Eight Triplex-Binding Molecules from Four Chemical Classes Broadly Recognize the MALAT1 Triple Helix
Abstract
1. Introduction
2. Results
2.1. Most TBMs Differentially Interact with the MALAT1 Triple Helix When Its Nucleotide Composition and Length Are Varied
2.2. Only Neomycin Prevents the Formation of a MALAT1 Triple Helix RNP Complex
2.3. Select TBMs Interact with RNAs Mimicking the Premature MALAT1 Triple Helix States
2.4. Most TBMs Rapidly Associate with the Premature and Mature MALAT1 Triple Helix
2.5. TBMs Reduce MALAT1 Levels More Than MENβ in HCT116 Cells

3. Discussion
4. Materials and Methods
4.1. Preparation of RNA
4.2. Triplex-Binding Molecules
4.3. UV Thermal Denaturation Assay
4.4. Predicting RNA-Ligand Complexes and FpocketR
4.5. SPR
4.6. Culturing HCT116 Cells
4.7. Preparation of Native HCT116 Whole-Cell Lysate
4.8. Competitive EMSA
4.9. Treatment of HCT116 Cells with TBMs and RT-qPCR
4.10. MTT Assay
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| DPF | diphenyl furan |
| DSC | differential scanning calorimetry |
| EMSA | electrophoretic mobility shift assay |
| GAPDH | glyceraldehyde-3-phosphate dehydrogenase |
| HCT116 | human colorectal carcinoma cell line |
| lncRNA | long non-coding RNA |
| mascRNA | MALAT1-associated small cytoplasmic RNA |
| MALAT1 | metastasis-associated lung adenocarcinoma transcript 1 |
| MALAT1 SL | MALAT1 U-rich stem loop |
| MALAT1 SL+A+masc | MALAT1 U-rich stem loop, A-rich tract, and mascRNA |
| MALAT1 SL+A | MALAT1 U-rich stem loop and A-rich tract |
| MENβ | multiple endocrine neoplasia-β |
| METTL16 | methyltransferase-like protein 16 |
| MMTV-PyMT | mouse mammary tumor virus-polyoma middle tumor-antigen |
| MTT | 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide |
| RNP | ribonucleoprotein |
| RT-qPCR | quantitative reverse transcription polymerase chain reaction |
| SDS | sodium dodecyl sulfate |
| SPR | surface plasmon resonance |
| TBM | triplex-binding molecule |
| TUG1 | taurine-upregulated gene |
| TM | melting temperature |
| ∆TM | change in melting temperature or thermal shift |
| WT | wild type |
References
- Chen, L.-L.; Kim, V.N. Small and Long Non-Coding RNAs: Past, Present, and Future. Cell 2024, 187, 6451–6485. [Google Scholar] [CrossRef]
- Watmuff, H.; Crawford, A.; Eusse, B.; Jones, A.N. Structure–Function-Guided Drug Development Efforts to Target lncRNAs. Trends Pharmacol. Sci. 2025, 46, 703–721. [Google Scholar] [CrossRef]
- Gutschner, T.; Hämmerle, M.; Eißmann, M.; Hsu, J.; Kim, Y.; Hung, G.; Revenko, A.; Arun, G.; Stentrup, M.; Groß, M.; et al. The Noncoding RNA MALAT1 Is a Critical Regulator of the Metastasis Phenotype of Lung Cancer Cells. Cancer Res. 2013, 73, 1180–1189. [Google Scholar] [CrossRef]
- Arun, G.; Diermeier, S.; Akerman, M.; Chang, K.-C.; Wilkinson, J.E.; Hearn, S.; Kim, Y.; MacLeod, A.R.; Krainer, A.R.; Norton, L.; et al. Differentiation of Mammary Tumors and Reduction in Metastasis upon Malat1 lncRNA Loss. Genes Dev. 2016, 30, 34–51. [Google Scholar] [CrossRef] [PubMed]
- Goyal, B.; Yadav, S.R.M.; Awasthee, N.; Gupta, S.; Kunnumakkara, A.B.; Gupta, S.C. Diagnostic, Prognostic, and Therapeutic Significance of Long Non-Coding RNA MALAT1 in Cancer. Biochim. Biophys. Acta (BBA)—Rev. Cancer 2021, 1875, 188502. [Google Scholar] [CrossRef] [PubMed]
- Zhu, N.; Ahmed, M.; Li, Y.; Liao, J.C.; Wong, P.K. Long Noncoding RNA MALAT1 Is Dynamically Regulated in Leader Cells during Collective Cancer Invasion. Proc. Natl. Acad. Sci. USA 2023, 120, e2305410120. [Google Scholar] [CrossRef] [PubMed]
- Wilusz, J.E.; Freier, S.M.; Spector, D.L. 3′ End Processing of a Long Nuclear-Retained Noncoding RNA Yields a tRNA-like Cytoplasmic RNA. Cell 2008, 135, 919–932. [Google Scholar] [CrossRef]
- Wilusz, J.E.; JnBaptiste, C.K.; Lu, L.Y.; Kuhn, C.-D.; Joshua-Tor, L.; Sharp, P.A. A Triple Helix Stabilizes the 3′ Ends of Long Noncoding RNAs That Lack Poly(A) Tails. Genes Dev. 2012, 26, 2392–2407. [Google Scholar] [CrossRef]
- Brown, J.A.; Valenstein, M.L.; Yario, T.A.; Tycowski, K.T.; Steitz, J.A. Formation of Triple-Helical Structures by the 3′-End Sequences of MALAT1 and MENβ Noncoding RNAs. Proc. Natl. Acad. Sci. USA 2012, 109, 19202–19207. [Google Scholar] [CrossRef]
- Torabi, S.-F.; DeGregorio, S.J.; Steitz, J.A. tRNA-like Leader-Trailer Interaction Promotes 3′-End Maturation of MALAT1. RNA 2021, 27, 1140–1147. [Google Scholar] [CrossRef]
- Brown, J.A.; Bulkley, D.; Wang, J.; Valenstein, M.L.; Yario, T.A.; Steitz, T.A.; Steitz, J.A. Structural Insights into the Stabilization of MALAT1 Noncoding RNA by a Bipartite Triple Helix. Nat. Struct. Mol. Biol. 2014, 21, 633–640. [Google Scholar] [CrossRef]
- Brown, J.A.; Kinzig, C.G.; DeGregorio, S.J.; Steitz, J.A. Methyltransferase-like Protein 16 Binds the 3′-Terminal Triple Helix of MALAT1 Long Noncoding RNA. Proc. Natl. Acad. Sci. USA 2016, 113, 14013–14018. [Google Scholar] [CrossRef]
- Warda, A.S.; Kretschmer, J.; Hackert, P.; Lenz, C.; Urlaub, H.; Höbartner, C.; Sloan, K.E.; Bohnsack, M.T. Human METTL16 Is a N6-Methyladenosine (m6A) Methyltransferase That Targets Pre-mRNAs and Various Non-Coding RNAs. EMBO Rep. 2017, 18, 2004–2014. [Google Scholar] [CrossRef] [PubMed]
- Donlic, A.; Morgan, B.S.; Xu, J.L.; Liu, A.; Roble, C.; Hargrove, A.E. Discovery of Small Molecule Ligands for MALAT1 by Tuning an RNA-Binding Scaffold. Angew. Chem. Int. Ed. 2018, 57, 13242–13247. [Google Scholar] [CrossRef] [PubMed]
- Donlic, A.; Zafferani, M.; Padroni, G.; Puri, M.; Hargrove, A.E. Regulation of MALAT1 Triple Helix Stability and in Vitro Degradation by Diphenylfurans. Nucleic Acids Res. 2020, 48, 7653–7664. [Google Scholar] [CrossRef] [PubMed]
- Abulwerdi, F.A.; Xu, W.; Ageeli, A.A.; Yonkunas, M.J.; Arun, G.; Nam, H.; Schneekloth, J.S.; Dayie, T.K.; Spector, D.; Baird, N.; et al. Selective Small-Molecule Targeting of a Triple Helix Encoded by the Long Noncoding RNA, MALAT1. ACS Chem. Biol. 2019, 14, 223–235. [Google Scholar] [CrossRef]
- Zafferani, M.; Martyr, J.G.; Muralidharan, D.; Montalvan, N.I.; Cai, Z.; Hargrove, A.E. Multiassay Profiling of a Focused Small Molecule Library Reveals Predictive Bidirectional Modulation of the lncRNA MALAT1 Triplex Stability In Vitro. ACS Chem. Biol. 2022, 17, 2437–2447. [Google Scholar] [CrossRef]
- Pernak, M.; Fleurisson, C.; Delorme, C.; Moumné, R.; Benedetti, E.; Micouin, L.; Azoulay, S.; Foricher, Y.; Duca, M. Development of Comprehensive Screening and Assessment Assays for Small-Molecule Ligands of MALAT1 lncRNA. ACS Chem. Biol. 2025, 20, 1068–1076. [Google Scholar] [CrossRef]
- François-Moutal, L.; Miranda, V.G.; Mollasalehi, N.; Gokhale, V.; Khanna, M. In Silico Targeting of the Long Noncoding RNA MALAT1. ACS Med. Chem. Lett. 2021, 12, 915–921. [Google Scholar] [CrossRef]
- Rakheja, I.; Ansari, A.H.; Ray, A.; Joshi, D.C.; Maiti, S. Small Molecule Quercetin Binds MALAT1 Triplex and Modulates Its Cellular Function. Mol. Ther. Nucleic Acids 2022, 30, 241–256. [Google Scholar] [CrossRef]
- Rocca, R.; Polerà, N.; Juli, G.; Grillone, K.; Maruca, A.; Di Martino, M.T.; Artese, A.; Amato, J.; Pagano, B.; Randazzo, A.; et al. Hit Identification of Novel Small Molecules Interfering with MALAT1 Triplex by a Structure-Based Virtual Screening. Arch. Pharm. 2023, 356, 2300134. [Google Scholar] [CrossRef]
- Zablowsky, N.; Farack, L.; Rofall, S.; Kramer, J.; Meyer, H.; Nguyen, D.; Ulrich, A.K.C.; Bader, B.; Steigemann, P. High Throughput FISH Screening Identifies Small Molecules That Modulate Oncogenic lncRNA MALAT1 via GSK3B and hnRNPs. Non-Coding RNA 2023, 9, 2. [Google Scholar] [CrossRef]
- An, H.; Elvers, K.T.; Gillespie, J.A.; Jones, K.; Atack, J.R.; Grubisha, O.; Shelkovnikova, T.A. A Toolkit for the Identification of NEAT1_2/Paraspeckle Modulators. Nucleic Acids Res. 2022, 50, e119. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Kumar, G.S.; Ray, A.; Maiti, M. Spectroscopic and Thermodynamic Studies on the Binding of Sanguinarine and Berberine to Triple and Double Helical DNA and RNA Structures. J. Biomol. Struct. Dyn. 2003, 20, 703–713. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R.; Kumar, G.S. Interaction of Isoquinoline Alkaloids with an RNA Triplex: Structural and Thermodynamic Studies of Berberine, Palmatine, and Coralyne Binding to Poly(U).Poly(A)*Poly(U). J. Phys. Chem. B 2009, 113, 13410–13420. [Google Scholar] [CrossRef] [PubMed]
- Bhowmik, D.; Das, S.; Hossain, M.; Haq, L.; Suresh Kumar, G. Biophysical Characterization of the Strong Stabilization of the RNA Triplex Poly(U)•poly(A)*poly(U) by 9-O-(ω-Amino) Alkyl Ether Berberine Analogs. PLoS ONE 2012, 7, e37939. [Google Scholar] [CrossRef]
- Moraru-Allen, A. Coralyne Has a Preference for Intercalation between TA.T Triples in Intramolecular DNA Triple Helices. Nucleic Acids Res. 1997, 25, 1890–1896. [Google Scholar] [CrossRef]
- Bhuiya, S.; Haque, L.; Goswami, R.; Das, S. Multispectroscopic and Theoretical Exploration of the Comparative Binding Aspects of Bioflavonoid Fisetin with Triple- and Double-Helical Forms of RNA. J. Phys. Chem. B 2017, 121, 11037–11052. [Google Scholar] [CrossRef]
- Tiwari, R.; Haque, L.; Bhuiya, S.; Das, S. Third Strand Stabilization of Poly(U)·poly(A)* Poly(U) Triplex by the Naturally Occurring Flavone Luteolin: A Multi-Spectroscopic Approach. Int. J. Biol. Macromol. 2017, 103, 692–700. [Google Scholar] [CrossRef]
- Pradhan, A.B.; Bhuiya, S.; Haque, L.; Das, S. Role of Hydroxyl Groups in the B-Ring of Flavonoids in Stabilization of the Hoogsteen Paired Third Strand of Poly(U).Poly(A)*Poly(U) Triplex. Arch. Biochem. Biophys. 2018, 637, 9–20. [Google Scholar] [CrossRef]
- Pilch, D.S.; Kirolos, M.A.; Breslauer, K.J. Berenil Binding to Higher Ordered Nucleic Acid Structures: Complexation with a DNA and RNA Triple Helix. Biochemistry 1995, 34, 16107–16124. [Google Scholar] [CrossRef]
- Arya, D.P.; Coffee, R.L.; Willis, B.; Abramovitch, A.I. Aminoglycoside−Nucleic Acid Interactions: Remarkable Stabilization of DNA and RNA Triple Helices by Neomycin. J. Am. Chem. Soc. 2001, 123, 5385–5395. [Google Scholar] [CrossRef]
- Ageeli, A.A.; McGovern-Gooch, K.R.; Kaminska, M.M.; Baird, N.J. Finely Tuned Conformational Dynamics Regulate the Protective Function of the lncRNA MALAT1 Triple Helix. Nucleic Acids Res. 2019, 47, 1468–1481. [Google Scholar] [CrossRef]
- Miao, S.; Bhunia, D.; Devari, S.; Liang, Y.; Munyaradzi, O.; Rundell, S.; Bong, D. Bifacial PNAs Destabilize MALAT1 by 3′ A-Tail Displacement from the U-Rich Internal Loop. ACS Chem. Biol. 2021, 16, 1600–1609. [Google Scholar] [CrossRef] [PubMed]
- Mazzini, S.; Bellucci, M.C.; Mondelli, R. Mode of Binding of the Cytotoxic Alkaloid Berberine with the Double Helix Oligonucleotide d(AAGAATTCTT)2. Bioorganic Med. Chem. 2003, 11, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Bessi, I.; Bazzicalupi, C.; Richter, C.; Jonker, H.R.A.; Saxena, K.; Sissi, C.; Chioccioli, M.; Bianco, S.; Bilia, A.R.; Schwalbe, H.; et al. Spectroscopic, Molecular Modeling, and NMR-Spectroscopic Investigation of the Binding Mode of the Natural Alkaloids Berberine and Sanguinarine to Human Telomeric G-Quadruplex DNA. ACS Chem. Biol. 2012, 7, 1109–1119. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Le, V.; Kalia, D.; Nakayama, S.; Mikek, C.; Lewis, E.A.; Sintim, H.O. Diminazene or Berenil, a Classic Duplex Minor Groove Binder, Binds to G-Quadruplexes with Low Nanomolar Dissociation Constants and the Amidine Groups Are Also Critical for G-Quadruplex Binding. Mol. Biosyst. 2014, 10, 2724–2734. [Google Scholar] [CrossRef]
- Kaushik, S.; Kaushik, M.; Barthwal, R.; Kukreti, S. Self-Association of Coralyne: An Ordered Thermal Destacking. Results Chem. 2020, 2, 100043. [Google Scholar] [CrossRef]
- Deogratias, G.; Shadrack, D.M.; Munissi, J.J.E.; Kinunda, G.A.; Jacob, F.R.; Mtei, R.P.; Masalu, R.J.; Mwakyula, I.; Kiruri, L.W.; Nyandoro, S.S. Hydrophobic π-π Stacking Interactions and Hydrogen Bonds Drive Self-Aggregation of Luteolin in Water. J. Mol. Graph. Model. 2022, 116, 108243. [Google Scholar] [CrossRef]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate Structure Prediction of Biomolecular Interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef]
- Swain, M.; Ageeli, A.A.; Kasprzak, W.K.; Li, M.; Miller, J.T.; Sztuba-Solinska, J.; Schneekloth, J.S.; Koirala, D.; Piccirili, J.; Fraboni, A.J.; et al. Dynamic Bulge Nucleotides in the KSHV PAN ENE Triple Helix Provide a Unique Binding Platform for Small Molecule Ligands. Nucleic Acids Res. 2021, 49, 13179–13193. [Google Scholar] [CrossRef]
- Brown, J.A. Unraveling the Structure and Biological Functions of RNA Triple Helices. WIREs RNA 2020, 11, e1598. [Google Scholar] [CrossRef]
- Veenbaas, S.D.; Koehn, J.T.; Irving, P.S.; Lama, N.N.; Weeks, K.M. Ligand-Binding Pockets in RNA and Where to Find Them. Proc. Natl. Acad. Sci. USA 2025, 122, e2422346122. [Google Scholar] [CrossRef]
- Veenbaas, S.D.; Felder, S.; Weeks, K.M. fpocketR: A Platform for Identification and Analysis of Ligand-Binding Pockets in RNA. bioRxiv 2025. [Google Scholar] [CrossRef]
- Hossain, M.; Khan, A.Y.; Kumar, G.S. Interaction of the Anticancer Plant Alkaloid Sanguinarine with Bovine Serum Albumin. PLoS ONE 2011, 6, e18333. [Google Scholar] [CrossRef]
- Jash, C.; Kumar, G.S. Binding of Alkaloids Berberine, Palmatine and Coralyne to Lysozyme: A Combined Structural and Thermodynamic Study. RSC Adv. 2014, 4, 12514–12525. [Google Scholar] [CrossRef]
- Chu, M.; Chen, X.; Wang, J.; Guo, L.; Wang, Q.; Gao, Z.; Kang, J.; Zhang, M.; Feng, J.; Guo, Q.; et al. Polypharmacology of Berberine Based on Multi-Target Binding Motifs. Front. Pharmacol. 2018, 9, 801. [Google Scholar] [CrossRef] [PubMed]
- Hobbie, S.N.; Pfister, P.; Bruell, C.; Sander, P.; François, B.; Westhof, E.; Böttger, E.C. Binding of Neomycin-Class Aminoglycoside Antibiotics to Mutant Ribosomes with Alterations in the A Site of 16S rRNA. Antimicrob. Agents Chemother. 2006, 50, 1489–1496. [Google Scholar] [CrossRef] [PubMed]
- Mukhtar, E.; Adhami, V.M.; Sechi, M.; Mukhtar, H. Dietary Flavonoid Fisetin Binds to β-Tubulin and Disrupts Microtubule Dynamics in Prostate Cancer Cells. Cancer Lett. 2015, 367, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Salmela, A.-L.; Pouwels, J.; Varis, A.; Kukkonen, A.M.; Toivonen, P.; Halonen, P.K.; Perälä, M.; Kallioniemi, O.; Gorbsky, G.J.; Kallio, M.J. Dietary Flavonoid Fisetin Induces a Forced Exit from Mitosis by Targeting the Mitotic Spindle Checkpoint. Carcinogenesis 2009, 30, 1032–1040. [Google Scholar] [CrossRef]
- Wen, L.-N.; Xie, M.-X. Competitive Binding Assay for G-Quadruplex DNA and Sanguinarine Based on Room Temperature Phosphorescence of Mn-Doped ZnS Quantum Dots. J. Photochem. Photobiol. A Chem. 2014, 279, 24–31. [Google Scholar] [CrossRef]
- Padmapriya, K.; Barthwal, R. Binding of the Alkaloid Coralyne to Parallel G-Quadruplex DNA [d(TTGGGGT)]4 Studied by Multi-Spectroscopic Techniques. Biophys. Chem. 2016, 219, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Dickerhoff, J.; Brundridge, N.; McLuckey, S.A.; Yang, D. Berberine Molecular Recognition of the Parallel MYC G-Quadruplex in Solution. J. Med. Chem. 2021, 64, 16205–16212. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Cong, Y.; Qi, Y.; Zhang, J.Z.H. Binding of Berberine Derivates to G-Quadruplex: Insight from a Computational Study. Phys. Chem. Chem. Phys. 2023, 25, 10741–10748. [Google Scholar] [CrossRef]
- Schärfen, L.; Neugebauer, K.M. Transcription Regulation Through Nascent RNA Folding. J. Mol. Biol. 2021, 433, 166975. [Google Scholar] [CrossRef]
- Yonkunas, M.J.; Baird, N.J. A Highly Ordered, Nonprotective MALAT1 ENE Structure Is Adopted Prior to Triplex Formation. RNA 2019, 25, 975–984. [Google Scholar] [CrossRef]
- Dumbović, G.; Braunschweig, U.; Langner, H.K.; Smallegan, M.; Biayna, J.; Hass, E.P.; Jastrzebska, K.; Blencowe, B.; Cech, T.R.; Caruthers, M.H.; et al. Nuclear Compartmentalization of TERT mRNA and TUG1 lncRNA Is Driven by Intron Retention. Nat. Commun. 2021, 12, 3308. [Google Scholar] [CrossRef]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate Normalization of Real-Time Quantitative RT-PCR Data by Geometric Averaging of Multiple Internal Control Genes. Genome Biol. 2002, 3, research0034.1. [Google Scholar] [CrossRef]
- Shivakumar, K.M.; Mahendran, G.; Brown, J.A. Locked Nucleic Acid Oligonucleotides Facilitate RNA•LNA-RNA Triple-Helix Formation and Reduce MALAT1 Levels. Int. J. Mol. Sci. 2024, 25, 1630. [Google Scholar] [CrossRef]
- Childs-Disney, J.L.; Yang, X.; Gibaut, Q.M.R.; Tong, Y.; Batey, R.T.; Disney, M.D. Targeting RNA Structures with Small Molecules. Nat. Rev. Drug Discov. 2022, 21, 736–762. [Google Scholar] [CrossRef]
- Nguyen, B.; Hamelberg, D.; Bailly, C.; Colson, P.; Stanek, J.; Brun, R.; Neidle, S.; Wilson, W.D. Characterization of a Novel DNA Minor-Groove Complex. Biophys. J. 2004, 86, 1028–1041. [Google Scholar] [CrossRef]
- Lin, Y.; Shi, R.; Wang, X.; Shen, H.-M. Luteolin, a Flavonoid with Potential for Cancer Prevention and Therapy. Curr. Cancer Drug Targets 2008, 8, 634–646. [Google Scholar] [CrossRef]
- Anand David, A.V.; Arulmoli, R.; Parasuraman, S. Overviews of Biological Importance of Quercetin: A Bioactive Flavonoid. Pharmacogn. Rev. 2016, 10, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Syed, D.N.; Ahmad, N.; Mukhtar, H. Fisetin: A Dietary Antioxidant for Health Promotion. Antioxid. Redox Signal. 2013, 19, 151–162. [Google Scholar] [CrossRef]
- Mwangi, M.N.; Baird, N. Direct Stacking of Peripheral Duplexes Significantly Stabilizes RNA Triple Helices. Biophys. J. 2024, 123, 364a. [Google Scholar] [CrossRef]
- Maiti, M.; Kumar, G.S. Molecular Aspects on the Interaction of Protoberberine, Benzophenanthridine, and Aristolochia Group of Alkaloids with Nucleic Acid Structures and Biological Perspectives. Med. Res. Rev. 2007, 27, 649–695. [Google Scholar] [CrossRef]
- Fourmy, D.; Recht, M.I.; Puglisi, J.D. Binding of Neomycin-Class Aminoglycoside Antibiotics to the A-Site of 16 s rRNA1. J. Mol. Biol. 1998, 277, 347–362. [Google Scholar] [CrossRef]
- Xi, H.; Arya, D.P. Recognition of Triple Helical Nucleic Acids by Aminoglycosides. Curr. Med. Chem.-Anti-Cancer Agents 2005, 5, 327–338. [Google Scholar] [CrossRef]
- La, X.; Zhang, L.; Li, Z.; Yang, P.; Wang, Y. Berberine-Induced Autophagic Cell Death by Elevating GRP78 Levels in Cancer Cells. Oncotarget 2017, 8, 20909–20924. [Google Scholar] [CrossRef]
- Bhattacharyya, R.; Gupta, P.; Bandyopadhyay, S.K.; Patro, B.S.; Chattopadhyay, S. Coralyne, a Protoberberine Alkaloid, Causes Robust Photosenstization of Cancer Cells through ATR-P38 MAPK-BAX and JAK2-STAT1-BAX Pathways. Chem.-Biol. Interact. 2018, 285, 27–39. [Google Scholar] [CrossRef]
- Ahmad, N.; Gupta, S.; Husain, M.M.; Heiskanen, K.M.; Mukhtar, H. Differential Antiproliferative and Apoptotic Response of Sanguinarine for Cancer Cells versus Normal Cells. Clin. Cancer Res. 2000, 6, 1524–1528. [Google Scholar]
- Zhou, C.; Huang, Y.; Nie, S.; Zhou, S.; Gao, X.; Chen, G. Biological Effects and Mechanisms of Fisetin in Cancer: A Promising Anti-Cancer Agent. Eur. J. Med. Res. 2023, 28, 297. [Google Scholar] [CrossRef] [PubMed]
- Lotfi, N.; Yousefi, Z.; Golabi, M.; Khalilian, P.; Ghezelbash, B.; Montazeri, M.; Shams, M.H.; Baghbadorani, P.Z.; Eskandari, N. The Potential Anti-Cancer Effects of Quercetin on Blood, Prostate and Lung Cancers: An Update. Front. Immunol. 2023, 14, 1077531. [Google Scholar] [CrossRef] [PubMed]
- Gornowicz, A.; Bielawska, A.; Szymanowski, W.; Gabryel-Porowska, H.; Czarnomysy, R.; Bielawski, K. Mechanism of Anticancer Action of Novel Berenil Complex of Platinum(II) Combined with Anti-MUC1 in MCF-7 Breast Cancer Cells. Oncol. Lett. 2018, 15, 2340–2348. [Google Scholar] [CrossRef] [PubMed]
- Gibaut, Q.M.R.; Bush, J.A.; Tong, Y.; Baisden, J.T.; Taghavi, A.; Olafson, H.; Yao, X.; Childs-Disney, J.L.; Wang, E.T.; Disney, M.D. Transcriptome-Wide Studies of RNA-Targeted Small Molecules Provide a Simple and Selective r(CUG)Exp Degrader in Myotonic Dystrophy. ACS Cent. Sci. 2023, 9, 1342–1353. [Google Scholar] [CrossRef]
- Ratni, H.; Ebeling, M.; Baird, J.; Bendels, S.; Bylund, J.; Chen, K.S.; Denk, N.; Feng, Z.; Green, L.; Guerard, M.; et al. Discovery of Risdiplam, a Selective Survival of Motor Neuron-2 (SMN2) Gene Splicing Modifier for the Treatment of Spinal Muscular Atrophy (SMA). J. Med. Chem. 2018, 61, 6501–6517. [Google Scholar] [CrossRef]
- Kilgore, H.R.; Mikhael, P.G.; Overholt, K.J.; Boija, A.; Hannett, N.M.; Van Dongen, C.; Lee, T.I.; Chang, Y.-T.; Barzilay, R.; Young, R.A. Distinct Chemical Environments in Biomolecular Condensates. Nat. Chem. Biol. 2024, 20, 291–301. [Google Scholar] [CrossRef]
- Yang, W.; Soares, J.; Greninger, P.; Edelman, E.J.; Lightfoot, H.; Forbes, S.; Bindal, N.; Beare, D.; Smith, J.A.; Thompson, I.R.; et al. Genomics of Drug Sensitivity in Cancer (GDSC): A Resource for Therapeutic Biomarker Discovery in Cancer Cells. Nucleic Acids Res. 2013, 41, D955–D961. [Google Scholar] [CrossRef]
- Kwok, Z.H.; Roche, V.; Chew, X.H.; Fadieieva, A.; Tay, Y. A Non-Canonical Tumor Suppressive Role for the Long Non-Coding RNA MALAT1 in Colon and Breast Cancers. Int. J. Cancer 2018, 143, 668–678. [Google Scholar] [CrossRef]
- Shen, X.; Ye, Z.; Wu, W.; Zhao, K.; Cheng, G.; Xu, L.; Gan, L.; Wu, Y.; Yang, Z. LncRNA NEAT1 Facilitates the Progression of Colorectal Cancer via the KDM5A/Cul4A and Wnt Signaling Pathway. Int. J. Oncol. 2021, 59, 1–12. [Google Scholar] [CrossRef]
- Li, Y.; Xu, Y.; Yu, X.; Su, S.; Wu, B.; Su, Y.; Guo, L. Long Non-Coding RNA NEAT1 Promotes Colorectal Cancer Progression via Interacting with SIRT1. Sci. Rep. 2025, 15, 5673. [Google Scholar] [CrossRef]
- Sun, P.; Wang, Z.; Ma, Y.; Liu, Y.; Xue, Y.; Li, Y.; Gao, X.; Wang, Y.; Chu, M. Advance in Identified Targets of Berberine. Front. Pharmacol. 2025, 16. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Huang, G.; Gu, C.; Liu, Y.; Yang, J.; Fei, J. Discovery of Berberine That Targetedly Induces Autophagic Degradation of Both BCR-ABL and BCR-ABL T315I through Recruiting LRSAM1 for Overcoming Imatinib Resistance. Clin. Cancer Res. 2020, 26, 4040–4053. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Cao, S.-J.; Li, C.-Y.; Zhang, Q.; Zhang, B.-L.; Qiu, F.; Kang, N. Berberine Directly Targets AKR1B10 Protein to Modulate Lipid and Glucose Metabolism Disorders in NAFLD. J. Ethnopharmacol. 2024, 332, 118354. [Google Scholar] [CrossRef]
- Ruan, H.; Zhan, Y.Y.; Hou, J.; Xu, B.; Chen, B.; Tian, Y.; Wu, D.; Zhao, Y.; Zhang, Y.; Chen, X.; et al. Berberine Binds RXRα to Suppress β-Catenin Signaling in Colon Cancer Cells. Oncogene 2017, 36, 6906–6918. [Google Scholar] [CrossRef]
- Qi, F.; Zhang, M.; Yang, G.; Wang, W.; Hu, Y.; Shen, Y.; Wan, J.; Li, J.; Liu, G.; Deng, Y. Identification of TIGAR, a Direct Proteomic Target Associated with the Hypoglycemic Effect of Berberine. Fitoterapia 2025, 180, 106332. [Google Scholar] [CrossRef]
- Serafim, T.L.; Oliveira, P.J.; Sardao, V.A.; Perkins, E.; Parke, D.; Holy, J. Different Concentrations of Berberine Result in Distinct Cellular Localization Patterns and Cell Cycle Effects in a Melanoma Cell Line. Cancer Chemother. Pharmacol. 2008, 61, 1007–1018. [Google Scholar] [CrossRef]
- Jin, M.; Ji, X.; Stoika, R.; Liu, K.; Wang, L.; Song, Y. Synthesis of a Novel Fluorescent Berberine Derivative Convenient for Its Subcellular Localization Study. Bioorganic Chem. 2020, 101, 104021. [Google Scholar] [CrossRef]
- Węgierek-Ciuk, A.; Arabski, M.; Ciepluch, K.; Brzóska, K.; Lisowska, H.; Czerwińska, M.; Stępkowski, T.; Lis, K.; Lankoff, A. Coralyne Radiosensitizes A549 Cells by Upregulation of CDKN1A Expression to Attenuate Radiation Induced G2/M Block of the Cell Cycle. Int. J. Mol. Sci. 2021, 22, 5791. [Google Scholar] [CrossRef]
- Basu, A.; Suresh Kumar, G. Coralyne Induced Self-Structure in Polyadenylic Acid: Thermodynamics of the Structural Reorganization. J. Chem. Thermodyn. 2016, 101, 221–226. [Google Scholar] [CrossRef]
- Vempati, R.K.; Malla, R.R. Coralyne Targets the Catalytic Domain of MMP9: An In Silico and In Vitro Investigation. Crit. Rev. Oncog. 2025, 30. [Google Scholar] [CrossRef] [PubMed]
- Gatto, B.; Sanders, M.M.; Yu, C.; Wu, H.Y.; Makhey, D.; LaVoie, E.J.; Liu, L.F. Identification of Topoisomerase I as the Cytotoxic Target of the Protoberberine Alkaloid Coralyne. Cancer Res. 1996, 56, 2795–2800. [Google Scholar] [PubMed]
- Basu, P.; Kumar, G.S. Sanguinarine and Its Role in Chronic Diseases. In Anti-Inflammatory Nutraceuticals and Chronic Diseases; Gupta, S.C., Prasad, S., Aggarwal, B.B., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 155–172. ISBN 978-3-319-41334-1. [Google Scholar]
- Croaker, A.; King, G.J.; Pyne, J.H.; Anoopkumar-Dukie, S.; Liu, L. Sanguinaria Canadensis: Traditional Medicine, Phytochemical Composition, Biological Activities and Current Uses. Int. J. Mol. Sci. 2016, 17, 1414. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Lin, S.; Chen, K.; Yin, S.; Peng, H.; Cai, N.; Ma, W.; Songyang, Z.; Huang, Y. Natural Product Library Screens Identify Sanguinarine Chloride as a Potent Inhibitor of Telomerase Expression and Activity. Cells 2022, 11, 1485. [Google Scholar] [CrossRef]
- Li, X.; You, Q. Sanguinarine Identified as a Natural Dual Inhibitor of AURKA and CDK2 through Network Pharmacology and Bioinformatics Approaches. Sci. Rep. 2024, 14, 29608. [Google Scholar] [CrossRef]
- Holy, J.; Lamont, G.; Perkins, E. Disruption of Nucleocytoplasmic Trafficking of Cyclin D1 and Topoisomerase II by Sanguinarine. BMC Cell Biol. 2006, 7, 13. [Google Scholar] [CrossRef]
- Sengupta, B.; Banerjee, A.; Sengupta, P.K. Interactions of the Plant Flavonoid Fisetin with Macromolecular Targets: Insights from Fluorescence Spectroscopic Studies. J. Photochem. Photobiol. B 2005, 80, 79–86. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Chakraborty, S.; Sengupta, P.K.; Bhowmik, S. Exploring the Interactions of the Dietary Plant Flavonoids Fisetin and Naringenin with G-Quadruplex and Duplex DNA, Showing Contrasting Binding Behavior: Spectroscopic and Molecular Modeling Approaches. J. Phys. Chem. B 2016, 120, 8942–8952. [Google Scholar] [CrossRef]
- Velazhahan, V.; Glaza, P.; Herrera, A.I.; Prakash, O.; Zolkiewski, M.; Geisbrecht, B.V.; Schrick, K. Dietary Flavonoid Fisetin Binds Human SUMO1 and Blocks Sumoylation of P53. PLoS ONE 2020, 15, e0234468. [Google Scholar] [CrossRef]
- Imran, M.; Rauf, A.; Abu-Izneid, T.; Nadeem, M.; Shariati, M.A.; Khan, I.A.; Imran, A.; Orhan, I.E.; Rizwan, M.; Atif, M.; et al. Luteolin, a Flavonoid, as an Anticancer Agent: A Review. Biomed. Pharmacother. 2019, 112, 108612. [Google Scholar] [CrossRef]
- Chowdhury, A.R.; Sharma, S.; Mandal, S.; Goswami, A.; Mukhopadhyay, S.; Majumder, H.K. Luteolin, an Emerging Anti-Cancer Flavonoid, Poisons Eukaryotic DNA Topoisomerase I. Biochem. J. 2002, 366, 653–661. [Google Scholar] [CrossRef] [PubMed]
- Yi, C.; Li, G.; Ivanov, D.N.; Wang, Z.; Velasco, M.X.; Hernández, G.; Kaundal, S.; Villarreal, J.; Gupta, Y.K.; Qiao, M.; et al. Luteolin Inhibits Musashi1 Binding to RNA and Disrupts Cancer Phenotypes in Glioblastoma Cells. RNA Biol. 2018, 15, 1420–1432. [Google Scholar] [CrossRef] [PubMed]
- Munafò, F.; Donati, E.; Brindani, N.; Ottonello, G.; Armirotti, A.; De Vivo, M. Quercetin and Luteolin Are Single-Digit Micromolar Inhibitors of the SARS-CoV-2 RNA-Dependent RNA Polymerase. Sci. Rep. 2022, 12, 10571. [Google Scholar] [CrossRef]
- Lopez-Lazaro, M. Distribution and Biological Activities of the Flavonoid Luteolin. Mini-Rev. Med. Chem. 2009, 9, 31–59. [Google Scholar] [CrossRef]
- Azeem, M.; Hanif, M.; Mahmood, K.; Ameer, N.; Chughtai, F.R.S.; Abid, U. An Insight into Anticancer, Antioxidant, Antimicrobial, Antidiabetic and Anti-Inflammatory Effects of Quercetin: A Review. Polym. Bull. 2023, 80, 241–262. [Google Scholar] [CrossRef]
- Primikyri, A.; Chatziathanasiadou, M.V.; Karali, E.; Kostaras, E.; Mantzaris, M.D.; Hatzimichael, E.; Shin, J.-S.; Chi, S.-W.; Briasoulis, E.; Kolettas, E.; et al. Direct Binding of Bcl-2 Family Proteins by Quercetin Triggers Its pro-Apoptotic Activity. ACS Chem. Biol. 2014, 9, 2737–2741. [Google Scholar] [CrossRef]
- Ko, C.-C.; Chen, Y.-J.; Chen, C.-T.; Liu, Y.-C.; Cheng, F.-C.; Hsu, K.-C.; Chow, L.-P. Chemical Proteomics Identifies Heterogeneous Nuclear Ribonucleoprotein (HnRNP) A1 as the Molecular Target of Quercetin in Its Anti-Cancer Effects in PC-3 Cells *. J. Biol. Chem. 2014, 289, 22078–22089. [Google Scholar] [CrossRef]
- Shin, E.J.; Lee, J.S.; Hong, S.; Lim, T.-G.; Byun, S. Quercetin Directly Targets JAK2 and PKCδ and Prevents UV-Induced Photoaging in Human Skin. Int. J. Mol. Sci. 2019, 20, 5262. [Google Scholar] [CrossRef]
- Almatroodi, S.A.; Alsahli, M.A.; Almatroudi, A.; Verma, A.K.; Aloliqi, A.; Allemailem, K.S.; Khan, A.A.; Rahmani, A.H. Potential Therapeutic Targets of Quercetin, a Plant Flavonol, and Its Role in the Therapy of Various Types of Cancer through the Modulation of Various Cell Signaling Pathways. Molecules 2021, 26, 1315. [Google Scholar] [CrossRef]
- Tsuchiya, A.; Kobayashi, M.; Kamatari, Y.O.; Mitsunaga, T.; Yamauchi, K. Development of Flavonoid Probes and the Binding Mode of the Target Protein and Quercetin Derivatives. Bioorg. Med. Chem. 2022, 68, 116854. [Google Scholar] [CrossRef]
- Gonzalez, O.; Fontanes, V.; Raychaudhuri, S.; Loo, R.; Loo, J.; Arumugaswami, V.; Sun, R.; Dasgupta, A.; French, S.W. The Heat Shock Protein Inhibitor Quercetin Attenuates Hepatitis C Virus Production. Hepatol. Baltim. Md 2009, 50, 1756–1764. [Google Scholar] [CrossRef] [PubMed]
- Kuriakose, S.; Uzonna, J.E. Diminazene Aceturate (Berenil), a New Use for an Old Compound? Int. Immunopharmacol. 2014, 21, 342–345. [Google Scholar] [CrossRef]
- Mikek, C.G.; West, S.J.; Gwin, J.C.; Dayal, N.; Sintim, H.O.; Lewis, E.A. Berenil Binds Tightly to Parallel and Mixed Parallel/Antiparallel G-Quadruplex Motifs with Varied Thermodynamic Signatures. ACS Omega 2018, 3, 11582–11591. [Google Scholar] [CrossRef]
- Reddy, B.S.P.; Sondhi, S.M.; Lown, J.W. Synthetic DNA Minor Groove-Binding Drugs. Pharmacol. Ther. 1999, 84, 1–111. [Google Scholar] [CrossRef]
- Pilch, D.S.; Kirolos, M.A.; Liu, X.; Plum, G.E.; Breslauer, K.J. Berenil [1,3-Bis(4’-Amidinophenyl)Triazene] Binding to DNA Duplexes and to a RNA Duplex: Evidence for Both Intercalative and Minor Groove Binding Properties. Biochemistry 1995, 34, 9962–9976. [Google Scholar] [CrossRef]
- Pilch, D.S.; Breslauer, K.J. Ligand-Induced Formation of Nucleic Acid Triple Helices. Proc. Natl. Acad. Sci. USA 1994, 91, 9332–9336. [Google Scholar] [CrossRef]
- Portugal, J. Berenil Acts as a Poison of Eukaryotic Topoisomerase II. FEBS Lett. 1994, 344, 136–138. [Google Scholar] [CrossRef]
- Xi, H.; Gray, D.; Kumar, S.; Arya, D.P. Molecular Recognition of Single-Stranded RNA: Neomycin Binding to Poly(A). FEBS Lett. 2009, 583, 2269–2275. [Google Scholar] [CrossRef]
- Mao, T.; Kim, J.; Peña-Hernández, M.A.; Valle, G.; Moriyama, M.; Luyten, S.; Ott, I.M.; Gomez-Calvo, M.L.; Gehlhausen, J.R.; Baker, E.; et al. Intranasal Neomycin Evokes Broad-Spectrum Antiviral Immunity in the Upper Respiratory Tract. Proc. Natl. Acad. Sci. USA 2024, 121, e2319566121. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, N.; Andreasen, K.F.; Arora, Y.; Xue, L.; Arya, D.P. Surface Dependent Dual Recognition of a G-Quadruplex DNA With Neomycin-Intercalator Conjugates. Front. Chem. 2020, 8. [Google Scholar] [CrossRef] [PubMed]
- Shaw, N.N.; Xi, H.; Arya, D.P. Molecular Recognition of a DNA:RNA Hybrid: Sub-Nanomolar Binding by a Neomycin–Methidium Conjugate. Bioorg. Med. Chem. Lett. 2008, 18, 4142–4145. [Google Scholar] [CrossRef]
- Wallis, M.G.; von Ahsen, U.; Schroeder, R.; Famulok, M. A Novel RNA Motif for Neomycin Recognition. Chem. Biol. 1995, 2, 543–552. [Google Scholar] [CrossRef]
- Herrmann, E.; Gierschik, P.; Jakobs, K.H. Neomycin Induces High-Affinity Agonist Binding of G-Protein-Coupled Receptors. Eur. J. Biochem. 1989, 185, 677–683. [Google Scholar] [CrossRef]
- Gabev, E.; Kasianowicz, J.; Abbott, T.; McLaughlin, S. Binding of Neomycin to Phosphatidylinositol 4,5-Bisphosphate (PIP2). Biochim. Biophys. Acta 1989, 979, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Faber, C.; Sticht, H.; Schweimer, K.; Rösch, P. Structural Rearrangements of HIV-1 Tat-Responsive RNA upon Binding of Neomycin B*. J. Biol. Chem. 2000, 275, 20660–20666. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Huber, P.W.; Cui, M.; Czarnik, A.W.; Mei, H.-Y. Binding of Neomycin to the TAR Element of HIV-1 RNA Induces Dissociation of Tat Protein by an Allosteric Mechanism. Biochemistry 1998, 37, 5549–5557. [Google Scholar] [CrossRef]
- McFarland, A.W., Jr.; Fernando, L.P.; Kellish, P.; Story, S.P.; Schober, G.B.; Kumar, S.; Gong, C.; King, A.; Gong, X.; Leutou, A.S.; et al. Nucleic Acid Specificity, Cellular Localization and Reduced Toxicities of Thiazole Orange-Neomycin Conjugates. ChemistryOpen 2025, 14, e202400189. [Google Scholar] [CrossRef] [PubMed]
- Kammerud, S.C.; Metge, B.J.; Elhamamsy, A.R.; Weeks, S.E.; Alsheikh, H.A.; Mattheyses, A.L.; Shevde, L.A.; Samant, R.S. Novel Role of the Dietary Flavonoid Fisetin in Suppressing rRNA Biogenesis. Lab. Investig. 2021, 101, 1439–1448. [Google Scholar] [CrossRef]
- Notas, G.; Nifli, A.-P.; Kampa, M.; Pelekanou, V.; Alexaki, V.-I.; Theodoropoulos, P.; Vercauteren, J.; Castanas, E. Quercetin Accumulates in Nuclear Structures and Triggers Specific Gene Expression in Epithelial Cells. J. Nutr. Biochem. 2012, 23, 656–666. [Google Scholar] [CrossRef]
- Sasaki, Y.T.F.; Ideue, T.; Sano, M.; Mituyama, T.; Hirose, T. MENε/β Noncoding RNAs Are Essential for Structural Integrity of Nuclear Paraspeckles. Proc. Natl. Acad. Sci. USA 2009, 106, 2525–2530. [Google Scholar] [CrossRef]
- Peng, X.; Liu, X.; Li, J.; Tan, L. RNA-Binding of Ru(II) Complexes [Ru(Phen)2(7-OCH3-Dppz)]2+ and [Ru(Phen)2(7-NO2-Dppz)]2+: The Former Serves as a Molecular “Light Switch” for Poly(A)•poly(U). J. Inorg. Biochem. 2022, 237, 111991. [Google Scholar] [CrossRef]
- Lightfoot, H.L.; Hall, J. Endogenous Polyamine Function—The RNA Perspective. Nucleic Acids Res. 2014, 42, 11275–11290. [Google Scholar] [CrossRef] [PubMed]
- Bereiter, R.; Flemmich, L.; Nykiel, K.; Heel, S.; Geley, S.; Hanisch, M.; Eichler, C.; Breuker, K.; Lusser, A.; Micura, R. Engineering Covalent Small Molecule–RNA Complexes in Living Cells. Nat. Chem. Biol. 2025, 21, 843–854. [Google Scholar] [CrossRef] [PubMed]
- Walsh, S.; El-Sagheer, A.H.; Brown, T. Fluorogenic Thiazole Orange TOTFO Probes Stabilise Parallel DNA Triplexes at pH 7 and above. Chem. Sci. 2018, 9, 7681–7687. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Błaszczyk, L.; Rypniewski, W.; Falschlunger, C.; Micura, R.; Murata, A.; Dohno, C.; Nakatani, K.; Kiliszek, A. Structural Insights into Synthetic Ligands Targeting A–A Pairs in Disease-Related CAG RNA Repeats. Nucleic Acids Res. 2019, 47, 10906–10913. [Google Scholar] [CrossRef]
- Lu, Z.; Gong, J.; Zhang, Q.C. PARIS: Psoralen Analysis of RNA Interactions and Structures with High Throughput and Resolution. Methods Mol. Biol. 2018, 1649, 59–84. [Google Scholar] [CrossRef]
- Chen, X.-C.; Chen, S.-B.; Dai, J.; Yuan, J.-H.; Ou, T.-M.; Huang, Z.-S.; Tan, J.-H. Tracking the Dynamic Folding and Unfolding of RNA G-Quadruplexes in Live Cells. Angew. Chem. Int. Ed. 2018, 57, 4702–4706. [Google Scholar] [CrossRef]
- Agilent.com. Available online: https://www.agilent.com/cs/library/technicaloverviews/public/te-cary-3500-uv-vis-biomolecules-5994-7043en-agilent.pdf (accessed on 25 October 2025).
- Schievelbein, M.J.; Resende, C.; Glennon, M.M.; Kerosky, M.; Brown, J.A. Global RNA Modifications to the MALAT1 Triple Helix Differentially Affect Thermostability and Weaken Binding to METTL16. J. Biol. Chem. 2024, 300, 105548. [Google Scholar] [CrossRef]
- Vo, T.; Paul, A.; Kumar, A.; Boykin, D.W.; Wilson, W.D. Biosensor-Surface Plasmon Resonance: A Strategy to Help Establish a New Generation RNA-Specific Small Molecules. Methods 2019, 167, 15–27. [Google Scholar] [CrossRef]
- Menichelli, E.; Lam, B.J.; Wang, Y.; Wang, V.S.; Shaffer, J.; Tjhung, K.F.; Bursulaya, B.; Nguyen, T.N.; Vo, T.; Alper, P.B.; et al. Discovery of Small Molecules That Target a Tertiary-Structured RNA. Proc. Natl. Acad. Sci. USA 2022, 119, e2213117119. [Google Scholar] [CrossRef]
- Arney, J.W.; Weeks, K.M. RNA–Ligand Interactions Quantified by Surface Plasmon Resonance with Reference Subtraction. Biochemistry 2022, 61, 1625–1632. [Google Scholar] [CrossRef]
- Nakagawa, S.; Ip, J.Y.; Shioi, G.; Tripathi, V.; Zong, X.; Hirose, T.; Prasanth, K.V. Malat1 Is Not an Essential Component of Nuclear Speckles in Mice. RNA 2012, 18, 1487–1499. [Google Scholar] [CrossRef]
- Zhang, N.; Lan, R.; Chen, Y.; Hu, J. Identification of KDM4C as a Gene Conferring Drug Resistance in Multiple Myeloma. Open Life Sci. 2024, 19, 20220848. [Google Scholar] [CrossRef]
- Wang, F.; Li, Y.; Zhou, J.; Xu, J.; Peng, C.; Ye, F.; Shen, Y.; Lu, W.; Wan, X.; Xie, X. miR-375 Is Down-Regulated in Squamous Cervical Cancer and Inhibits Cell Migration and Invasion via Targeting Transcription Factor SP1. Am. J. Pathol. 2011, 179, 2580–2588. [Google Scholar] [CrossRef]
- Tripathi, V.; Ellis, J.D.; Shen, Z.; Song, D.Y.; Pan, Q.; Watt, A.T.; Freier, S.M.; Bennett, C.F.; Sharma, A.; Bubulya, P.A.; et al. The Nuclear-Retained Noncoding RNA MALAT1 Regulates Alternative Splicing by Modulating SR Splicing Factor Phosphorylation. Mol. Cell 2010, 39, 925–938. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
) and a solid line (−), respectively. (C) Chemical structure of a U•A-U base triple is shown with Hoogsteen and Watson-Crick base pairing denoted by dashed lines. (D) Chemical structures of the eight TBMs examined in this study. The TBMs that are alkaloids are represented by a shade of blue: dark blue, blue, and light blue represent berberine, coralyne, and sanguinarine, respectively. TBMs that are flavonoids are represented by a shade of green: dark green, green, and light green represent fisetin, luteolin, and quercetin, respectively. The colors dark red and red represent berenil and neomycin, respectively.
) and a solid line (−), respectively. (C) Chemical structure of a U•A-U base triple is shown with Hoogsteen and Watson-Crick base pairing denoted by dashed lines. (D) Chemical structures of the eight TBMs examined in this study. The TBMs that are alkaloids are represented by a shade of blue: dark blue, blue, and light blue represent berberine, coralyne, and sanguinarine, respectively. TBMs that are flavonoids are represented by a shade of green: dark green, green, and light green represent fisetin, luteolin, and quercetin, respectively. The colors dark red and red represent berenil and neomycin, respectively.
) and a solid line (−), respectively. All RNAs used in this experiment are unimolecular, like the RNA shown in Figure 1B. All melting temperature values are compiled in Tables S1–S4. Raw and processed UV data are presented in File S1.
) and a solid line (−), respectively. All RNAs used in this experiment are unimolecular, like the RNA shown in Figure 1B. All melting temperature values are compiled in Tables S1–S4. Raw and processed UV data are presented in File S1.



| TBM | TM,H (°C) | ΔTM,H (°C) | TM,WC (°C) | ΔTM,WC (°C) |
|---|---|---|---|---|
| 0.1% DMSO | 49.6 ± 0.4 | - | 69.0 ± 0.0 | - |
| Berberine | 53.3 ± 0.8 | 3.7 | 70.8 ± 0.4 | 1.8 |
| Coralyne | 52.1 ± 0.5 | 2.5 | 69.8 ± 0.3 | 0.8 |
| Sanguinarine | 57.4 ± 0.7 | 7.8 | 72.2 ± 0.4 | 3.2 |
| Fisetin | 49.1 ± 0.1 | −0.5 | 69.0 ± 0.2 | 0.0 |
| Luteolin | 49.4 ± 0.5 | −0.2 | 68.8 ± 0.4 | −0.2 |
| Quercetin | 49.0 ± 0.1 | −0.6 | 68.9 ± 0.3 | −0.1 |
| Berenil | 54.1 ± 0.9 | 4.5 | 70.8 ± 0.4 | 1.8 |
| Neomycin | 80.3 ± 0.6 | 30.7 | 89.2 ± 0.4 | 20.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mousseau, M.M.; Shivakumar, K.M.; Yoo, J.; Brown, J.A. Eight Triplex-Binding Molecules from Four Chemical Classes Broadly Recognize the MALAT1 Triple Helix. Molecules 2025, 30, 4277. https://doi.org/10.3390/molecules30214277
Mousseau MM, Shivakumar KM, Yoo J, Brown JA. Eight Triplex-Binding Molecules from Four Chemical Classes Broadly Recognize the MALAT1 Triple Helix. Molecules. 2025; 30(21):4277. https://doi.org/10.3390/molecules30214277
Chicago/Turabian StyleMousseau, Madeline M., Krishna M. Shivakumar, Jaesang Yoo, and Jessica A. Brown. 2025. "Eight Triplex-Binding Molecules from Four Chemical Classes Broadly Recognize the MALAT1 Triple Helix" Molecules 30, no. 21: 4277. https://doi.org/10.3390/molecules30214277
APA StyleMousseau, M. M., Shivakumar, K. M., Yoo, J., & Brown, J. A. (2025). Eight Triplex-Binding Molecules from Four Chemical Classes Broadly Recognize the MALAT1 Triple Helix. Molecules, 30(21), 4277. https://doi.org/10.3390/molecules30214277

