Associations of Omega-3 and Omega-6 Fatty Acids Intake with Visceral Adiposity: Sex-Specific Patterns in a Population-Based Study
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Sample and Study Design
4.2. Sociodemographic Characterizations
4.3. Food Consumption Analysis
4.4. Anthropometric Assessment and Body Composition
4.5. Estimate of Cardiovascular Disease Risk
4.6. Biochemical Analyses
4.7. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| VAI | visceral adiposity index |
| BMI | body mass index |
| CVD | cardiovascular disease |
| WC | waist circumference |
| WHtR | waist-to-height |
| WHR | waist-to-hip ratio |
| LAP | lipid accumulation product |
| CVAI | Chinese visceral adiposity index |
| BMIm | BMI metabolic score |
| HDL-c | high-density lipoprotein cholesterol |
| LDL-c | low-density lipoprotein cholesterol |
| TG | plasma triglycerides |
| TC | total cholesterol |
| ALT | Alanine Aminotransferase |
| AST | Aspartate Aminotransferase |
| GTT | Gamma-Glutamyltransferase |
| MUFA | monounsaturated fatty acids |
| SFA | saturated fatty acids |
| ALA | alpha-linolenic acid |
| EPA | eicosapentaenoic acid |
References
- Phelps, N.H.; Singleton, R.K.; Zhou, B.; Heap, R.A.; Mishra, A.; Bennett, J.E.; Paciorek, C.J.; Lhoste, V.P.; Carrillo-Larco, R.M.; Stevens, G.A.; et al. Worldwide Trends in Underweight and Obesity from 1990 to 2022: A Pooled Analysis of 3663 Population-Representative Studies with 222 Million Children, Adolescents, and Adults. Lancet 2024, 403, 1027–1050. [Google Scholar] [CrossRef]
- Koskinas, K.C.; Van Craenenbroeck, E.M.; Antoniades, C.; Blüher, M.; Gorter, T.M.; Hanssen, H.; Marx, N.; McDonagh, T.A.; Mingrone, G.; Rosengren, A.; et al. Obesity and Cardiovascular Disease: An ESC Clinical Consensus Statement. Eur. J. Prev. Cardiol. 2025, 32, 184–220. [Google Scholar] [CrossRef]
- Lingvay, I.; Cohen, R.V.; Roux, C.W.L.; Sumithran, P. Obesity in Adults. Lancet 2024, 404, 972–987. [Google Scholar] [CrossRef]
- Chagas, C.L.; Da Silva, N.F.; Rodrigues, I.G.; Arcoverde, G.M.P.F.; Ferraz, V.D.; Sobral Filho, D.C.; Diniz, A.D.S.; Pinho, C.P.S.; Cabral, P.C.; De Arruda, I.K.G. Different Factors Modulate Visceral and Subcutaneous Fat Accumulation in Adults: A Single-Center Study in Brazil. Front. Nutr. 2025, 12, 1524389. [Google Scholar] [CrossRef] [PubMed]
- Blüher, M. Obesity: Global Epidemiology and Pathogenesis. Nat. Rev. Endocrinol. 2019, 15, 288–298. [Google Scholar] [CrossRef] [PubMed]
- Speakman, J.R.; Sørensen, T.I.A.; Hall, K.D.; Allison, D.B. Unanswered Questions about the Causes of Obesity. Science 2023, 381, 944–946. [Google Scholar] [CrossRef]
- Khera, A.V.; Cuchel, M.; De La Llera-Moya, M.; Rodrigues, A.; Burke, M.F.; Jafri, K.; French, B.C.; Phillips, J.A.; Mucksavage, M.L.; Wilensky, R.L.; et al. Cholesterol Efflux Capacity, High-Density Lipoprotein Function, and Atherosclerosis. N. Engl. J. Med. 2011, 364, 127–135. [Google Scholar] [CrossRef]
- Wang, H.; Qin, Y.; Niu, J.; Chen, H.; Lu, X.; Wang, R.; Han, J. Evolving Perspectives on Evaluating Obesity: From Traditional Methods to Cutting-Edge Techniques. Ann. Med. 2025, 57, 2472856. [Google Scholar] [CrossRef]
- Amato, M.C.; Giordano, C.; Galia, M.; Criscimanna, A.; Vitabile, S.; Midiri, M.; Galluzzo, A.; For the AlkaMeSy Study Group. Visceral Adiposity Index. Diabetes Care 2010, 33, 920–922. [Google Scholar] [CrossRef]
- Zheng, S.-H.; Li, X.-L. Visceral Adiposity Index as a Predictor of Clinical Severity and Therapeutic Outcome of PCOS. Gynecol. Endocrinol. 2016, 32, 177–183. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, C.M.; Ulbrich, A.Z.; Neves, F.S.; Dias, F.A.L.; Horimoto, A.R.V.R.; Krieger, J.E.; Alvim, R.D.O.; Pereira, A.D.C. Association between Anthropometric Indicators of Adiposity and Hypertension in a Brazilian Population: Baependi Heart Study. PLoS ONE 2017, 12, e0185225. [Google Scholar] [CrossRef]
- Braga, R.A.M.; Bezerra, I.N.; Nogueira, M.D.D.A.; Souza, A.D.M.; Martins, G.D.S.; Almondes, K.G.D.S.; Moreno, L.A.; Maia, C.S.C. Cardiometabolic Risk Assessment: A School-Based Study in Brazilian Adolescent. Nutr. Metab. Cardiovasc. Dis. 2024, 34, 1069–1079. [Google Scholar] [CrossRef]
- Amato, M.C.; Giordano, C. Visceral Adiposity Index: An Indicator of Adipose Tissue Dysfunction. Int. J. Endocrinol. 2014, 2014, 730827. [Google Scholar] [CrossRef]
- Shetty, S.; Suvarna, R.; Bhattacharya, S.; Seetharaman, K. Visceral Adiposity and Cardiometabolic Risk: Clinical Insights and Assessment. Cardiol. Rev. 2025, 2025, 10-1097. [Google Scholar] [CrossRef]
- Lorente-Cebrián, S.; Costa, A.G.V.; Navas-Carretero, S.; Zabala, M.; Martínez, J.A.; Moreno-Aliaga, M.J. Role of Omega-3 Fatty Acids in Obesity, Metabolic Syndrome, and Cardiovascular Diseases: A Review of the Evidence. J. Physiol. Biochem. 2013, 69, 633–651. [Google Scholar] [CrossRef]
- Capece, U.; Gugliandolo, S.; Morciano, C.; Avolio, A.; Splendore, A.; Di Giuseppe, G.; Ciccarelli, G.; Soldovieri, L.; Brunetti, M.; Mezza, T.; et al. Erythrocyte Membrane Fluidity and Omega-3 Fatty Acid Intake: Current Outlook and Perspectives for a Novel, Nutritionally Modifiable Cardiovascular Risk Factor. Nutrients 2024, 16, 4318. [Google Scholar] [CrossRef] [PubMed]
- Roy, J.; Larroquet, L.; Surget, A.; Lanuque, A.; Sandres, F.; Terrier, F.; Corraze, G.; Chung-Yung Lee, J.; Skiba-Cassy, S. Impact on Cerebral Function in Rainbow Trout Fed with Plant Based Omega-3 Long Chain Polyunsaturated Fatty Acids Enriched with DHA and EPA. Fish. Shellfish. Immunol. 2020, 103, 409–420. [Google Scholar] [CrossRef] [PubMed]
- Jerab, D.; Blangero, F.; Da Costa, P.C.T.; De Brito Alves, J.L.; Kefi, R.; Jamoussi, H.; Morio, B.; Eljaafari, A. Beneficial Effects of Omega-3 Fatty Acids on Obesity and Related Metabolic and Chronic Inflammatory Diseases. Nutrients 2025, 17, 1253. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.Y.; Moon, Y.S.; Cho, K.K. ω-6 and ω-3 Polyunsaturated Fatty Acids: Inflammation, Obesity and Foods of Animal Resources. Food Sci. Anim. Resour. 2024, 44, 988–1010. [Google Scholar] [CrossRef]
- Smorenburg, J.N.; Hodun, K.; McTavish, P.V.; Wang, C.; Pinheiro, M.A.; Wells, K.R.D.; Brunt, K.R.; Nakamura, M.T.; Chabowski, A.; Mutch, D.M. EPA/DHA but Not ALA Reduces Visceral Adiposity and Adipocyte Size in High Fat Diet-Induced Obese Delta-6 Desaturase Knockout Mice. Mol. Nutr. Food Res. 2025, 69, e202400721. [Google Scholar] [CrossRef]
- Yin, S.; Xu, H.; Xia, J.; Lu, Y.; Xu, D.; Sun, J.; Wang, Y.; Liao, W.; Sun, G. Effect of Alpha-Linolenic Acid Supplementation on Cardiovascular Disease Risk Profile in Individuals with Obesity or Overweight: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2023, 14, 1644–1655. [Google Scholar] [CrossRef] [PubMed]
- Borja-Magno, A.I.; Furuzawa-Carballeda, J.; Guevara-Cruz, M.; Arias, C.; Granados, J.; Bourges, H.; Tovar, A.R.; Sears, B.; Noriega, L.G.; Gómez, F.E. Supplementation with EPA and DHA Omega-3 Fatty Acids Improves Peripheral Immune Cell Mitochondrial Dysfunction and Inflammation in Subjects with Obesity. J. Nutr. Biochem. 2023, 120, 109415. [Google Scholar] [CrossRef]
- Yiannakou, I.; Yuan, M.; Zhou, X.; Singer, M.R.; Moore, L.L. Dietary Fat Intakes, Lipid Profiles, Adiposity, Inflammation, and Glucose in Women and Men in the Framingham Offspring Cohort. Front. Physiol. 2023, 14, 1144200. [Google Scholar] [CrossRef] [PubMed]
- Hall, W.L. Long Chain N-3 Polyunsaturated Fatty Acid Intake across the Life Span for Cardiovascular Disease Prevention in Women. Proc. Nutr. Soc. 2025, 84, 98–109. [Google Scholar] [CrossRef] [PubMed]
- Oshima, Y.; Rin, S.; Kita, H.; Hiramoto, Y.; Morimoto, S.; Okunaga, A.; Takami, H.; Nakamura, S.; Saito, H.; Izumi, M. The Frequency of Fish-Eating Could Negatively Associate with Visceral Adiposity in Those Who Eat Moderately. J. Nutr. Sci. Vitaminol. J. Nutr. Sci. Vitaminol. 2015, 61, 426–431. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Lan, Y.; Yang, K.; Zhang, J.; Chen, L.; Meng, T.; Wu, M.; Lu, X. Omega-3 and Omega-6 Fatty Acids: Inverse Association with Body Fat Percentage and Obesity Risk. Nutr. Res. 2025, 135, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Abbas Torki, S.; Roumi, Z.; Tahavorgar, A.; Salimi, Z.; Mohammadi, S.; Shekari, S.; Saeedirad, Z.; Amjadi, A.; Mirzaee, P.; Shafaei, H.; et al. Effect of Omega-3 Fatty Acids Supplementation on Muscle Mass, Fat Mass, and Visceral Fat of Hemodialysis Patients; A Randomized Clinical Trial. J. Basic. Clin. Physiol. Pharmacol. 2024, 35, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Sangouni, A.A.; Orang, Z.; Mozaffari-Khosravi, H. Effect of Omega-3 Supplementation on Fatty Liver and Visceral Adiposity Indices in Diabetic Patients with Non-Alcoholic Fatty Liver Disease: A Randomized Controlled Trial. Clin. Nutr. ESPEN 2021, 44, 130–135. [Google Scholar] [CrossRef]
- Rundblad, A.; Sandoval, V.; Holven, K.B.; Ordovás, J.M.; Ulven, S.M. Omega-3 Fatty Acids and Individual Variability in Plasma Triglyceride Response: A Mini-Review. Redox Biol. 2023, 63, 102730. [Google Scholar] [CrossRef]
- Gnoni, A.; Giudetti, A.M. Dietary Long-Chain Unsaturated Fatty Acids Acutely and Differently Reduce the Activities of Lipogenic Enzymes and of Citrate Carrier in Rat Liver. J. Physiol. Biochem. 2016, 72, 485–494. [Google Scholar] [CrossRef]
- Hao, L.; Chen, C.-Y.; Nie, Y.-H.; Kaliannan, K.; Kang, J.X. Differential Interventional Effects of Omega-6 and Omega-3 Polyunsaturated Fatty Acids on High Fat Diet-Induced Obesity and Hepatic Pathology. Int. J. Mol. Sci. 2023, 24, 17261. [Google Scholar] [CrossRef]
- Gao, X.; Su, X.; Han, X.; Wen, H.; Cheng, C.; Zhang, S.; Li, W.; Cai, J.; Zheng, L.; Ma, J.; et al. Unsaturated Fatty Acids in Mental Disorders: An Umbrella Review of Meta-Analyses. Adv. Nutr. 2022, 13, 2217–2236. [Google Scholar] [CrossRef]
- Lamantia, V.; Bissonnette, S.; Beaudry, M.; Cyr, Y.; Rosiers, C.D.; Baass, A.; Faraj, M. EPA and DHA Inhibit LDL-Induced Upregulation of Human Adipose Tissue NLRP3 Inflammasome/IL-1β Pathway and Its Association with Diabetes Risk Factors. Sci. Rep. 2024, 14, 27146. [Google Scholar] [CrossRef]
- Albracht-Schulte, K.; Kalupahana, N.S.; Ramalingam, L.; Wang, S.; Rahman, S.M.; Robert-McComb, J.; Moustaid-Moussa, N. Omega-3 Fatty Acids in Obesity and Metabolic Syndrome: A Mechanistic Update. J. Nutr. Biochem. 2018, 58, 1–16. [Google Scholar] [CrossRef]
- Brown, L.H.; Mutch, D.M. Mechanisms Underlying N3-PUFA Regulation of White Adipose Tissue Endocrine Function. Curr. Opin. Pharmacol. 2020, 52, 40–46. [Google Scholar] [CrossRef]
- Ahmadi, A.R.; Shirani, F.; Abiri, B.; Siavash, M.; Haghighi, S.; Akbari, M. Impact of Omega-3 Fatty Acids Supplementation on the Gene Expression of Peroxisome Proliferator Activated Receptors-γ, α and Fibroblast Growth Factor-21 Serum Levels in Patients with Various Presentation of Metabolic Conditions: A GRADE Assessed Systematic Review and Dose–Response Meta-Analysis of Clinical Trials. Front. Nutr. 2023, 10, 1202688. [Google Scholar] [CrossRef]
- Delpino, F.M.; Figueiredo, L.M.; Da Silva, B.G.C. Effects of Omega-3 Supplementation on Body Weight and Body Fat Mass: A Systematic Review. Clin. Nutr. ESPEN 2021, 44, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Jafari Salim, S.; Alizadeh, S.; Djalali, M.; Nematipour, E.; Hassan Javanbakht, M. Effect of Omega-3 Polyunsaturated Fatty Acids Supplementation on Body Composition and Circulating Levels of Follistatin-like 1 in Males with Coronary Artery Disease: A Randomized Double-Blind Clinical Trial. Am. J. Mens. Health 2017, 11, 1758–1764. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, C.C.; Knol, L.L.; Ellis, A.C. Visceral Adiposity Index and Its Association with Dietary Approaches to Stop Hypertension (DASH) Diet Scores among Older Adults: National Health and Nutrition Examination Surveys 2011–2014. Clin. Nutr. 2021, 40, 4085–4089. [Google Scholar] [CrossRef]
- Xu, S.; Cai, Y.; Hu, H.; Zhai, C. Correlation of Visceral Adiposity Index and Dietary Profile with Cardiovascular Disease Based on Decision Tree Modeling: A Cross-Sectional Study of NHANES. Eur. J. Med. Res. 2025, 30, 123. [Google Scholar] [CrossRef]
- Nazari, M.; Mirzaie, K.; Keshavarz, S. Association between Lifelines Diet Score (LLDS) and Some Novel Anthropometric Indices, Including Body Roundness Index (BRI), A Body Shape Index (ABSI), Visceral Adiposity Index (VAI), and Body Adiposity Index (BAI), in Iranian Women: A Cross-Sectional Study. BMC Women’s Health 2024, 24, 172. [Google Scholar] [CrossRef]
- Moslehi, N.; Ehsani, B.; Mirmiran, P.; Hojjat, P.; Azizi, F. Association of Dietary Proportions of Macronutrients with Visceral Adiposity Index: Non-Substitution and Iso-Energetic Substitution Models in a Prospective Study. Nutrients 2015, 7, 8859–8870. [Google Scholar] [CrossRef]
- Bonfim, S.M.V.; Leite, M.J.S.; Camusso, I.G.; Marchioni, D.M.L.; Carvalho, A.M. Consumption of Meat in Brazil: A Perspective on Social Inequalities and Food and Nutrition Security. IJERPH 2024, 21, 1625. [Google Scholar] [CrossRef]
- Blank, J.T.; Helena, E.T.D.S.; Damasceno, N.R.T.; Santos, R.D.; Markus, M.R.P.; Azevedo, L.C.D. Consumo de Carnes Por Adultos e Idosos de Uma Cidade de Colonização Alemã Do Sul Do Brasil: Estudo de Base Populacional. Ciênc. Saúde Coletiva 2023, 28, 243–255. [Google Scholar] [CrossRef]
- Molina, M.D.C.B.; Benseñor, I.M.; Cardoso, L.d.O.; Velasquez-Melendez, G.; Drehmer, M.; Pereira, T.S.S.; de Faria, C.P.; Melere, C.; Manato, L.; Gomes, A.L.C.; et al. Reproducibility and relative validity of the Food Frequency Questionnaire used in the ELSA-Brasil. Cad. Saude Publica 2013, 29, 379–389. [Google Scholar] [PubMed]
- Da Rosa, A.C.; Schmitz, B.; Chiarelli, G.; Da Silveira, J.L.G.C.; Alves, M.U.; Campanella, L.C.D.A. Adaptação de Um Inquérito Alimentar a Ser Utilizado Em Um Estudo Longitudinal a Partir Do Contexto Sociocultural de Uma População de Colonização Alemã. Rev. Atenção Saúde 2016, 14, 34–41. [Google Scholar] [CrossRef]
- Ghaffarian-Ensaf, R.; Shiraseb, F.; Mirzababaei, A.; Clark, C.C.T.; Mirzaei, K. Interaction between Caveolin-1 Polymorphism and Dietary Fat Quality Indexes on Visceral Adiposity Index (VAI) and Body Adiposity Index (BAI) among Overweight and Obese Women: A Cross-Sectional Study. BMC Med. Genom. 2022, 15, 258. [Google Scholar] [CrossRef]
- Santa Helena, E.T.D.; Sousa, C.A.D.; Silveira, J.L.G.C.D.; Nunes, C.R.D.O.; Azevedo, L.C.D.; Nilson, L.G.; Valente, C.; Prado, R.L.D.; Cordova, C.M.M.D.; Batista, K.Z.S.; et al. Study of Health in Pomerode (SHIP-Brazil): Aims, Methodological Issues and Descriptive Results. arXiv 2023. [Google Scholar] [CrossRef]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International Physical Activity Questionnaire: 12-Country Reliability and Validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [PubMed]
- Babor, T.F.; Kranzler, H.R.; Lauerman, R.J. Early Detection of Harmful Alcohol Consumption: Comparison of Clinical, Laboratory, and Self-Report Screening Procedures. Addict. Behav. 1989, 14, 139–157. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.; Poulter, N.R.; Brown, M.J.; Davis, M.; McInnes, G.T.; Potter, J.F.; Sever, P.S.; Thom, S.M. British Hypertension Society Guidelines for Hypertension Management 2004 (BHS-IV): Summary. BMJ 2004, 328, 634–640. [Google Scholar] [CrossRef]
- Chiarelli, G.; Höfelmann, D.A.; Silveira, J.L.G.C.D.; Alves, M.U.; Azevedo, L.C.D. Validity and Reproducibility of a Food Frequency Questionnaire for German Descendants Living in Brazil. Rev. Nutr. 2021, 34, e200048. [Google Scholar] [CrossRef]
- Willett, W.; Howe, G.; Kushi, L. Adjustment for Total Energy Intake in Epidemiologic Studies. Am. J. Clin. Nutr. 1997, 65, 1220S–1228S. [Google Scholar] [CrossRef] [PubMed]
- Eveleth, P.B. Physical Status: The Use and Interpretation of Anthropometry. Report of a WHO Expert Committee. Am. J. Hum. Biol. 1996, 8, 786–787. [Google Scholar] [CrossRef]
- Pan American Health Organization. Multicenter Survey Aging, Health and Wellbeing in Latin America and the Caribbean (SABE): Preliminary Report; Pan American Health Organization: Washington, DC, USA, 2001. [Google Scholar]
- Goff, D.C.; Lloyd-Jones, D.M.; Bennett, G.; Coady, S.; D’Agostino, R.B.; Gibbons, R.; Greenland, P.; Lackland, D.T.; Levy, D.; O’Donnell, C.J.; et al. 2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2014, 129 (Suppl. S2), S49–S73. [Google Scholar] [CrossRef] [PubMed]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, without Use of the Preparative Ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Hofler, M.; Pfister, H.; Lieb, R.; Wittchen, H.-U. The Use of Weights to Account for Non-Response and Drop-Out. Soc. Psychiat Epidemiol. 2005, 40, 291–299. [Google Scholar] [CrossRef]
- Nohr, E.A.; Liew, Z. How to Investigate and Adjust for Selection Bias in Cohort Studies. Acta Obstet. Gynecol. Scand. 2018, 97, 407–416. [Google Scholar] [CrossRef]

| Variables | Men (n = 298) | Women (n = 399) | ||||
|---|---|---|---|---|---|---|
| VAI < 3.67 (n = 158) | VAI ≥ 3.67 (n = 140) | p-Value | VAI < 3.80 (n = 198) | VAI ≥ 3.80 (n = 201) | p-Value | |
| Age (years), mean (SD) | 42 (15) | 43 (13) | <0.001 | 42 (14) | 46 (15) | <0.001 |
| Race, n (%) | ||||||
| White | 151 (95.6) | 132 (94.3) | 0.404 | 184 (93.4) | 191 (6.6) | 0.204 |
| Non-white | 7 (4.4) | 8 (5.7) | 13 (6.6) | 9 (4.5) | ||
| Physical activity, n (%) | ||||||
| Sedentary | 98 (74.7) | 94 (67.9) | <0.001 | 121 (67.8) | 118 (57.2) | <0.001 |
| Walking/moderate/vigorous | 43 (25.3) | 44 (32.1) | 59 (32.2) | 78 (42.8) | ||
| Smoking status, n (%) | ||||||
| Smoker | 9 (5.3) | 18 (11) | <0.001 | 12 (5.1) | 17 (6.8) | <0.001 |
| Former smoker | 51 (26.1) | 35 (15.3) | 39 (21.3) | 28 (12.4) | ||
| Never | 95 (68.6) | 85 (73.7) | 144 (73.6) | 155 (80.7) | ||
| Alcohol consumption, n (%) | ||||||
| Low | 92 (59.7) | 62 (56.6) | 0.338 | 161 (82.6) | 177 (89.4) | 0.035 |
| High | 77 (40.3) | 59 (43.4) | 34 (17.4) | 21 (10.6) | ||
| Current diseases, n (%) | ||||||
| Hypertension | ||||||
| No | 105 (83.1) | 80 (73.8) | <0.001 | 139 (81.3) | 94 (62.2) | <0.001 |
| Yes | 44 (16.9) | 49 (26.2) | 47 (18.7) | 88 (37.8) | ||
| Diabetes Mellitus | ||||||
| No | 140 (95.3) | 115 (89.2) | <0.001 | 180 (95.5) | 170 (92) | <0.001 |
| Yes | 14 (4.7) | 20 (10.8) | 15 (4.5) | 25 (8) | ||
| Dyslipidemia | ||||||
| No | 124 (86.8) | 78 (61.2) | <0.001 | 152 (84) | 113 (66) | <0.001 |
| Yes | 33 (13.2) | 58 (38.8) | 44 (16) | 83 (34 | ||
| CVD risk, n (%) | ||||||
| Low | 97 (60.7) | 37 (26.4) | <0.001 | 131 (77) | 102 (65) | <0.001 |
| High | 61 (39.3) | 103 (73.6) | 67 (23) | 99 (35) | ||
| Variables | Men (n = 298) | Women (n = 399) | ||||
|---|---|---|---|---|---|---|
| VAI < 3.67 (n = 158) | VAI ≥ 3.67 (n = 140) | p-Value | VAI < 3.80 (n = 198) | VAI ≥ 3.80 (n = 201) | p-Value | |
| Total cholesterol (mg/dL) | 171 ± 34.8 | 201 ± 47.7 | <0.001 | 177 ± 35.7 | 188 ± 37.5 | <0.001 |
| LDL-c (mg/dL) | 122 ± 31.4 | 131 ± 45.8 | <0.001 | 111 ± 32.7 | 119 ± 33.2 | <0.001 |
| HDL-c (mg/dL) | 43.6 ± 8.6 | 32 ± 6.6 | <0.001 | 50 ± 11.1 | 39 ± 8.9 | <0.001 |
| Triglycerides (mg/dL) | 83 ± 30.9 | 193 ± 94.6 | <0.001 | 81 ± 28.2 | 149 ± 55 | <0.001 |
| Glucose (mg/dL) | 88 ± 20.9 | 113 ± 10.6 | <0.001 | 82 ± 21.6 | 98 ± 29.2 | <0.001 |
| ALT (U/L) | 12 (10) | 16 (13) | <0.001 | 9 (7) | 10 (7) | <0.001 |
| AST (U/L) | 20 (7) | 23 (8) | <0.001 | 17 (6) | 18 (7) | 0.016 |
| GTT (U/L) | 22 (17) | 29 (19) | <0.001 | 14 (6) | 16 (12) | <0.001 |
| Variables | Men (n = 298) | Women (n = 399) | ||||
|---|---|---|---|---|---|---|
| VAI < 3.67 (n = 158) | VAI ≥ 3.67 (n = 140) | p-Value | VAI < 3.80 (n = 198) | VAI ≥ 3.80 (n = 201) | p-Value | |
| Total calories (kcal) | 3409 (843) | 3513 (1209) | <0.001 | 2628 (1237) | 2711 (1494) | 0.204 |
| Carbohydrates (g) | 441 (162) | 458 (224) | <0.001 | 367 (203) | 379 (227) | <0.001 |
| Proteins (g) | 156 (33) | 158 (48) | <0.001 | 128 (58) | 118 (62) | <0.001 |
| Lipids (g) | 93 (47) | 105 (53) | <0.001 | 72 (12) | 75 (38) | <0.001 |
| SFA (g) | 32.6 ± 14.7 | 34.6 ± 14.1 | <0.001 | 26.5 ± 11.3 | 25.5 ± 11.6 | 0.001 |
| Palmitic acid (g) | 17.2 ± 7.1 | 18.8 ± 7.5 | <0.001 | 14.1 ± 5.8 | 13.8 ± 6.6 | <0.001 |
| Stearic acid (g) | 7.9 ± 3.2 | 8.5 ± 3.3 | <0.001 | 6.4 ± 2.6 | 6 ± 2.5 | 0.001 |
| MUFA (g) | 31.6 ± 12.1 | 34.9 ± 13.7 | <0.001 | 26.5 ± 11.6 | 24.7 ± 10.2 | <0.001 |
| Oleic acid (g) | 1.8 ± 0.8 | 2 ± 0.9 | <0.001 | 1.6 ± 0.7 | 1.5 ± 0.6 | 0.004 |
| PUFA (g) | 20.2 ± 8.6 | 22.6 ± 10.8 | <0.001 | 16.8 ± 8.1 | 17 ± 9.5 | 0.047 |
| Omega-6 (g) ‡ | 15.6 ± 6.1 | 17 ± 7.8 | <0.001 | 13.2 ± 6.4 | 12.5 ± 6.2 | <0.001 |
| Omega-3 (g) ‡ | 1.9 ± 0.7 | 2.1 ± 0.9 | <0.001 | 1.7 ± 0.8 | 1.6 ± 0.7 | 0.001 |
| EPA (mg) | 63.6 ± 14.1 | 84.5 ± 18.4 | <0.001 | 89 ± 23.4 | 49.6 ± 8.1 | <0.001 |
| DHA (mg) | 129.3 ± 16.8 | 148.9 ± 14.5 | <0.001 | 125 ± 16.2 | 90 ± 11.4 | <0.001 |
| EPA + DHA intake (mg) | 202 ± 29.9 | 224 ± 21.6 | <0.001 | 200 ± 28.3 | 150 ± 19.7 | <0.001 |
| Model 1 | Model 2 | |||||
|---|---|---|---|---|---|---|
| Men | ||||||
| Variables | β | CI (95%) | p-Value | β | CI (95%) | p-Value |
| Omega-3 (g) | 0.001 | −0.192; 0.195 | 0.990 | −0.094 | −0.307; 0.119 | 0.338 |
| EPA+DHA intake (mg) | −0.017 | −0.356; 0.321 | 0.921 | −0.178 | −0.548; 0.193 | 0.348 |
| EPA (mg) | 0.201 | −0.508; 0.909 | 0.579 | −0.224 | −1.010; 0.563 | 0.577 |
| DHA (mg) | −0.165 | −0.739; 0.410 | 0.574 | −0.369 | −0.997; −0.258 | 0.248 |
| Omega-6 (g) | −0.028 | −0.052; −0.003 | 0.025 | −0.033 | −0.060; −0.005 | 0.021 |
| Women | ||||||
| Omega-3 (g) | −0.305 | −0.388; −0.222 | <0.001 | 0.024 | −0.056; 0.103 | 0.564 |
| EPA+DHA intake (mg) | −1.206 | −1.479; −0.993 | <0.001 | −0.396 | −0.639; −0.152 | 0.001 |
| EPA (mg) | −2.768 | −3.364; −2.171 | <0.001 | −0.679 | −1.220; −0.138 | 0.014 |
| DHA (mg) | −2.012 | −2.488; −1.537 | <0.001 | −0.780 | −1.207; −0.352 | <0.001 |
| Omega-6 (g) | −0.005 | −0.18; 0.008 | 0.457 | 0.015 | 0.003; 0.028 | 0.017 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alvarenga, L.; Braga, R.A.M.; Souza, J.G.d.; Iorio, J.T.Y.; Azevedo, L.C.d.; Santa Helena, E.T.d.; Damasceno, N.R.T. Associations of Omega-3 and Omega-6 Fatty Acids Intake with Visceral Adiposity: Sex-Specific Patterns in a Population-Based Study. Molecules 2025, 30, 4245. https://doi.org/10.3390/molecules30214245
Alvarenga L, Braga RAM, Souza JGd, Iorio JTY, Azevedo LCd, Santa Helena ETd, Damasceno NRT. Associations of Omega-3 and Omega-6 Fatty Acids Intake with Visceral Adiposity: Sex-Specific Patterns in a Population-Based Study. Molecules. 2025; 30(21):4245. https://doi.org/10.3390/molecules30214245
Chicago/Turabian StyleAlvarenga, Livia, Ribanna A. M. Braga, Júlia G. de Souza, Julia T. Y. Iorio, Luciane Coutinho de Azevedo, Ernani T. de Santa Helena, and Nágila R. T. Damasceno. 2025. "Associations of Omega-3 and Omega-6 Fatty Acids Intake with Visceral Adiposity: Sex-Specific Patterns in a Population-Based Study" Molecules 30, no. 21: 4245. https://doi.org/10.3390/molecules30214245
APA StyleAlvarenga, L., Braga, R. A. M., Souza, J. G. d., Iorio, J. T. Y., Azevedo, L. C. d., Santa Helena, E. T. d., & Damasceno, N. R. T. (2025). Associations of Omega-3 and Omega-6 Fatty Acids Intake with Visceral Adiposity: Sex-Specific Patterns in a Population-Based Study. Molecules, 30(21), 4245. https://doi.org/10.3390/molecules30214245

