Effect of Chokeberry (Aronia melanocarpa) Extracts on the Physicochemical Properties of Wheat Starch Pastes and Gels Stored Under Refrigerated Conditions
Abstract
1. Introduction
2. Results and Discussion
2.1. LC-MS Analysis of Chokeberry Extract Compounds
2.2. Pasting Parameters of Wheat Starch
2.3. Total Phenolic Content and Antioxidant Activity of Gels
2.4. Hardness of Gels
2.5. Color Parameters
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. LC-MS Analysis
3.2.2. Preparation of Chokeberry Extracts
3.2.3. Pasting Characteristic of Suspensions
3.2.4. Analysis of Total Polyphenol Content and Antioxidant Properties of Gels
3.2.5. Textural Properties of Gels
3.2.6. Color Measurement of Gels
3.2.7. Statistics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| BUs | Brabender units |
| ChE | Chokeberry extract |
| WS | Wheat starch |
References
- Kokotkiewicz, A.; Jaremicz, Z.; Luczkiewicz, M. Aronia Plants: A Review of Traditional Use, Biological Activities, and Perspectives for Modern Medicine. J. Med. Food 2010, 13, 255–269. [Google Scholar] [CrossRef]
- Kulling, S.E.; Rawel, H.M. Chokeberry (Aronia melanocarpa)—A Review on the Characteristic Components and Potential Health Effects. Planta Med. 2008, 74, 1625–1634. [Google Scholar] [CrossRef]
- Jurendić, T.; Ščetar, M. Aronia melanocarpa Products and By-Products for Health and Nutrition: A Review. Antioxidants 2021, 10, 1052. [Google Scholar] [CrossRef]
- Denev, P.; Kratchanova, M.; Petrova, I.; Klisurova, D.; Georgiev, Y.; Ognyanov, M.; Yanakieva, I. Black Chokeberry (Aronia melanocarpa (Michx.) Elliot) Fruits and Functional Drinks Differ Significantly in Their Chemical Composition and Antioxidant Activity. J. Chem. 2018, 2018, 9574587. [Google Scholar] [CrossRef]
- Shan, B.; Cai, Y.-Z.; Brooks, J.D.; Corke, H. Antibacterial Properties and Major Bioactive Components of Cinnamon Stick (Cinnamomum burmannii): Activity against Foodborne Pathogenic Bacteria. J. Agric. Food Chem. 2007, 55, 5484–5490. [Google Scholar] [CrossRef]
- Singh, S.; Singh, N.; Isono, N.; Noda, T. Relationship of Granule Size Distribution and Amylopectin Structure with Pasting, Thermal, and Retrogradation Properties in Wheat Starch. J. Agric. Food Chem. 2010, 58, 1180–1188. [Google Scholar] [CrossRef]
- Funami, T.; Kataoka, Y.; Omoto, T.; Goto, Y.; Asai, I.; Nishinari, K. Effects of Non-Ionic Polysaccharides on the Gelatinization and Retrogradation Behavior of Wheat Starch. Food Hydrocoll. 2005, 19, 1–13. [Google Scholar] [CrossRef]
- Vandeputte, G.E.; Delcour, J.A. From Sucrose to Starch Granule to Starch Physical Behaviour: A Focus on Rice Starch. Carbohydr. Polym. 2004, 58, 245–266. [Google Scholar] [CrossRef]
- Chen, T.; Fang, S.; Zuo, X.; Liu, Y. Effect of Curdlan and Xanthan Polysaccharides on the Pasting, Rheological, and Thermal Properties of Rice Starch. J. Food Sci. Technol. 2016, 53, 4076–4083. [Google Scholar] [CrossRef]
- Zhu, F. Interactions between Starch and Phenolic Compound. Trends Food Sci. Technol. 2015, 43, 129–143. [Google Scholar] [CrossRef]
- Li, M.; Pernell, C.; Ferruzzi, M.G. Complexation with Phenolic Acids Affects Rheological Properties and Digestibility of Potato Starch and Maize Amylopectin. Food Hydrocoll. 2018, 77, 843–852. [Google Scholar] [CrossRef]
- Chen, N.; Gao, H.-X.; He, Q.; Yu, Z.-L.; Zeng, W.-C. Interaction and Action Mechanism of Starch with Different Phenolic Compounds. Int. J. Food Sci. Nutr. 2020, 71, 726–737. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Zhang, M.; Zhang, R.; Huang, L.; Jia, X.; Huang, F.; Liu, L. Physicochemical Interactions between Rice Starch and Different Polyphenols and Structural Characterization of Their Complexes. LWT 2020, 125, 109227. [Google Scholar] [CrossRef]
- Wu, Y.; Lin, Q.; Chen, Z.; Xiao, H. The Interaction between Tea Polyphenols and Rice Starch during Gelatinization. Food Sci. Technol. Int. 2011, 17, 569–577. [Google Scholar] [CrossRef]
- Xiao, H.; Lin, Q.; Liu, G.-Q.; Wu, Y.; Tian, W.; Wu, W.; Fu, X. Effect of Green Tea Polyphenols on the Gelatinization and Retrogradation of Rice Starches with Different Amylose Contents. J. Med. Plant. Res. 2011, 5, 4298–4303. [Google Scholar]
- Zhao, B.; Sun, S.; Lin, H.; Chen, L.; Zheng, B.; Guo, Z. Physicochemical properties and digestion of the lotus seed starch-green tea polyphenol complex under ultrasound-microwave synergistic interaction. Ultrason. Sonochemistry 2019, 52, 50–61. [Google Scholar] [CrossRef]
- Liu, J.; Wang, M.; Peng, S.; Zhang, G. Effect of Green Tea Catechins on the Postprandial Glycemic Response to Starches Differing in Amylose Content. J. Agric. Food Chem. 2011, 59, 4582–4588. [Google Scholar] [CrossRef]
- Li, J.; Shen, M.; Xiao, W.; Li, Y.; Pan, W.; Xie, J. Regulating the physicochemical and structural properties of different starches by complexation with tea polyphenols. Food Hydrocoll. 2023, 142, 108836. [Google Scholar] [CrossRef]
- Guo, Z.; Zhao, B.; Chen, J.; Chen, L.; Zheng, B. Insight into the Characterization and Digestion of Lotus Seed Starch-Tea Polyphenol Complexes Prepared under High Hydrostatic Pressure. Food Chem. 2019, 297, 124992. [Google Scholar] [CrossRef]
- Lv, Y.; Zhang, L.; Li, M.; He, X.; Hao, L.; Dai, Y. Physicochemical Properties and Digestibility of Potato Starch Treated by Ball Milling with Tea Polyphenols. Int. J. Biol. Macromol. 2019, 129, 207–213. [Google Scholar] [CrossRef]
- Wu, L.; Che, L.; Chen, X.D. Antiretrogradation in cooked starch-based product application of tea polyphenols. J. Food Sci. 2014, 79, E1984–E1990. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Zhang, L.; Zhang, S.; Shan, J.; Cheng, S. Physicochemical properties and in vitro digestion of maize starch and tea polyphenols composites. In Proceedings of the 2012 International Conference on Applied Biotechnology, Tianjin, China, 18–19 October 2012; Zhang, T.C., Ouyang, P., Kaplan, S., Skarnes, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; Volume 249, pp. 627–634. [Google Scholar]
- Chou, S.; Li, B.; Tan, H.; Cui, H.; Zhang, S.; Wang, H.; Meng, X. Effect of ultrahigh pressure on structural and physicochemical properties of rice and corn starch in complexes with apple polyphenols. J. Sci. Food Agric. 2020, 100, 5395–5402. [Google Scholar] [CrossRef] [PubMed]
- Chou, S.; Li, B.; Tan, H.; Zhang, W.; Zang, Z.; Cui, H.; Wang, H.; Zhang, S.; Meng, X. The effect of pH on the chemical and structural interactions between apple polyphenol and starch derived from rice and maize. Food Sci. Nutr. 2020, 8, 5026–5035. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chou, S.; Mend, X.; Cui, H.; Zhang, S.; Wang, H.; Li, B. Rheological and pasting properties of maize, wheat, and rice starch as affected by apple polyphenols. Int. J. Food Tech. 2019, 22, 1786–1798. [Google Scholar] [CrossRef]
- Lv, Y.; Li, M.; Pan, J.; Zhang, S.; Jiang, Y.; Liu, J.; Zhu, Y.; Zhang, H. Interactions between Tea Products and Wheat Starch during Retrogradation. Food Biosci. 2020, 34, 100523. [Google Scholar] [CrossRef]
- Zhu, F.; Cai, Y.-Z.; Sun, M.; Corke, H. Effect of Phenolic Compounds on the Pasting and Textural Properties of Wheat Starch. Starch—Stärke 2008, 60, 609–616. [Google Scholar] [CrossRef]
- Zhu, F.; Cai, Y.-Z.; Sun, M.; Corke, H. Effect of Phytochemical Extracts on the Pasting, Thermal, and Gelling Properties of Wheat Starch. Food Chem. 2009, 112, 919–923. [Google Scholar] [CrossRef]
- Sidor, A.; Drożdżyńska, A.; Gramza-Michałowska, A. Black Chokeberry (Aronia melanocarpa) and Its Products as Potential Health-Promoting Factors—An Overview. Trends Food Sci. Technol. 2019, 89, 45–60. [Google Scholar] [CrossRef]
- Aksoy, A.S. A Review of the Nutritional Profile, Chemical Composition and Potential Health Benefits of Aronia melanocarpa (Chokeberry) Berries and Products. Turkish JAF Sci. Tech. 2023, 11, 2027–2043. [Google Scholar] [CrossRef]
- Kaloudi, T.; Tsimogiannis, D.; Oreopoulou, V. Aronia melanocarpa: Identification and Exploitation of Its Phenolic Components. Molecules 2022, 27, 4375. [Google Scholar] [CrossRef]
- Piras, A.; Porcedda, S.; Smeriglio, A.; Trombetta, D.; Nieddu, M.; Piras, F.; Sogos, V.; Rosa, A. Chemical Composition, Nutritional, and Biological Properties of Extracts Obtained with Different Techniques from Aronia melanocarpa Berries. Molecules 2024, 29, 2577. [Google Scholar] [CrossRef]
- Woodbury, T.J.; Grush, E.; Allan, M.C.; Mauer, L.J. The Effects of Sugars and Sugar Alcohols on the Pasting and Granular Swelling of Wheat Starch. Food Hydrocoll. 2022, 126, 107433. [Google Scholar] [CrossRef]
- Boonkor, P.; Sagis, L.M.C.; Lumdubwong, N. Pasting and Rheological Properties of Starch Paste/Gels in a Sugar-Acid System. Foods 2022, 11, 4060. [Google Scholar] [CrossRef]
- Krystyjan, M.; Dobosz-Kobędza, A.; Sikora, M.; Baranowska, H.M. Influence of Xanthan Gum Addition on the Short- and Long-Term Retrogradation of Corn Starches of Various Amylose Content. Polymers 2022, 14, 452. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.; Corke, H. Pasting Properties of Gamma-Irradiated Rice Starches as Affected by pH. J. Agric. Food Chem. 2002, 50, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Wang, Y.-J. Rheological and Thermal Properties of Rice Starch and Rutin Mixtures. Food Res. Int. 2012, 49, 757–762. [Google Scholar] [CrossRef]
- Ding, X.; Li, X.; Cai, Q.; Ma, Z.; Ren, T.; Hu, X. Effect of Calcium Hydroxide on Physicochemical and In Vitro Digestibility Properties of Tartary Buckwheat Starch-Rutin Complex Prepared by Pre-Gelatinization and Co-Gelatinization Methods. Foods 2023, 12, 951. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, Y.; Jia, Y.; Zhang, H.; Ren, F. Formation and Application of Starch–Polyphenol Complexes: Influencing Factors and Rapid Screening Based on Chemometrics. Foods 2024, 13, 1557. [Google Scholar] [CrossRef]
- Liu, B.; Zhong, F.; Yokoyama, W.; Huang, D.; Zhu, S.; Li, Y. Interactions in Starch Co-Gelatinized with Phenolic Compound Systems: Effect of Complexity of Phenolic Compounds and Amylose Content of Starch. Carbohydr. Polym. 2020, 247, 116667. [Google Scholar] [CrossRef]
- Amoako, D.B.; Awika, J.M. Resistant Starch Formation through Intrahelical V-Complexes between Polymeric Proanthocyanidins and Amylose. Food Chem. 2019, 285, 326–333. [Google Scholar] [CrossRef]
- Li, M.; Ndiaye, C.; Corbin, S.; Foegeding, E.A.; Ferruzzi, M.G. Starch-phenolic complexes are built on physical CH-π interactions and can persist after hydrothermal treatments, altering hydrodynamic radius and digestibility of model starch-based foods. Food Chem. 2020, 308, 125577. [Google Scholar] [CrossRef]
- Igoumenidis, P.E.; Zoumpoulakis, P.; Karathanos, V.T. Physicochemical Interactions between Rice Starch and Caffeic Acid during Boiling. Food Res. Int. 2018, 109, 589–595. [Google Scholar] [CrossRef]
- Kumar, R.; Khatkar, B.S. Thermal, Pasting and Morphological Properties of Starch Granules of Wheat (Triticum aestivum L.) Varieties. J. Food Sci. Technol. 2017, 54, 2403–2410. [Google Scholar] [CrossRef]
- Kawai, K.; Fukami, K.; Yamamoto, K. State Diagram of Potato Starch–Water Mixtures Treated with High Hydrostatic Pressure. Carbohydr. Polym. 2007, 67, 530–535. [Google Scholar] [CrossRef]
- Bao, J.; Shen, Y.; Jin, L. Determination of Thermal and Retrogradation Properties of Rice Starch Using Near-Infrared Spectroscopy. J. Cereal Sci. 2007, 46, 75–81. [Google Scholar] [CrossRef]
- Hirashima, M.; Takahashi, R.; Nishinari, K. Effects of Adding Acids before and after Gelatinization on the Viscoelasticity of Cornstarch Pastes. Food Hydrocoll. 2005, 19, 909–914. [Google Scholar] [CrossRef]
- Miles, M.J.; Morris, V.J.; Orford, P.D.; Ring, S.G. The Roles of Amylose and Amylopectin in the Gelation and Retrogradation of Starch. Carbohydr. Res. 1985, 135, 271–281. [Google Scholar] [CrossRef]
- Adamczyk, G.; Hanus, P.; Bobel, I.; Krystyjan, M. Enrichment of Starch Desserts with the Addition of Apple Juice and Buckwheat Fiber. Polymers 2023, 15, 717. [Google Scholar] [CrossRef]
- Wang, S.; Gao, W.; Jia, W.; Xiao, P. Crystallography, Morphology and Thermal Properties of Starches from Four Different Medicinal Plants of Fritillaria Species. Food Chem. 2006, 96, 591–596. [Google Scholar] [CrossRef]
- Wang, S.; Copeland, L. Molecular disassembly of starch granules during gelatinization and its effect on starch digestibility: A review. Food Funct. 2013, 4, 1564–1580. [Google Scholar] [CrossRef]
- Perera, C.; Hoover, R. Influence of Hydroxypropylation on Retrogradation Properties of Native, Defatted and Heat-Moisture Treated Potato Starches. Food Chem. 1999, 64, 361–375. [Google Scholar] [CrossRef]
- Ambigaipalan, P.; Hoover, R.; Donner, E.; Liu, Q. Retrogradation Characteristics of Pulse Starches. Food Res. Int. 2013, 54, 203–212. [Google Scholar] [CrossRef]
- Biesaga, M.; Pyrzyńska, K. Stability of Bioactive Polyphenols from Honey during Different Extraction Methods. Food Chem. 2013, 136, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Mildner-Szkudlarz, S.; Siger, A.; Szwengiel, A.; Bajerska, J. Natural Compounds from Grape By-Products Enhance Nutritive Value and Reduce Formation of CML in Model Muffins. Food Chem. 2015, 172, 78–85. [Google Scholar] [CrossRef]
- Shen, H.; Dührkop, K.; Böcker, S.; Rousu, J. Metabolite Identification through Multiple Kernel Learning on Fragmentation Trees. Bioinformatics 2014, 30, i157–i164. [Google Scholar] [CrossRef]
- Dührkop, K.; Shen, H.; Meusel, M.; Rousu, J.; Böcker, S. Searching Molecular Structure Databases with Tandem Mass Spectra Using CSI: FingerID. Proc. Natl. Acad. Sci. USA 2015, 112, 12580–12585. [Google Scholar] [CrossRef]
- Dührkop, K.; Fleischauer, M.; Ludwig, M.; Aksenov, A.A.; Melnik, A.V.; Meusel, M.; Dorrestein, P.C.; Rousu, J.; Böcker, S. SIRIUS 4: A Rapid Tool for Turning Tandem Mass Spectra into Metabolite Structure Information. Nat. Methods 2019, 16, 299–302. [Google Scholar] [CrossRef]
- Djoumbou Feunang, Y.; Eisner, R.; Knox, C.; Chepelev, L.; Hastings, J.; Owen, G.; Fahy, E.; Steinbeck, C.; Subramanian, S.; Bolton, E.; et al. ClassyFire: Automated Chemical Classification with a Comprehensive, Computable Taxonomy. J. Cheminform. 2016, 8, 61. [Google Scholar] [CrossRef]
- Adamczyk, G.; Krystyjan, M.; Jaworska, G. The Effect of the Addition of Dietary Fibers from Apple and Oat on the Rheological and Textural Properties of Waxy Potato Starch. Polymers 2020, 12, 321. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1999; Volume 299, pp. 152–178. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Yen, G.-C.; Chen, H.-Y. Antioxidant Activity of Various Tea Extracts in Relation to Their Antimutagenicity. J. Agric. Food Chem. 1995, 43, 27–32. [Google Scholar] [CrossRef]
- Adamczyk, G.; Krystyjan, M.; Witczak, M. The Impact of Fiber from Buckwheat Hull Waste on the Pasting, Rheological, and Textural Properties of Normal and Waxy Potato Starch Gels. Polymers 2021, 13, 4148. [Google Scholar] [CrossRef] [PubMed]
| No. | ClassyFire (Subclass, Probability > 0.950) * | No. of Compounds | Standard Used for Quantification | Concentration ± SD (mg/100 g) |
|---|---|---|---|---|
| 1. | Alcohols and polyols | 5 | Chlorogenic acid | 336.53 ± 16.35 |
| 2. | Benzoic acids and derivatives | 3 | Vanillic acid | 11.54 ± 0.37 |
| 3. | Biflavonoids and polyflavonoids | 2 | Catechin | 10.55 ± 0.11 |
| 4. | Carbohydrates and carbohydrate conjugates | 1 | p-Coumaric acid | 1.02 ± 0.05 |
| 5. | Chalcones and dihydrochalcones | 3 | Catechin | 2.77 ± 0.08 |
| 6. | Flavans | 2 | Quercetin | 34.39 ± 0.56 |
| 7. | Flavones | 3 | Rhamnetin | 3.54 ± 0.00 |
| 8. | Flavonoid glycosides (including anthocyanins) | 31 | Rutin | 235.55 ± 78.08 |
| 9. | Hydroxycinnamic acids and derivatives | 7 | p-Coumaric acid | 11.05 ± 0.74 |
| 10. | Hydroxyflavonoids | 3 | Catechin | 0.90 ± 0.02 |
| 11. | O-methylated flavonoids | 2 | Catechin | 0.10 ± 0.01 |
| Total | 647.92 ± 93.96 |
| Sample | T0 [°C] | ηmax [BU] | η95°C [BU] | η50°C [BU] | BD [BU] | SB [BU] |
|---|---|---|---|---|---|---|
| Gels with 0 °Brix extract | ||||||
| 5%WS (control) | 93.9 a ± 0.4 | 22.5 b ± 0.7 | 19.0 b ± 1.4 | 39.5 c ± 0.7 | 0.0 a ± 0.0 | 17.0 b ± 1.4 |
| 5%WS10%ChE | 89.4 b ± 0.5 | 37.0 a ± 4.2 | 35.5 a ± 2.1 | 81.5 ab ± 2.1 | 0.0 a ± 0.0 | 44.5 a ± 2.1 |
| 5%WS20%ChE | 89.5 b ± 0.2 | 34.5 a ± 0.7 | 33.0 a ± 1.4 | 78.0 b ± 1.4 | 0.0 a ± 0.0 | 43.5 a ± 2.1 |
| 5%WS30%ChE | 88.0 b ± 2.4 | 41.5 a ± 6.4 | 40.5 a ± 7.8 | 83.0 a ± 0.0 | 1.0 a ± 0.0 | 42.5 a ± 6.4 |
| Gels with 7 °Brix extract | ||||||
| 5%WS (control) | 93.9 a ± 0.4 | 22.5 c ± 0.7 | 19.0 c ± 1.4 | 39.5 b ± 0.7 | 0.0 b ± 0.0 | 17.0 b ± 1.4 |
| 5%WS10%ChE | 88.0 b ± 0.2 | 47.0 b ± 1.4 | 46.5 b ± 0.7 | 91.0 a ± 1.4 | 1.5 b ± 0.7 | 45.0 a ± 2.8 |
| 5%WS20%ChE | 88.1 b ± 0.1 | 45.5 b ± 0.7 | 44.5 b ± 0.7 | 90.0 a ± 0.0 | 1.0 b ± 0.0 | 45.5 a ± 0.7 |
| 5%WS30%ChE | 84.8 c ± 1.3 | 59.5 a ± 6.4 | 54.5 a ± 4.9 | 86.5 a ± 3.5 | 7.5 a ± 2.1 | 35.0 a ± 7.1 |
| Sample | ABTS [mmolTE/100 g Gel] | DPPH [mmolTE/100 g Gel] | TPC [mgGAE/100 g Gel] | |||
|---|---|---|---|---|---|---|
| Fresh Gels (0 Day) | 14 Days of Storage | Fresh Gels (0 Day) | 14 Days of Storage | Fresh Gels (0 Day) | 14 Days of Storage | |
| Gels with 0 °Brix extract | ||||||
| 5%WS (control) | 0.000 d ± 0.000 | 0.000 d ± 0.000 | 0.000 d ± 0.000 | 0.000 d ± 0.000 | 0.00 d ± 0.00 | 0.00 d ± 0.00 |
| 5%WS10%ChE | 0.244 c ± 0.008 | 0.213 c ± 0.020 | 0.257 c ± 0.040 | 0.145 c ± 0.008 | 20.25 c ± 0.69 | 19.09 c ± 1.07 |
| 5%WS20%ChE | 0.608 b ± 0.065 | 0.387 b ± 0.001 | 0.448 b ± 0.147 | 0.378 b ± 0.022 | 35.88 b ± 2.22 | 33.11 b ± 3.74 |
| 5%WS30%ChE | 2.152 a ± 0.836 | 0.969 a ± 0.041 | 0.864 a ± 0.009 | 0.569 a ± 0.045 | 54.97 a ± 2.42 | 53.74 a ± 2.91 |
| Gels with 7 °Brix extract | ||||||
| 5%WS (control) | 0.000 d ± 0.000 | 0.000 d ± 0.000 | 0.000 d ± 0.000 | 0.000 d ± 0.000 | 0.00 d ± 0.00 | 0.00 d ± 0.00 |
| 5%WS10%ChE | 0.263 c ± 0.006 | 0.219 c ± 0.009 | 0.255 c ± 0.006 | 0.136 c ± 0.004 | 23.08 c ± 0.27 | 18.29 c ± 1.04 |
| 5%WS20%ChE | 0.708 b ± 0.081 | 0.371 b ± 0.008 | 0.600 b ± 0.018 | 0.414 b ± 0.009 | 34.02 b ± 1.05 | 31.59 b ± 1.03 |
| 5%WS30%ChE | 1.638 a ± 0.324 | 1.309 a ± 0.085 | 0.962 a ± 0.004 | 0.421 a ± 0.047 | 70.60 a ± 1.48 | 67.76 a ± 4.70 |
| Sample | Hardness [N] | |||||
|---|---|---|---|---|---|---|
| Fresh Gels (0 Day) | 1 Day of Storage | 3 Days of Storage | 7 Days of Storage | 10 Days of Storage | 14 Days of Storage | |
| Gels with 0 °Brix extract | ||||||
| 5%WS (control) | 0.155 a ± 0.013 | 0.256 c ± 0.038 | 0.348 bc ± 0.024 | 0.333 b ± 0.033 | 0.308 bc ± 0.050 | 0.371 c ± 0.018 |
| 5%WS 10% ChE | 0.034 b ± 0.003 | 0.601 a ± 0.046 | 0.439 a ± 0.021 | 0.381 ab ± 0.062 | 0.354 b ± 0.064 | 0.570 a ± 0.021 |
| 5%WS 20% ChE | 0.033 b ± 0.001 | 0.570 a ± 0.028 | 0.298 c ± 0.069 | 0.462 a ± 0.007 | 0.242 c ± 0.012 | 0.546 ab ± 0.096 |
| 5%WS 30% ChE | 0.037 b ± 0.007 | 0.435 b ± 0.013 | 0.401 ab ± 0.032 | 0.429 ab ± 0.087 | 0.448 a ± 0.031 | 0.455 bc ± 0.003 |
| Gels with 7 °Brix extract | ||||||
| 5%WS (control) | 0.155 a ± 0.013 | 0.265 c ± 0.038 | 0.348 c ± 0.024 | 0.333 c ± 0.033 | 0.308 d ± 0.050 | 0.371 ab ± 0.018 |
| 5%WS 10% ChE | 0.077 b ± 0.011 | 0.528 a ± 0.010 | 0.512 a ± 0.012 | 0.469 a ± 0.010 | 0.433 a ± 0.016 | 0.410 a ± 0.077 |
| 5%WS 20% ChE | 0.084 b ± 0.015 | 0.533 a ± 0.012 | 0.421 b ± 0.004 | 0.399 b ± 0.020 | 0.421 b ± 0.019 | 0.312 c ± 0.026 |
| 5%WS 30% ChE | 0.031 c ± 0.002 | 0.385 b ± 0.007 | 0.316 d ± 0.006 | 0.403 b ± 0.010 | 0.410 c ± 0.032 | 0.336 ab ± 0.025 |
| Sample | Fresh Gels (0 Day) | 1 Day of Storage | 3 Days of Storage | 7 Days of Storage | 10 Days of Storage | 14 Days of Storage |
|---|---|---|---|---|---|---|
| Gels with 0 °Brix extract | ||||||
| L* | ||||||
| 5%WS (control) | 57.5 a ± 0.9 | 65.7 a ± 0.0 | 66.2 a ± 0.1 | 67.1 a ± 0.2 | 67.7 a ± 0.5 | 69.5 a ± 0.5 |
| 5%WS10%ChE | 33.7 b ± 0.0 | 42.1 b ± 0.3 | 42.2 b ± 0.2 | 43.4 b ± 0.2 | 43.8 b ± 0.1 | 44.2 b ± 0.0 |
| 5%WS20%ChE | 30.6 c ± 0.0 | 37.3 c ± 0.2 | 36.9 c ± 0.1 | 37.3 c ± 0.0 | 38.2 c ± 0.0 | 38.8 c ± 0.1 |
| 5%WS30%ChE | 28.9 d ± 0.0 | 32.4 d ± 0.2 | 33.4 d ± 0.1 | 33.7 d ± 0.3 | 33.7 d ± 0.1 | 32.8 d ± 0.0 |
| a* | ||||||
| 5%WS (control) | −1.1 c ± 0.2 | −2.4 d ± 0.0 | −2.4 d ± 0.0 | −2.4 c ± 0.0 | −2.4 d ± 0.0 | −2.5 d ± 0.0 |
| 5%WS10%ChE | 10.9 a ± 0.0 | 12.8 c ± 0.2 | 12.2 c ± 0.1 | 12.3 b ± 0.0 | 12.6 c ± 0.0 | 12.5 c ± 0.1 |
| 5%WS20%ChE | 11.0 a ± 0.0 | 15.8 a ± 0.1 | 15.1 b ± 0.1 | 16.3 a ± 0.0 | 16.4 b ± 0.1 | 16.8 b ± 0.1 |
| 5%WS30%ChE | 9.7 b ± 0.0 | 14.2 b ± 0.0 | 15.9 a ± 0.2 | 16.5 a ± 0.3 | 16.7 a ± 0.0 | 15.1 a ± 0.0 |
| b* | ||||||
| 5%WS (control) | −3.5 c ± 0.7 | −6.2 d ± 0.0 | −6.5 d ± 0.0 | −6.3 d ± 0.1 | −6.2 d ± 0.2 | −6.6 d ± 0.0 |
| 5%WS10%ChE | −0.3 b ± 0.0 | −1.8 c ± 0.1 | −1.7 c ± 0.0 | −1.8 c ± 0.0 | −2.1 c ± 0.0 | −2.3 c ± 0.1 |
| 5%WS20%ChE | 0.4 a ± 0.0 | −0.8 b ± 0.0 | −0.8 b ± 0.2 | −1.0 b ± 0.0 | −1.2 b ± 0.0 | −1.4 b ± 0.0 |
| 5%WS30%ChE | 0.9 a ± 0.0 | 0.6 a ± 0.0 | 0.6 a ± 0.1 | 0.6 a ± 0.1 | 0.5 a ± 0.1 | 0.1 a ± 0.1 |
| Gels with 7 °Brix extract | ||||||
| L* | ||||||
| 5%WS (control) | 57.5 a ± 1.0 | 65.7 a ± 0.0 | 66.3 a ± 0.1 | 67.1 a ± 0.2 | 67.7 a ± 0.5 | 69.5 a ± 0.5 |
| 5%WS10%ChE | 35.6 b ± 0.1 | 41.6 b ± 0.1 | 41.7 b ± 0.0 | 41.9 b ± 0.1 | 42.5 b ± 0.3 | 42.9 b ± 0.1 |
| 5%WS20%ChE | 31.3 c ± 0.0 | 35.9 c ± 0.1 | 36.5 c ± 0.1 | 36.3 c ± 0.1 | 36.9 c ± 0.2 | 36.9 c ± 0.5 |
| 5%WS30%ChE | 28.8 d ± 0.1 | 31.2 d ± 0.1 | 31.5 d ± 0.0 | 32.4 d ± 0.5 | 32.3 d ± 0.1 | 31.8 d ± 0.6 |
| a* | ||||||
| 5%WS (control) | −1.1 d ± 0.2 | −2.4 d ± 0.0 | −2.5 d ± 0.0 | −2.4 d ± 0.0 | −2.4 d ± 0.0 | −2.5 d ± 0.0 |
| 5%WS10%ChE | 16.9 a ± 0.3 | 19.2 b ± 0.1 | 19.2 b ± 0.0 | 19.0 b ± 0.0 | 18.7 b ± 0.3 | 19.5 b ± 0.1 |
| 5%WS20%ChE | 15.6 b ± 0.1 | 20.2 a ± 0.1 | 20.2 a ± 0.0 | 20.0 a ± 0.2 | 20.0 a ± 0.3 | 20.2 a ± 0.6 |
| 5%WS30%ChE | 12.9 c ± 0.0 | 16.3 c ± 0.1 | 16.3 c ± 0.1 | 17.1 c ± 0.6 | 17.1 c ± 0.1 | 16.4 c ± 0.0 |
| b* | ||||||
| 5%WS (control) | −3.5 c ± 0.7 | −6.2 d ± 0.0 | −6.5 d ± 0.0 | −6.3 d ± 0.1 | −6.2 d ± 0.2 | −6.6 d ± 0.0 |
| 5%WS10%ChE | 0.8 b ± 0.1 | −0.1 c ± 0.0 | −0.4 c ± 0.0 | −1.1 c ± 0.1 | −1.2 c ± 0.1 | −1.4 c ± 0.1 |
| 5%WS20%ChE | 2.1 a ± 0.0 | 1.9 b ± 0.1 | 1.6 b ± 0.1 | 1.2 b ± 0.1 | 1.1 b ± 0.1 | 1.0 b ± 0.0 |
| 5%WS30%ChE | 2.6 a ± 0.0 | 2.7 a ± 0.1 | 2.5 a ± 0.0 | 2.1 a ± 0.2 | 1.9 a ± 0.0 | 2.1 a ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamczyk, G.; Pawłowska, A.M.; Bobel, I.; Szwengiel, A.; Krystyjan, M. Effect of Chokeberry (Aronia melanocarpa) Extracts on the Physicochemical Properties of Wheat Starch Pastes and Gels Stored Under Refrigerated Conditions. Molecules 2025, 30, 4213. https://doi.org/10.3390/molecules30214213
Adamczyk G, Pawłowska AM, Bobel I, Szwengiel A, Krystyjan M. Effect of Chokeberry (Aronia melanocarpa) Extracts on the Physicochemical Properties of Wheat Starch Pastes and Gels Stored Under Refrigerated Conditions. Molecules. 2025; 30(21):4213. https://doi.org/10.3390/molecules30214213
Chicago/Turabian StyleAdamczyk, Greta, Agata Maria Pawłowska, Inna Bobel, Artur Szwengiel, and Magdalena Krystyjan. 2025. "Effect of Chokeberry (Aronia melanocarpa) Extracts on the Physicochemical Properties of Wheat Starch Pastes and Gels Stored Under Refrigerated Conditions" Molecules 30, no. 21: 4213. https://doi.org/10.3390/molecules30214213
APA StyleAdamczyk, G., Pawłowska, A. M., Bobel, I., Szwengiel, A., & Krystyjan, M. (2025). Effect of Chokeberry (Aronia melanocarpa) Extracts on the Physicochemical Properties of Wheat Starch Pastes and Gels Stored Under Refrigerated Conditions. Molecules, 30(21), 4213. https://doi.org/10.3390/molecules30214213

