CrossRef]
- Xu, C.; Wang, L.; Liu, Z.; Chen, L.; Guo, J.; Kang, N.; Ma, X.-L.; Cheng, H.-M.; Ren, W. Large-Area High-Quality 2D Ultrathin Mo2C Superconducting Crystals. Nat. Mater. 2015, 14, 1135–1141. [Google Scholar] [CrossRef]
- Yue, F.; Xiang, M.; Zheng, J.; Zhu, J.; Wei, J.; Yang, P.; Shi, H.; Dong, Q.; Ding, W.; Chen, C.; et al. One-Step Gas-Phase Syntheses of Few-Layered Single-Phase Ti2NCl2 and Ti2CCl2 MXenes with High Stabilities. Nat. Commun. 2024, 15, 10334. [Google Scholar] [CrossRef]
- Naguib, M.; Barsoum, M.W.; Gogotsi, Y. Ten Years of Progress in the Synthesis and Development of MXenes. Adv. Mater. 2021, 33, 2103393. [Google Scholar] [CrossRef]
- Zhou, C.; Zhao, X.; Xiong, Y.; Tang, Y.; Ma, X.; Tao, Q.; Sun, C.; Xu, W. A Review of Etching Methods of MXene and Applications of MXene Conductive Hydrogels. Eur. Polym. J. 2022, 167, 111063. [Google Scholar] [CrossRef]
- Lim, K.R.G.; Shekhirev, M.; Wyatt, B.C.; Anasori, B.; Gogotsi, Y.; Seh, Z.W. Fundamentals of MXene Synthesis. Nat. Synth. 2022, 1, 601–614. [Google Scholar] [CrossRef]
- Alhabeb, M.; Maleski, K.; Mathis, T.S.; Sarycheva, A.; Hatter, C.B.; Uzun, S.; Levitt, A.; Gogotsi, Y. Selective Etching of Silicon from Ti3SiC2 (MAX) To Obtain 2D Titanium Carbide (MXene). Angew. Chem. Int. Ed. 2018, 57, 5444–5448. [Google Scholar] [CrossRef]
- Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253. [Google Scholar] [CrossRef]
- Wang, X.; Garnero, C.; Rochard, G.; Magne, D.; Morisset, S.; Hurand, S.; Chartier, P.; Rousseau, J.; Cabioc’h, T.; Coutanceau, C.; et al. A New Etching Environment (FeF3/HCl) for the Synthesis of Two-Dimensional Titanium Carbide MXenes: A Route towards Selective Reactivity vs. Water. J. Mater. Chem. A 2017, 5, 22012–22023. [Google Scholar] [CrossRef]
- Liu, F.; Zhou, A.; Chen, J.; Jia, J.; Zhou, W.; Wang, L.; Hu, Q. Preparation of Ti3C2 and Ti2C MXenes by Fluoride Salts Etching and Methane Adsorptive Properties. Appl. Surf. Sci. 2017, 416, 781–789. [Google Scholar] [CrossRef]
- Thakur, A.; Chandran, B.S.N.; Davidson, K.; Bedford, A.; Fang, H.; Im, Y.; Kanduri, V.; Wyatt, B.C.; Nemani, S.K.; Poliukhova, V.; et al. Step-by-Step Guide for Synthesis and Delamination of Ti3C2Tx MXene. Small Methods 2023, 7, 2300030. [Google Scholar] [CrossRef]
- Lipatov, A.; Alhabeb, M.; Lukatskaya, M.R.; Boson, A.; Gogotsi, Y.; Sinitskii, A. Effect of Synthesis on Quality, Electronic Properties and Environmental Stability of Individual Monolayer Ti3C2 MXene Flakes. Adv. Electron. Mater. 2016, 2, 1600255. [Google Scholar] [CrossRef]
- Seredych, M.; Shuck, C.E.; Pinto, D.; Alhabeb, M.; Precetti, E.; Deysher, G.; Anasori, B.; Kurra, N.; Gogotsi, Y. High-Temperature Behavior and Surface Chemistry of Carbide MXenes Studied by Thermal Analysis. ACS Publ. 2019, 31, 3324–3332. [Google Scholar] [CrossRef]
- Lee, E.; VahidMohammadi, A.; Prorok, B.C.; Yoon, Y.S.; Beidaghi, M.; Kim, D.-J. Room Temperature Gas Sensing of Two-Dimensional Titanium Carbide (MXene). ACS Appl. Mater. Interfaces 2017, 9, 37184–37190. [Google Scholar] [CrossRef]
- Wu, M.; He, M.; Hu, Q.; Wu, Q.; Sun, G.; Xie, L.; Zhang, Z.; Zhu, Z.; Zhou, A. Ti3C2 MXene-Based Sensors with High Selectivity for NH3 Detection at Room Temperature. ACS Sens. 2019, 4, 2763–2770. [Google Scholar] [CrossRef]
- Liu, Z.; He, T.; Sun, H.; Huang, B.; Li, X. Layered MXene Heterostructured with In2O3 Nanoparticles for Ammonia Sensors at Room Temperature. Sens. Actuators B Chem. 2022, 365, 131918. [Google Scholar] [CrossRef]
- Tang, L.; Yang, H.; Wang, H.; Yang, Y.; Wang, X.; Tang, G.; Zeng, D. Molten Salt-Modified Ti3C2Tx MXene with Tunable Oxygen-Functionalized Surfaces for Effective Detection of NO2 at Room Temperature. Ceram. Int. 2024, 50, 21619–21629. [Google Scholar] [CrossRef]
- Shuck, C.E.; Ventura-Martinez, K.; Goad, A.; Uzun, S.; Shekhirev, M.; Gogotsi, Y. Safe Synthesis of MAX and MXene: Guidelines to Reduce Risk During Synthesis. ACS Chem. Health Saf. 2021, 28, 326–338. [Google Scholar] [CrossRef]
- Lukatskaya, M.R.; Halim, J.; Dyatkin, B.; Naguib, M.; Buranova, Y.S.; Barsoum, M.W.; Gogotsi, Y. Room-Temperature Carbide-Derived Carbon Synthesis by Electrochemical Etching of MAX Phases. Angew. Chem. Int. Ed. 2014, 53, 4877–4880. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, P.; Soomro, R.A.; Zhu, Q.; Xu, B. Advances in the Synthesis of 2D MXenes. Adv. Mater. 2021, 33, 2103148. [Google Scholar] [CrossRef]
- Sheng, M.; Bin, X.; Yang, Y.; Chen, Z.; Que, W. A Green and Fluorine-Free Fabrication of 3D Self-Supporting MXene by Combining Anodic Electrochemical In Situ Etching with Cathodic Electrophoretic Deposition for Electrocatalytic Hydrogen Evolution. Adv. Mater. Technol. 2024, 9, 2301694. [Google Scholar] [CrossRef]
- Urbankowski, P.; Anasori, B.; Makaryan, T.; Er, D.; Kota, S.; Walsh, P.L.; Zhao, M.; Shenoy, V.B.; Barsoum, M.W.; Gogotsi, Y. Synthesis of Two-Dimensional Titanium Nitride Ti4N3 (MXene). Nanoscale 2016, 8, 11385–11391. [Google Scholar] [CrossRef]
- Li, M.; Lu, J.; Luo, K.; Li, Y.; Chang, K.; Chen, K.; Zhou, J.; Rosen, J.; Hultman, L.; Eklund, P.; et al. Element Replacement Approach by Reaction with Lewis Acidic Molten Salts to Synthesize Nanolaminated MAX Phases and MXenes. J. Am. Chem. Soc. 2019, 141, 4730–4737. [Google Scholar] [CrossRef]
- Bashir, T.; Ismail, S.A.; Wang, J.; Zhu, W.; Zhao, J.; Gao, L. MXene Terminating Groups O, –F or –OH, –F or O, –OH, –F, or O, –OH, –Cl? J. Energy Chem. 2023, 76, 90–104. [Google Scholar] [CrossRef]
- Kim, S.; Ko, T.Y.; Jena, A.K.; Nissimagoudar, A.S.; Lee, J.; Lee, S.; Oh, T.; Kang, Y.C.; In, I.; Bhattacharjee, S.; et al. Instant Self-Assembly of Functionalized MXenes in Organic Solvents: General Fabrication to High-Performance Chemical Gas Sensors. Adv. Funct. Mater. 2024, 34, 2310641. [Google Scholar] [CrossRef]
- Yun, H.; Chae, Y.; Kim, E.; Kim, H.K.; Jang, S.; Baik, M.-H.; Ahn, C.W.; Lee, Y. Ultra-Stable Titanium Carbide MXene Functionalized with Heterocyclic Aromatic Amines. Adv. Funct. Mater. 2022, 32, 2203296. [Google Scholar] [CrossRef]
- Zhou, J.; Hosseini Shokouh, S.H.; Komsa, H.-P.; Rieppo, L.; Cui, L.; Lv, Z.-P.; Kordas, K. MXene-Polymer Hybrid for High-Performance Gas Sensor Prepared by Microwave-Assisted In-Situ Intercalation. Adv. Mater. Technol. 2022, 7, 2101565. [Google Scholar] [CrossRef]
- Wu, C.-W.; Unnikrishnan, B.; Chen, I.-W.P.; Harroun, S.G.; Chang, H.-T.; Huang, C.-C. Excellent Oxidation Resistive MXene Aqueous Ink for Micro-Supercapacitor Application. Energy Storage Mater. 2020, 25, 563–571. [Google Scholar] [CrossRef]
- Zhao, X.; Vashisth, A.; Blivin, J.W.; Tan, Z.; Holta, D.E.; Kotasthane, V.; Shah, S.A.; Habib, T.; Liu, S.; Lutkenhaus, J.L.; et al. pH, Nanosheet Concentration, and Antioxidant Affect the Oxidation of Ti3C2Tx and Ti2CTx MXene Dispersions. Adv. Mater. Interfaces 2020, 7, 2000845. [Google Scholar] [CrossRef]
- Natu, V.; Hart, J.L.; Sokol, M.; Chiang, H.; Taheri, M.L.; Barsoum, M.W. Edge Capping of 2D-MXene Sheets with Polyanionic Salts to Mitigate Oxidation in Aqueous Colloidal Suspensions. Angew. Chem. Int. Ed. 2019, 58, 12655–12660. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, Y.; Liu, D.; Zhao, J.; Li, Y. Unlocking Self-Antioxidant Capability and Processability of Additive-Free MXene Ink towards High-Performance Customizable Supercapacitors. Angew. Chem. Int. Ed. 2025, 64, e202415742. [Google Scholar] [CrossRef]
- Zhu, J.-J.; Gomez-Romero, P. Polyoxometalate Intercalated MXene with Enhanced Electrochemical Stability. Nanoscale 2022, 14, 14921–14934. [Google Scholar] [CrossRef]
- Gong, S.; Zhao, F.; Xu, H.; Li, M.; Qi, J.; Wang, H.; Wang, Z.; Fan, X.; Li, C.; Liu, J. Iodine-Functionalized Titanium Carbide MXene with Ultra-Stable Pseudocapacitor Performance. J. Colloid Interface Sci. 2022, 615, 643–649. [Google Scholar] [CrossRef]
- Sai Bhargava Reddy, M.; Aich, S. Recent Progress in Surface and Heterointerface Engineering of 2D MXenes for Gas Sensing Applications. Coord. Chem. Rev. 2024, 500, 215542. [Google Scholar] [CrossRef]
- Zhi, H.; Zhang, X.; Wang, F.; Wan, P.; Feng, L. Flexible Ti3C2Tx MXene/PANI/Bacterial Cellulose Aerogel for e-Skins and Gas Sensing. ACS Appl. Mater. Interfaces 2021, 13, 45987–45994. [Google Scholar] [CrossRef]
- Li, X.; Xu, J.; Jiang, Y.; He, Z.; Liu, B.; Xie, H.; Li, H.; Li, Z.; Wang, Y.; Tai, H. Toward Agricultural Ammonia Volatilization Monitoring: A Flexible Polyaniline/Ti3C2Tx Hybrid Sensitive Films Based Gas Sensor. Sens. Actuators B Chem. 2020, 316, 128144. [Google Scholar] [CrossRef]
- Yang, X.; Wang, Q.; Zhu, K.; Ye, K.; Wang, G.; Cao, D.; Yan, J. 3D Porous Oxidation-Resistant MXene/Graphene Architectures Induced by In Situ Zinc Template toward High-Performance Supercapacitors. Adv. Funct. Mater. 2021, 31, 2101087. [Google Scholar] [CrossRef]
- Choi, S.-J.; Kim, I.-D. Recent Developments in 2D Nanomaterials for Chemiresistive-Type Gas Sensors. Electron. Mater. Lett. 2018, 14, 221–260. [Google Scholar] [CrossRef]
- Late, D.J.; Huang, Y.-K.; Liu, B.; Acharya, J.; Shirodkar, S.N.; Luo, J.; Yan, A.; Charles, D.; Waghmare, U.V.; Dravid, V.P.; et al. Sensing Behavior of Atomically Thin-Layered MoS2 Transistors. ACS Nano 2013, 7, 4879–4891. [Google Scholar] [CrossRef]
- Liu, B.; Chen, L.; Liu, G.; Abbas, A.N.; Fathi, M.; Zhou, C. High-Performance Chemical Sensing Using Schottky-Contacted Chemical Vapor Deposition Grown Monolayer MoS2 Transistors. ACS Nano 2014, 8, 5304–5314. [Google Scholar] [CrossRef]
- Chen, W.Y.; Jiang, X.; Lai, S.-N.; Peroulis, D.; Stanciu, L. Nanohybrids of a MXene and Transition Metal Dichalcogenide for Selective Detection of Volatile Organic Compounds. Nat. Commun. 2020, 11, 1302. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhou, W.; Zhang, M.; Wang, Y.; Duan, Z.; Tan, C.; Liu, B.; Ouyang, F.; Yuan, Z.; Tai, H.; et al. Edge-Enriched Mo2TiC2Tx/MoS2 Heterostructure with Coupling Interface for Selective NO2 Monitoring. Adv. Funct. Mater. 2022, 32, 2203528. [Google Scholar] [CrossRef]
- Han, Q.; Hu, C.; Shi, F.; Du, J.; Zhang, F.; Li, C.; Wang, L.; Xu, L. Flexible Mo2CTx/MoSe2 Heterostructure Sensors for Ultrasensitive, Room-Temperature Detection of Exhaled H2S in Periodontitis Diagnosis. ACS Sens. 2025, 10, 5108–5119. [Google Scholar] [CrossRef]
- Bagherzadeh Enferadi, S.M.H.; Mirzaei, A. Fe2O3-Co3O4 Nanocomposite Gas Sensor for Ethanol Sensing Studies. Ceram. Int. 2024, 50, 52861–52870. [Google Scholar] [CrossRef]
- He, X.; Zhuang, Y.; Gao, D.; Liu, H.; Zhu, J.; Huang, S. Leveraging Convolutional Neural Networks for Enhancing Performance of Cs3Cu2I5/TiO2 Nanocrystal-Based Carbon Monoxide Gas Sensor. Sens. Actuators B Chem. 2025, 429, 137311. [Google Scholar] [CrossRef]
- Ding, J.; Xie, M.; Li, Z.; Wang, Y. Fabrication of WO3 Nanosheets with Hexagonal/Orthorhombic Homojunctions for Highly Sensitive Ozone Gas Sensors at Low Temperature. J. Alloys Compd. 2025, 1010, 178228. [Google Scholar] [CrossRef]
- Jia, S.; Liu, Z.; Liu, W.; Liu, T.; Tian, K.; Bai, S. Facile One-Step Hydrothermal Synthesis of SnO2/SnO p-n Heterostructure Gas Sensor Enables Efficient NO2 Detection. Sens. Actuators Phys. 2025, 382, 116157. [Google Scholar] [CrossRef]
- Xia, Y.; Wang, J.; Li, X.; Dan, X.; Zhou, D.; Xiang, L.; Komarneni, S. Nanoseed-Assisted Rapid Formation of Ultrathin ZnO Nanorods for Efficient Room Temperature NO2 Detection. Ceram. Int. 2016, 42, 15876–15880. [Google Scholar] [CrossRef]
- He, T.; Liu, W.; Lv, T.; Ma, M.; Liu, Z.; Vasiliev, A.; Li, X. MXene/SnO2 Heterojunction Based Chemical Gas Sensors. Sens. Actuators B Chem. 2021, 329, 129275. [Google Scholar] [CrossRef]
- Sun, S.; Wang, M.; Chang, X.; Jiang, Y.; Zhang, D.; Wang, D.; Zhang, Y.; Lei, Y. W18O49/Ti3C2Tx Mxene Nanocomposites for Highly Sensitive Acetone Gas Sensor with Low Detection Limit. Sens. Actuators B Chem. 2020, 304, 127274. [Google Scholar] [CrossRef]
- Liu, W.; Li, M.; Feng, X.; Yin, H.; Gong, S.; Yu, K.; Zhu, Z. Microgram-Level Ta4C3 Nanosheets Decorated with NiWO4 Nanoparticles as a High-Performance Humidity Sensor. ACS Appl. Nano Mater. 2023, 6, 20970–20981. [Google Scholar] [CrossRef]
- Li, H.; Zhou, Y.; Tu, W.; Ye, J.; Zou, Z. State-of-the-Art Progress in Diverse Heterostructured Photocatalysts toward Promoting Photocatalytic Performance. Adv. Funct. Mater. 2015, 25, 998–1013. [Google Scholar] [CrossRef]
- Marschall, R. Semiconductor Composites: Strategies for Enhancing Charge Carrier Separation to Improve Photocatalytic Activity. Adv. Funct. Mater. 2014, 24, 2421–2440. [Google Scholar] [CrossRef]
- Majhi, S.M.; Ali, A.; Greish, Y.E.; El-Maghraby, H.F.; Mahmoud, S.T. V2CTx MXene-Based Hybrid Sensor with High Selectivity and Ppb-Level Detection for Acetone at Room Temperature. Sci. Rep. 2023, 13, 3114. [Google Scholar] [CrossRef]
- Choi, J.; Kim, Y.-J.; Cho, S.-Y.; Park, K.; Kang, H.; Kim, S.J.; Jung, H.-T. In Situ Formation of Multiple Schottky Barriers in a Ti3C2 MXene Film and Its Application in Highly Sensitive Gas Sensors. Adv. Funct. Mater. 2020, 30, 2003998. [Google Scholar] [CrossRef]
- Chen, W.Y.; Sullivan, C.D.; Lai, S.-N.; Yen, C.-C.; Jiang, X.; Peroulis, D.; Stanciu, L.A. Noble-Nanoparticle-Decorated Ti3C2Tx MXenes for Highly Sensitive Volatile Organic Compound Detection. ACS Omega 2022, 7, 29195–29203. [Google Scholar] [CrossRef]
- Shilpa, M.P.; Ashadevi, K.S.; Shetty, S.J.; Bhat, S.S.; Naresh, N.; Mishra, V.; Waikar, M.R.; Sonkawade, R.G.; Gurumurthy, S.C. Noble Metal Decorated Ti3C2Tx MXene for Room Temperature SO2 Detection. Sens. Actuators Phys. 2025, 388, 116492. [Google Scholar] [CrossRef]
- Qian, W.; Si, Y.; Chen, P.; Tian, C.; Wang, Z.; Li, P.; Li, S.; He, D. Enhanced Oxidation-Resistant and Conductivity in MXene Films with Seamless Heterostructure. Small 2024, 20, 2403149. [Google Scholar] [CrossRef]
- Liu, Z.; Li, M.; Sun, Y.; Wang, H.; Chen, H.; Tian, Y.; Wang, H.; Ding, Y.; Chen, Z. Integrating Surface and Interface Engineering to Improve Optoelectronic Performance and Environmental Stability of MXene-Based Heterojunction towards Broadband Photodetection. Nano Res. 2023, 16, 10148–10155. [Google Scholar] [CrossRef]
- Li, J.; Chen, S.; Ai, Z.; Zhao, X.; Li, Z.; Tian, L.; Yang, Z.; Liang, H. Solvothermal Synthesis of CdTiO3/Ti3C2 MXene Composite as a New Efficient Visible Light Photocatalyst. Colloids Surf. Physicochem. Eng. Asp. 2024, 702, 134936. [Google Scholar] [CrossRef]
- Ananda, V.R.; Ramadhan, F.N.; Kautsari, A.M.; Amrillah, T.; Hermawan, A.; Yulizar, Y.; Gunlazuardi, J.; Sekino, T.; Orimo, S.; Yin, S. Powder Engineering of MXene-Based Heterojunction Materials for Photocatalysis and Gas Sensor Applications. Adv. Powder Technol. 2025, 36, 104789. [Google Scholar] [CrossRef]
- Peng, C.; Yang, X.; Li, Y.; Yu, H.; Wang, H.; Peng, F. Hybrids of Two-Dimensional Ti3C2 and TiO2 Exposing {001} Facets toward Enhanced Photocatalytic Activity. ACS Appl. Mater. Interfaces 2016, 8, 6051–6060. [Google Scholar] [CrossRef]
- Chen, R.; Xia, Y.; Yang, L.; He, S.; Zhao, Q.; Li, X.; Wang, Y.; Gao, J.; Hou, M.; Wang, M.; et al. Hetero-Engineering-Driven Hydroxyl Radical Generation on ZnO-Pillared MXene Enables Moisture-Tolerant Methane Sensing at Ppm Level. Carbon Future 2025. [Google Scholar] [CrossRef]
- Wang, J.; Yang, Y.; Xia, Y. Mesoporous MXene/ZnO Nanorod Hybrids of High Surface Area for UV-Activated NO2 Gas Sensing in Ppb-Level. Sens. Actuators B Chem. 2022, 353, 131087. [Google Scholar] [CrossRef]
- Abubakr, M.; Elahi, E.; Rehman, S.; Dahshan, A.; Khan, M.A.; Rabeel, M.; Abbas, Z.; Maqsood, M.F.; Rehman, M.A.; Eom, J.; et al. Innovations in Self-Powered Nano-Photonics of Emerging and Flexible Two-Dimensional Materials. Mater. Today Phys. 2023, 39, 101285. [Google Scholar] [CrossRef]
- Xia, Y.; He, S.; Wang, J.; Zhou, L.; Wang, J.; Komarneni, S. MXene/WS2 Hybrids for Visible-Light-Activated NO2 Sensing at Room Temperature. Chem. Commun. 2021, 57, 9136–9139. [Google Scholar] [CrossRef]
- Li, L.; Liu, W.; Jiang, K.; Chen, D.; Qu, F.; Shen, G. In-Situ Annealed Ti3C2Tx MXene Based All-Solid-State Flexible Zn-Ion Hybrid Micro Supercapacitor Array with Enhanced Stability. Nano-Micro Lett. 2021, 13, 100. [Google Scholar] [CrossRef]
- Fan, C.; Yang, J.; Ni, W.; Wu, J.; Liu, X.; Li, Z.; Zhang, Y.; Quan, W.; Zeng, M.; Hu, N.; et al. Real-Time and Wireless Transmission of a Nitrogen-Doped Ti3C2Tx Wearable Gas Sensor for Efficient Detection of Food Spoilage and Ammonia Leakage. ACS Sens. 2024, 9, 4870–4878. [Google Scholar] [CrossRef]
- Shuvo, S.N.; Ulloa Gomez, A.M.; Mishra, A.; Chen, W.Y.; Dongare, A.M.; Stanciu, L.A. Sulfur-Doped Titanium Carbide MXenes for Room-Temperature Gas Sensing. ACS Sens. 2020, 5, 2915–2924. [Google Scholar] [CrossRef]
- Li, Y.; DiStefano, J.G.; Murthy, A.A.; Cain, J.D.; Hanson, E.D.; Li, Q.; Castro, F.C.; Chen, X.; Dravid, V.P. Superior Plasmonic Photodetectors Based on Au@MoS2 Core–Shell Heterostructures. ACS Nano 2017, 11, 10321–10329. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Y.; Chen, J.Y.C.; Fujisawa, K.; Holder, C.F.; Miller, J.T.; Crespi, V.H.; Terrones, M.; Schaak, R.E. Interface-Mediated Noble Metal Deposition on Transition Metal Dichalcogenide Nanostructures. Nat. Chem. 2020, 12, 284–293. [Google Scholar] [CrossRef]
- Zhao, D.; Chen, Z.; Yang, W.; Liu, S.; Zhang, X.; Yu, Y.; Cheong, W.-C.; Zheng, L.; Ren, F.; Ying, G.; et al. MXene (Ti3C2) Vacancy-Confined Single-Atom Catalyst for Efficient Functionalization of CO2. J. Am. Chem. Soc. 2019, 141, 4086–4093. [Google Scholar] [CrossRef]
- Pandey, R.P.; Rasool, K.; Madhavan, V.E.; Aïssa, B.; Gogotsi, Y.; Mahmoud, K.A. Ultrahigh-Flux and Fouling-Resistant Membranes Based on Layered Silver/MXene (Ti3C2Tx) Nanosheets. J. Mater. Chem. A 2018, 6, 3522–3533. [Google Scholar] [CrossRef]
- Lan, L.; Jiang, C.; Yao, Y.; Ping, J.; Ying, Y. A Stretchable and Conductive Fiber for Multifunctional Sensing and Energy Harvesting. Nano Energy 2021, 84, 105954. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, J.; Yu, Q.; Li, Q.; Fan, R.; Li, C.; Fan, Y.; Zhao, C.; Cheng, W.; Ji, P.; et al. Metal/MXene Composites via in Situ Reduction. Nat. Synth. 2024, 4, 252–261. [Google Scholar] [CrossRef]
- Chen, W.; Li, P.; Yu, J.; Cui, P.; Yu, X.; Song, W.; Cao, C. In-Situ Doping Nickel Single Atoms in Two-Dimensional MXenes Analogue Support for Room Temperature NO2 Sensing. Nano Res. 2022, 15, 9544–9553. [Google Scholar] [CrossRef]
- Xia, F.; Lao, J.; Yu, R.; Sang, X.; Luo, J.; Li, Y.; Wu, J. Ambient Oxidation of Ti3C2 MXene Initialized by Atomic Defects. Nanoscale 2019, 11, 23330–23337. [Google Scholar] [CrossRef]
- Liaw, B.Y.; Roth, E.P.; Jungst, R.G.; Nagasubramanian, G.; Case, H.L.; Doughty, D.H. Correlation of Arrhenius Behaviors in Power and Capacity Fades with Cell Impedance and Heat Generation in Cylindrical Lithium-Ion Cells. J. Power Sources 2003, 119–121, 874–886. [Google Scholar] [CrossRef]
- Maleski, K.; Mochalin, V.; Gogotsi, Y. Dispersions of Two-Dimensional Titanium Carbide MXene in Organic Solvents. Chem. Mater. 2017, 29, 1632–1640. [Google Scholar] [CrossRef]
- Murali, G.; Reddy Modigunta, J.K.; Park, Y.H.; Lee, J.-H.; Rawal, J.; Lee, S.-Y.; In, I.; Park, S.-J. A Review on MXene Synthesis, Stability, and Photocatalytic Applications. ACS Nano 2022, 16, 13370–13429. [Google Scholar] [CrossRef]
- Roy, C.; De, S.K.; Banerjee, P.; Pradhan, S.; Bhattacharyya, S. Investigating Suitable Medium for the Long-Duration Storage of Ti2CTx MXene. J. Alloys Compd. 2023, 938, 168471. [Google Scholar] [CrossRef]
- Kong, D.; Huang, P.; Qin, F.; Liu, J.; Lin, J.; Lin, Y.; Huang, H.; Wang, W.; Han, C.; Zhang, S. Exploring Monolayer Ta4C3Tx MXene for Quick Ammonia Detection at Room Temperature. Mater. Lett. 2024, 363, 136250. [Google Scholar] [CrossRef]
- Wu, F.; Meng, X.; Liu, Z.; Lv, T.; Yu, L.; Zhang, J.; Zhao, Y.; Zhao, C.; Xing, G. Ta4C3 Nanosheet/Melamine Sponges with High Sensitivity and Long-Term Stability for Wearable Piezoresistive Sensors. ACS Appl. Nano Mater. 2024, 7, 695–704. [Google Scholar] [CrossRef]
- Thomas, T.; Ramos Ramón, J.A.; Agarwal, V.; Méndez, A.Á.-; Martinez, J.A.A.; Kumar, Y.; Sanal, K.C. Highly Stable, Fast Responsive Mo2CTx MXene Sensors for Room Temperature Carbon Dioxide Detection. Microporous Mesoporous Mater. 2022, 336, 111872. [Google Scholar] [CrossRef]
- Guo, L.; Han, H.; Wang, J.; Wang, P.; Du, C.; Wang, B.; Yuan, Q.; Zhai, Y.; Zhang, C. Defective Cr2CTx-Based Sensors with High Sensitivity for NO2 Detection at Room Temperature. J. Mater. Chem. A 2024, 12, 20414–20424. [Google Scholar] [CrossRef]
- Chen, L.; Wakeel, M.; Haq, T.U.; Chen, C.; Ren, X. Insight into UV-Induced Simultaneous Photocatalytic Degradation of Ti3C2Tx MXene and Reduction of U(VI). J. Hazard. Mater. 2022, 430, 128377. [Google Scholar] [CrossRef]
- Shen, S.; Ke, T.; Rajavel, K.; Yang, K.; Lin, D. Dispersibility and Photochemical Stability of Delaminated MXene Flakes in Water. Small 2020, 16, 2002433. [Google Scholar] [CrossRef]
- Wang, J.; Xu, R.; Xia, Y.; Komarneni, S. Ti2CTx MXene: A Novel p-Type Sensing Material for Visible Light-Enhanced Room Temperature Methane Detection. Ceram. Int. 2021, 47, 34437–34442. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Dai, Q.; Wu, H.; Yang, L.; Guo, S.; Zhao, Q.; Hou, M.; Komarneni, S.; Xia, Y. Development of Long-Term Stable MXene-Based Gas Sensing Material. Molecules 2025, 30, 4440. https://doi.org/10.3390/molecules30224440
Yang J, Dai Q, Wu H, Yang L, Guo S, Zhao Q, Hou M, Komarneni S, Xia Y. Development of Long-Term Stable MXene-Based Gas Sensing Material. Molecules. 2025; 30(22):4440. https://doi.org/10.3390/molecules30224440
Chicago/Turabian StyleYang, Jiabin, Qingfu Dai, Haodong Wu, Li Yang, Shenghui Guo, Qiuni Zhao, Ming Hou, Sridhar Komarneni, and Yi Xia. 2025. "Development of Long-Term Stable MXene-Based Gas Sensing Material" Molecules 30, no. 22: 4440. https://doi.org/10.3390/molecules30224440
APA StyleYang, J., Dai, Q., Wu, H., Yang, L., Guo, S., Zhao, Q., Hou, M., Komarneni, S., & Xia, Y. (2025). Development of Long-Term Stable MXene-Based Gas Sensing Material. Molecules, 30(22), 4440. https://doi.org/10.3390/molecules30224440

