Recent Progress in Photoresponsive Room-Temperature Phosphorescent Materials: From Mechanistic Insights to Functional Applications
Abstract
1. Introduction
2. Mechanism of Photoresponsive Room-Temperature Phosphorescent Materials
2.1. Isomerization
2.1.1. Mechanism of Tradition Open-Closed Rings
2.1.2. Other Novel Ring-Closing Mechanisms
2.2. Organic Radicals
2.2.1. Metal–Organic Complexes (MOCs)
- Metal ions act as energy donors/acceptors, participate in metal-to-ligand or ligand-to-metal charge-transfer processes (MLCT/LMCT), and enhance SOC to accelerate ISC [60], thereby improving RTP efficiency. Additionally, metal ions serve as nodes to build supramolecular frameworks that rigidify ligand conformations and stabilize excited states [61].
- Organic ligands bearing electron donor/acceptor groups undergo photoinduced electron transfer (PIET) to generate radicals [62,63,64,65,66]. Radical formation induces distinct color changes and significantly alters emission behaviors, often leading to exciton transfer or quenching. These processes regulate fluorescence or phosphorescence intensity and wavelength, and the reversible radical generation can be controlled by light or heat, typically validated by electron paramagnetic resonance (EPR). Such radical-mediated systems are particularly promising for light-controlled encryption and signal modulation.
- Guest molecules and weak interactions (hydrogen bonding, π–π stacking, halogen bonding, etc.) fine-tune donor–acceptor distances and orientations, modulating electron transfer efficiency, packing conformations, and consequently, both photochromic rates and RTP lifetimes.
2.2.2. Organic–Inorganic Hybrids
2.2.3. Radical-Based Small Molecules
2.3. COF
3. Applications of Photoresponsive Room-Temperature Phosphorescent Materials
3.1. Reversible Information Encryption
3.2. Bioimaging
3.3. TTA Photoswitch
4. Discussion: Synthetic Requirements, Advantages, and Limitations Toward Practical Applications
5. Summary and Outlook
- In metal center–ligand cooperative systems, precise energy-level matching between the isomerizable unit (pre-/post-isomerization) and the phosphorescent metal emitter is required to achieve high-contrast, low-loss RTP switching.
- There is a need to expand the types of photochromic molecules beyond traditional ring-closing/opening species, introducing Z/E isomerization, enol–keto tautomerization, and photo-dimerization/de-dimerization to enrich photoregulation pathways and enhance photostability and fatigue resistance.
- For the host–guest + local rigidity strategy, a quantitative understanding of the optimal balance between configurational freedom required for photochromism and rigidity required to suppress vibrational deactivation of RTP is essential. This demands in situ characterization and computational modeling to derive designable structural parameters.
- In radical-mediated photochromic–RTP systems, radicals tend to spontaneously recombine in the dark, leading to poor color retention. Therefore, strategies such as steric shielding, ion pairing engineering, nanoscale confinement, or supramolecular encapsulation are required to improve radical lifetime and environmental stability while maintaining reversibility and cycling endurance.
- From an application perspective, the materials should evolve toward visible-light activation, high quantum efficiency, long lifetime, and low fatigue, with extended applicability to quantum information storage, wearable optoelectronics, and intelligent sensing.
- In the future, with the assistance of artificial intelligence (AI), the development of photochromic–RTP dual-functional materials is expected to shift from empirical exploration to a synergistic design paradigm driven by data and mechanistic understanding.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, S.; Zhang, H.; Mao, Z.; Liang, Y.; Li, J.-A.; Hu, P.; Zhang, Q.; Liu, C.; Luo, S.; Wang, Y.; et al. Achieving Stable and Switchable Ultralong Room-Temperature Phosphorescence from Polymer-Based Luminescent Materials with Three-Dimensional Covalent Networks for Light-Manipulated Anticounterfeiting. ACS Appl. Mater. Interfaces 2023, 15, 39896–39904. [Google Scholar] [CrossRef]
- Ma, Z.; Fu, Q.; Zhang, K.; Sun, S.; Yue, M. Research on light-responsive luminescence properties of carbon dots and their applications. Mater. Horiz. 2025, 12, 6558–6586. [Google Scholar] [CrossRef]
- Zhao, W.J.; He, Z.K.; Tang, B.Z. Room-temperature phosphorescence from organic aggregates. Nat. Rev. Mater. 2020, 5, 869–885. [Google Scholar] [CrossRef]
- Li, Q.Q.; Li, Z. The Strong Light-Emission Materials in the Aggregated State: What Happens from a Single Molecule to the Collective Group. Adv. Sci. 2017, 4, 1600484. [Google Scholar] [CrossRef] [PubMed]
- Gan, N.; Shi, H.F.; An, Z.F.; Huang, W. Recent Advances in Polymer-Based Metal-Free Room-Temperature Phosphorescent Materials. Adv. Funct. Mater. 2018, 28, 1802657. [Google Scholar] [CrossRef]
- Kenry; Chen, C.J.; Liu, B. Enhancing the performance of pure organic room-temperature phosphorescent luminophores. Nat. Commun. 2019, 10, 2111. [Google Scholar] [CrossRef]
- Gao, R.; Kodaimati, M.S.; Yan, D.P. Recent advances in persistent luminescence based on molecular hybrid materials. Chem. Soc. Rev. 2021, 50, 5564–5589. [Google Scholar] [CrossRef]
- Zhang, T.; Ma, X.; Wu, H.W.; Zhu, L.L.; Zhao, Y.L.; Tian, H. Molecular Engineering for Metal-Free Amorphous Materials with Room-Temperature Phosphorescence. Angew. Chem.-Int. Ed. 2020, 59, 11206–11216. [Google Scholar] [CrossRef]
- Jiang, K.; Wang, Y.H.; Cai, C.Z.; Lin, H.W. Conversion of Carbon Dots from Fluorescence to Ultralong Room-Temperature Phosphorescence by Heating for Security Applications. Adv. Mater. 2018, 30, 1800783. [Google Scholar] [CrossRef]
- Wu, B.; Guo, N.N.; Xu, X.T.; Xing, Y.M.; Shi, K.; Fang, W.H.; Wang, G.J. Ultralong and High-Efficiency Room Temperature Phosphorescence of Organic-Phosphors-Doped Polymer Films Enhanced by 3D Network. Adv. Opt. Mater. 2020, 8, 2001192. [Google Scholar] [CrossRef]
- Wu, H.W.; Gu, L.; Baryshnikov, G.V.; Wang, H.; Minaev, B.F.; Ågren, H.; Zhao, Y. Molecular Phosphorescence in Polymer Matrix with Reversible Sensitivity. ACS Appl. Mater. Interfaces 2020, 12, 20765–20774. [Google Scholar] [CrossRef]
- Okkelman, I.A.; Dolgova, A.A.; Banerjee, S.; Kerry, J.P.; Volynskii, A.; Arzhakova, O.V.; Papkovsky, D.B. Phosphorescent Oxygen and Mechanosensitive Nanostructured Materials Based on Hard Elastic Polypropylene Films. ACS Appl. Mater. Interfaces 2017, 9, 13587–13592. [Google Scholar] [CrossRef]
- Yang, Y.S.; Wang, K.Z.; Yan, D.P. Ultralong Persistent Room Temperature Phosphorescence of Metal Coordination Polymers Exhibiting Reversible pH-Responsive Emission. ACS Appl. Mater. Interfaces 2016, 8, 15489–15496. [Google Scholar] [CrossRef]
- Mori, T.; Mori, T.; Fujii, A.; Saito, A.; Saomoto, H.; Kamada, K. Effect of Crystallinity in Stretched PVA Films on Triplet-Triplet Annihilation Photon Upconversion. ACS Appl. Polym. Mater. 2020, 2, 1422–1428. [Google Scholar] [CrossRef]
- Song, J.M.; Ma, L.W.; Sun, S.Y.; Tian, H.; Ma, X. Reversible Multilevel Stimuli-Responsiveness and Multicolor Room-Temperature Phosphorescence Emission Based on a Single-Component System. Angew. Chem.-Int. Ed. 2022, 61, e202206157. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, J.; Fang, M.; Li, Z. Recent Process of Photo-responsive Materials with Aggregation-induced Emission. Chem. Res. Chin. Univ. 2021, 37, 598–614. [Google Scholar] [CrossRef]
- Heinz Dürr, H.B.-L. Photochromism: Molecules and Systems; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Crano, J.C.; Guglielmetti, R.J. Organic Photochromic and Thermochromic Compounds; Plenum Press: New York, NY, USA, 1999. [Google Scholar]
- Beharry, A.A.; Woolley, G.A. Azobenzene photoswitches for biomolecules. Chem. Soc. Rev. 2011, 40, 4422–4437. [Google Scholar] [CrossRef]
- Bandara, H.M.D.; Burdette, S.C. Photoisomerization in different classes of azobenzene. Chem. Soc. Rev. 2012, 41, 1809–1825. [Google Scholar] [CrossRef]
- Wu, B.; Xu, X.; Tang, Y.; Han, X.; Wang, G. Multifunctional Optical Polymeric Films with Photochromic, Fluorescent, and Ultra-Long Room Temperature Phosphorescent Properties. Adv. Opt. Mater. 2021, 9, 2101266. [Google Scholar] [CrossRef]
- Berkovic, G.; Krongauz, V.; Weiss, V. Spiropyrans and spirooxazines for memories and switches. Chem. Rev. 2000, 100, 1741–1753. [Google Scholar] [CrossRef] [PubMed]
- Kortekaas, L.; Browne, W.R. The evolution of spiropyran: Fundamentals and progress of an extraordinarily versatile photochrome. Chem. Soc. Rev. 2019, 48, 3406–3424. [Google Scholar] [CrossRef]
- Pianowski, Z.L. Recent Implementations of Molecular Photoswitches into Smart Materials and Biological Systems. Chem.-A Eur. J. 2019, 25, 5128–5144. [Google Scholar] [CrossRef]
- Tian, H.; Yang, S.J. Recent progresses on diarylethene based photochromic switches. Chem. Soc. Rev. 2004, 33, 85–97. [Google Scholar] [CrossRef]
- Irie, M.; Fulcaminato, T.; Matsuda, K.; Kobatake, S. Photochromism of Diarylethene Molecules and Crystals: Memories, Switches, and Actuators. Chem. Rev. 2014, 114, 12174–12277. [Google Scholar] [CrossRef]
- Li, Z.Q.; Wang, G.N.; Ye, Y.X.; Li, B.; Li, H.R.; Chen, B.L. Loading Photochromic Molecules into a Luminescent Metal-Organic Framework for Information Anticounterfeiting. Angew. Chem.-Int. Ed. 2019, 58, 18025–18031. [Google Scholar] [CrossRef] [PubMed]
- Abdollahi, A.; Roghani-Mamaqani, H.; Razavi, B.; Salami-Kalajahi, M. Photoluminescent and Chromic Nanomaterials for Anticounterfeiting Technologies: Recent Advances and Future Challenges. ACS Nano 2020, 14, 14417–14492. [Google Scholar] [CrossRef]
- Ai, Y.; Fei, Y.; Shu, Z.; Zhu, Y.; Liu, J.; Li, Y. Visible-light-controlled ternary chiroptical switches with high-performance circularly polarized luminescence for advanced optical information storage and anti-counterfeiting materials. Chem. Eng. J. 2022, 450, 138390. [Google Scholar] [CrossRef]
- Tan, W.J.; Zhang, Q.; Zhang, J.J.; Tian, H. Near-Infrared Photochromic Diarylethene Iridium (III) Complex. Org. Lett. 2009, 11, 161–164. [Google Scholar] [CrossRef]
- Monaco, S.; Semeraro, M.; Tan, W.; Tian, H.; Ceroni, P.; Credi, A. Multifunctional switching of a photo- and electro-chemiluminescent iridium–dithienylethene complex. Chem. Commun. 2012, 48, 8652–8654. [Google Scholar] [CrossRef] [PubMed]
- Gong, D.-P.; Gao, T.-B.; Cao, D.-K.; Ward, M.D. Bisthienylethenes containing an imidazole bridge unit and their Ir(iii) complexes: Influence of substituent groups on photochromism and luminescence. RSC Adv. 2016, 6, 69677–69684. [Google Scholar] [CrossRef]
- Yuan, Q.-Z.; Wan, F.-S.; Shen, T.-T.; Cao, D.-K. Two cyclometalated Pt(ii) complexes showing reversible phosphorescence switching due to grinding-induced destruction and crystallization-induced formation of supramolecular dimer structure. RSC Adv. 2022, 12, 148–153. [Google Scholar] [CrossRef]
- Chan, M.H.-Y.; Wong, H.-L.; Yam, V.W.-W. Synthesis and Photochromic Studies of Dithienylethene-Containing Cyclometalated Alkynylplatinum(II) 1,3-Bis(N-alkylbenzimidazol-2′-yl)benzene Complexes. Inorg. Chem. 2016, 55, 5570–5577. [Google Scholar] [CrossRef]
- Fung, T.H.C.; Ng, M.; Wu, N.M.W.; Yam, V.W.W. Dithienylethene-Containing Cyclometalated Platinum(II) Complexes with Tunable Photochromic and Photophysical Properties. Eur. J. Inorg. Chem. 2022, 2022, e202200534. [Google Scholar] [CrossRef]
- Katsurada, Y.; Hirata, S.; Totani, K.; Watanabe, T.; Vacha, M. Photoreversible On–Off Recording of Persistent Room-Temperature Phosphorescence. Adv. Opt. Mater. 2015, 3, 1726–1737. [Google Scholar] [CrossRef]
- Liu, Y.W.; Ma, L.W.; Wang, Q.C.; Ma, X. Light-Responsible Room-Temperature Phosphorescence Materials Based on Diarylethene. Acta Chim. Sin. 2023, 81, 445–449. [Google Scholar]
- Wang, X.; Pan, G.; Ren, H.; Li, J.; Xu, B.; Tian, W. Reversible Photoswitching between Fluorescence and Room Temperature Phosphorescence by Manipulating Excited State Dynamics in Molecular Aggregates. Angew. Chem. Int. Ed. 2021, 61, e20211426. [Google Scholar]
- Wang, J.; Yang, Y.; Zhang, L.; Li, Z. Engineering Organic Photochromism with Photoactivated Phosphorescence: Multifunctional Smart Devices and Enhanced Four-Channel Data Storage. Adv. Mater. 2025, 37, 2503074. [Google Scholar] [CrossRef]
- Huang, L.; Liu, L.; Li, X.; Hu, H.; Chen, M.; Yang, Q.; Ma, Z.; Jia, X. Crystal-State Photochromism and Dual-Mode Mechanochromism of an Organic Molecule with Fluorescence, Room-Temperature Phosphorescence, and Delayed Fluorescence. Angew. Chem. Int. Ed. 2019, 58, 16445–16450. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wang, J.; Gong, Y.; Liao, Q.; Dang, Q.; Li, Z.; Bo, Z. Room-Temperature Phosphorescence Invoked Through Norbornyl-Driven Intermolecular Interaction Intensification with Anomalous Reversible Solid-State Photochromism. Angew. Chem. Int. Ed. 2020, 59, 20161–20166. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-B.; Zheng, H.-W.; Wu, M.; Liang, Q.-F.; Yang, D.-D.; Zheng, X.-J.; Tan, H.-W. Multistimulus Response of Two Tautomeric Zn(II) Complexes and Their White-Light Emission Based on Different Mechanisms. Inorg. Chem. 2021, 60, 17677–17686. [Google Scholar] [CrossRef]
- Yao, W.; Sun, K.; Li, C.; Zhang, S.; Liu, K.; Wu, B.; Mao, Y.; Ma, H.; Huang, W.; An, Z. Organic Phosphorescent Hopper-Shaped Microstructures. Small 2024, 20, 2309559. [Google Scholar] [CrossRef]
- Fan, Y.; Han, M.; Huang, A.; Liao, Q.; Tu, J.; Liu, X.; Huang, B.; Li, Q.; Li, Z. Multi-photoresponsive triphenylethylene derivatives with photochromism, photodeformation and room temperature phosphorescence. Mater. Horiz. 2022, 9, 368–375. [Google Scholar] [CrossRef]
- Shi, Y.; Zeng, Y.; Kucheryavy, P.; Yin, X.; Zhang, K.; Meng, G.; Chen, J.; Zhu, Q.; Wang, N.; Zheng, X.; et al. Dynamic B/N Lewis Pairs: Insights into the Structural Variations and Photochromism via Light-Induced Fluorescence to Phosphorescence Switching. Angew. Chem. Int. Ed. 2022, 61, e202213615. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhang, W.; Wang, Z.; Wang, X.; Yang, J.; Ren, Y.; Huang, Z.; Dai, W.; Huang, X.; Lei, Y. Large-Area, Ultra-thin Organic Films with Both Photochromic and Phosphorescence Properties. Angew. Chem. Int. Ed. 2025, 64, e20250144. [Google Scholar]
- Xiao, Y.; Li, J.; Song, Z.; Liao, J.; Shen, M.; Yu, T.; Huang, W. 3D Printable Materials with Visible Light Triggered Photochromism and Room Temperature Phosphorescence. J. Am. Chem. Soc. 2025, 147, 20372–20380. [Google Scholar] [CrossRef] [PubMed]
- Herbelin, S.E.; Blough, N.V. Intramolecular quenching of excited singlet states in a series of fluorescamine-derivatized nitroxides. J. Phys. Chem. B 1998, 102, 8170–8176. [Google Scholar] [CrossRef]
- Giacobbe, E.M.; Mi, Q.X.; Colvin, M.T.; Cohen, B.; Ramanan, C.; Scott, A.M.; Yeganeh, S.; Marks, T.J.; Ratner, M.A.; Wasielewski, M.R. Ultrafast Intersystem Crossing and Spin Dynamics of Photoexcited Perylene-3,4:9,10-bis(dicarboximide) Covalently Linked to a Nitroxide Radical at Fixed Distances. J. Am. Chem. Soc. 2009, 131, 3700–3712. [Google Scholar] [CrossRef]
- Colvin, M.T.; Giacobbe, E.M.; Cohen, B.; Miura, T.; Scott, A.M.; Wasielewski, M.R. Competitive Electron Transfer and Enhanced Intersystem Crossing in Photoexcited Covalent TEMPO-Perylene-3,4:9,10-bis(dicarboximide) Dyads: Unusual Spin Polarization Resulting from the Radical-Triplet Interaction. J. Phys. Chem. A 2010, 114, 1741–1748. [Google Scholar] [CrossRef]
- Huang, Y.M.; Xu, Z.H.; Jin, S.J.; Li, C.Y.; Warncke, K.; Evangelista, F.A.; Lian, T.Q.; Egap, E. Conjugated Oligomers with Stable Radical Substituents: Synthesis, Single Crystal Structures, Electronic Structure, and Excited State Dynamics. Chem. Mater. 2018, 30, 7840–7851. [Google Scholar] [CrossRef]
- Wang, X.; Xue, P.R.; Zhou, C.F.; Zhang, Y.W.; Li, P.; Chen, R.F. Construction of stable luminescent donor-acceptor neutral radicals: A theoretical study. J. Mater. Chem. C 2022, 10, 18343–18350. [Google Scholar] [CrossRef]
- Zhou, H.P.; Wu, S.X.; Duan, Y.C.; Gao, F.W.; Pan, Q.Q.; Kan, Y.H.; Su, Z.M. The combination of skeleton-engineering and periphery-engineering: A design strategy for organic doublet emitters. Phys. Chem. Chem. Phys. 2022, 24, 26853–26862. [Google Scholar] [CrossRef]
- Li, N.; Wang, Y.; Li, Z. Photo-induced room temperature phosphorescence and thermally activated photochromism based on thianthrene derivatives. J. Mater. Chem. C 2024, 12, 12045–12053. [Google Scholar] [CrossRef]
- Liu, C.; Li, H.; Chen, Y.; Xu, D.; Cheng, Y. Circularly polarized room-temperature phosphorescence based on chiral co-assembled helical nanofiber from chiral co-assembled liquid crystal co-polymer. Chem. Eng. J. 2024, 486, 150442. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, X.; Liu, Y.; Cheng, Z.; Wu, X.; Tong, H.; Wang, L. Selenoxanthen-9-one-based emitters exhibiting efficient room temperature phosphorescence for electroluminescent and oxygen sensing applications. Dye. Pigment. 2024, 222, 111842. [Google Scholar] [CrossRef]
- Shan, M.; Li, A.; Wang, M.; Yang, Y.; Wang, J.; Yang, K.; Tang, B.Z.; Li, Z. Harnessing Polymer Matrices for Tuning the Luminescence and Photochromism Properties of Organic Photoresponsive Materials. ACS Mater. Lett. 2025, 7, 1860–1868. [Google Scholar] [CrossRef]
- Yang, D.-D.; Zheng, H.-W.; Fang, Y.-H.; Liang, Q.-F.; Han, Q.-Z.; Shi, Y.-S.; Zheng, X.-J. Multistimuli-Responsive Materials Based on Zn(II)-Viologen Coordination Polymers and Their Applications in Inkless Print and Anticounterfeiting. Inorg. Chem. 2022, 61, 7513–7522. [Google Scholar] [CrossRef]
- Yang, D.-D.; Zheng, H.-W.; Meng, F.-Q.; Shi, Y.-S.; Xiao, T.; Jin, B.; Fang, Y.-H.; Tan, H.-W.; Zheng, X.-J. Enhancement of Long-Lived Persistent Room-Temperature Phosphorescence and Anion Exchange with I– and SCN– via Metal–Organic Hybrid Formation. ACS Appl. Mater. Interfaces 2022, 15, 1495–1504. [Google Scholar] [CrossRef]
- You, M.-H.; Li, M.-H.; Di, Y.-M.; Wang, Y.-W.; Lin, M.-J. Switching on room-temperature phosphorescence of photochromic hybrid heterostructures by anion-π interactions. Dye. Pigment. 2020, 173, 107943. [Google Scholar] [CrossRef]
- Ma, Y.J.; Fang, X.; Xiao, G.; Yan, D. Dynamic Manipulating Space-Resolved Persistent Luminescence in Core–Shell MOFs Heterostructures via Reversible Photochromism. Angew. Chem. Int. Ed. 2021, 61, e202114100. [Google Scholar] [CrossRef]
- Feng, D.-X.; Gao, Z.-N.; Li, J.; Wang, Y.-H.; Hu, J.-X.; Xue, Z.-Z.; Wang, G.-M. Photochromic Dy-Phosphonate Assembled by a Pyridine Derivative: Synthesis, Structure, and Light-Enhanced Room-Temperature Phosphorescence. Cryst. Growth Des. 2022, 22, 5680–5685. [Google Scholar] [CrossRef]
- Feng, D.X.; Mu, Y.; Li, J.; De Han, S.; Li, J.H.; Sun, H.L.; Pan, M.; Hu, J.X.; Wang, G.M. Light-Induced Electron Transfer Toward On/Off Room Temperature Phosphorescence in Two Photochromic Coordination Polymers. Adv. Funct. Mater. 2023, 33, 2305796. [Google Scholar] [CrossRef]
- Ma, Y.J.; Xiao, G.; Fang, X.; Chen, T.; Yan, D. Leveraging Crystalline and Amorphous States of a Metal-Organic Complex for Transformation of the Photosalient Effect and Positive-Negative Photochromism. Angew. Chem. Int. Ed. 2023, 62, e202217054. [Google Scholar] [CrossRef]
- Xiao, T.; Shi, Y.-S.; Yang, D.-D.; Zheng, H.-W.; Fang, Y.-H.; Liang, Q.-F.; Zheng, X.-J. A UV and X-ray dual photochromic Zn (II) metal-organic framework based on viologen: Photo-controlled luminescence and temperature-dependent phosphorescence. Dye. Pigment. 2023, 208, 110812. [Google Scholar] [CrossRef]
- Jing, X.-M.; Liu, T.; Xia, Y.-Y.; Li, S.-Y.; Li, Y.-J.; Han, S.-D.; Xue, Z.-Z.; Pan, J. Cd-Based Coordination Frameworks with Multiple Optical Properties: Tunable RTP, Photochromism, and SHG Efficiency. Inorg. Chem. 2025, 64, 12286–12296. [Google Scholar] [CrossRef]
- Nie, F.; Yan, D. Photo-Controllable Ultralong Room-Temperature Phosphorescence: State of the Art. Chem.—A Eur. J. 2024, 30, e202303611. [Google Scholar] [CrossRef]
- Yang, D.-D.; Xiao, T.; Yang, Y.-Y.; Xue, J.-H.; Shi, Y.-S.; Ma, Q.; Zheng, X.-J. Two viologen-based complexes as persistent luminescent materials and their applications in inkless print and anticounterfeiting. Chem. Eng. J. 2024, 488, 151047. [Google Scholar] [CrossRef]
- Yang, D.-D.; Meng, F.-Q.; Shi, Y.-S.; Xiao, T.; Fang, Y.-H.; Tan, H.-W.; Zheng, X.-J. A series of zinc coordination compounds showing persistent luminescence and reversible photochromic properties via charge transfer. Chem. Eng. J. 2023, 466, 143202. [Google Scholar] [CrossRef]
- Yang, D.-D.; Meng, F.-Q.; Zheng, H.-W.; Shi, Y.-S.; Xiao, T.; Jin, B.; Liang, Q.-F.; Zheng, X.-J.; Tan, H.-W. Two multifunctional stimuli-responsive materials with room-temperature phosphorescence and their application in multiple dynamic encryption. Mater. Chem. Front. 2022, 6, 2709–2717. [Google Scholar] [CrossRef]
- Liu, H.; Xie, Z.-X.; Lu, J.; Han, Y.-F.; Wei, Y.-Q.; Guo, G.-C. A dual-emitting inorganic-organic hybrid material with emission intensity enchanced via electron-transfer photochromism. Dye. Pigment. 2020, 181, 108441. [Google Scholar] [CrossRef]
- Jing, X.-M.; Li, S.-Z.; Lang, Y.; Liang, X.-X.; Wang, A.; Han, S.-D.; Xue, Z.-Z.; Pan, J. Two Cd-Based Coordination Frameworks Assembled with the Tri(pyridine-3-yl)amine: Structures, Room-Temperature Phosphorescence, and Photochromism. Cryst. Growth Des. 2024, 24, 9163–9172. [Google Scholar] [CrossRef]
- Yan, S.-K.; Liang, S.; Wen, Y.-X.; Zhao, Y.-R.; Zhang, J.; Ma, Y.-J.; Hu, J.-X.; Wang, G.-M. Light/Force-Responsive Room Temperature Phosphorescence in a Zinc-Organic Coordination Polymer. Inorg. Chem. 2024, 63, 17372–17377. [Google Scholar] [CrossRef]
- Wang, S.F.; Fan, W.R.; Liu, Z.C.; Yu, A.B.; Jiang, X.C. Advances on tungsten oxide based photochromic materials: Strategies to improve their photochromic properties. J. Mater. Chem. C 2018, 6, 191–212. [Google Scholar] [CrossRef]
- He, T.; Yao, J.N. Photochromism of molybdenum oxide. J. Photochem. Photobiol. C-Photochem. Rev. 2003, 4, 125–143. [Google Scholar] [CrossRef]
- Shen, Y.; Xiao, Y.L.; Yan, P.; Yang, Y.L.; Hu, F.P.; Li, Z. Hydrothermal deposition and the photochromic properties of molybdenum oxide hydrate (MoO3•(H2O)0.69) films induced by D, L-malic acid. J. Alloys Compd. 2014, 588, 676–680. [Google Scholar] [CrossRef]
- Le, T.K.; Pham, P.; Dong, C.L.; Bahlawane, N.; Vernardou, D.; Mjejri, I.; Rougier, A.; Kim, S.W. Recent advances in vanadium pentoxide (V2O5) towards related applications in chromogenics and beyond: Fundamentals, progress, and perspectives. J. Mater. Chem. C 2022, 10, 4019–4071. [Google Scholar] [CrossRef]
- Jiao, X.Y.; Liu, Y.J.; Zhao, X.M. Advancements in TiO2-based multi-composite photochromic materials: A review. J. Ind. Eng. Chem. 2025, 146, 109–121. [Google Scholar] [CrossRef]
- He, T.; Yao, J.N. Photochromism in composite and hybrid materials based on transition-metal oxides and polyoxometalates. Prog. Mater. Sci. 2006, 51, 810–879. [Google Scholar] [CrossRef]
- Dolbecq, A.; Dumas, E.; Mayer, C.R.; Mialane, P. Hybrid Organic-Inorganic Polyoxometalate Compounds: From Structural Diversity to Applications. Chem. Rev. 2010, 110, 6009–6048. [Google Scholar] [CrossRef]
- Long, D.L.; Tsunashima, R.; Cronin, L. Polyoxometalates: Building Blocks for Functional Nanoscale Systems. Angew. Chem.-Int. Ed. 2010, 49, 1736–1758. [Google Scholar] [CrossRef]
- Mialane, P.; Zhang, G.J.; Mbomekalle, I.M.; Yu, P.; Compain, J.D.; Dolbecq, A.; Marrot, J.; Sécheresse, F.; Keita, B.; Nadjo, L. Dual Photochromic/Electrochromic Compounds Based On Cationic Spiropyrans and Polyoxometalates. Chem.-A Eur. J. 2010, 16, 5572–5576. [Google Scholar] [CrossRef]
- Li, F.Y.; Long, D.L.; Cameron, J.M.; Miras, H.N.; Pradeep, C.P.; Xu, L.; Cronin, L. Cation induced structural transformation and mass spectrometric observation of the missing dodecavanadomanganate(IV). Dalton Trans. 2012, 41, 9859–9862. [Google Scholar] [CrossRef]
- Liao, J.Z.; Wu, X.Y.; Yong, J.P.; Zhang, H.L.; Yang, W.B.; Yu, R.M.; Lu, C.Z. Anion-π Interaction-Directed Assembly of Polyoxometalate-Based Host-Guest Compounds and Its Contribution to Photochromism. Cryst. Growth Des. 2015, 15, 4952–4958. [Google Scholar] [CrossRef]
- Liu, J.J.; Wang, Y.; Lin, M.J.; Huang, C.C.; Dai, W.X. Photogeneration of two reduction-active charge-separated states in a hybrid crystal of polyoxometalates and naphthalene diimides. Dalton Trans. 2015, 44, 484–487. [Google Scholar] [CrossRef]
- Sartzi, H.; Miras, H.N.; Vilà-Nadal, L.; Long, D.L.; Cronin, L. Trapping the δ Isomer of the Polyoxometalate-Based Keggin Cluster with a Tripodal Ligand. Angew. Chem.-Int. Ed. 2015, 54, 15488–15492. [Google Scholar] [CrossRef]
- Liu, J.J.; Guan, Y.F.; Lin, M.J.; Huang, C.C.; Dai, W.X. Anion-Mediated Architecture and Photochromism of Rigid Bipyridinium-Based Coordination Polymers. Cryst. Growth Des. 2016, 16, 2836–2842. [Google Scholar] [CrossRef]
- Duan, Y.; Waerenborgh, J.C.; Clemente-Juan, J.M.; Giménez-Saiz, C.; Coronado, E. Light-induced decarboxylation in a photo-responsive iron-containing complex based on polyoxometalate and oxalato ligands. Chem. Sci. 2017, 8, 305–315. [Google Scholar] [CrossRef]
- Renuka, K.D.; Lekshmi, C.L.; Joseph, K.; Mahesh, S. Sustainable Electronic Materials: Reversible Phototuning of Conductance in a Noncovalent Assembly of MWCNT and Bioresource-Derived Photochromic Molecule. ACS Appl. Mater. Interfaces 2017, 9, 1167–1172. [Google Scholar] [CrossRef]
- Ma, P.T.; Hu, F.; Wang, J.P.; Niu, J.Y. Carboxylate covalently modified polyoxometalates: From synthesis, structural diversity to applications. Coord. Chem. Rev. 2019, 378, 281–309. [Google Scholar] [CrossRef]
- Yao, W.; Liu, L.; Wang, X.L.; Qin, C.; Su, Z.M. Structural Extension from 0D to 3D Pillared Heterometallic 3d-4f Polyoxometalate Hybrids. Cryst. Growth Des. 2020, 20, 2706–2712. [Google Scholar] [CrossRef]
- Wu, H.; Yang, H.K.; Wang, W. Covalently-linked polyoxometalate-polymer hybrids: Optimizing synthesis, appealing structures and prospective applications. New J. Chem. 2016, 40, 886–897. [Google Scholar] [CrossRef]
- Zhao, J.L.; Li, M.H.; Cheng, Y.M.; Zhao, X.W.; Xu, Y.; Cao, Z.Y.; You, M.H.; Lin, M.J. Photochromic crystalline hybrid materials with switchable properties: Recent advances and potential applications. Coord. Chem. Rev. 2023, 475, 214918. [Google Scholar] [CrossRef]
- Li, L.; Yu, Y.T.; Zhang, N.N.; Li, S.H.; Zeng, J.G.; Hua, Y.; Zhang, H. Polyoxometalate (POM)-based crystalline hybrid photochromic materials. Coord. Chem. Rev. 2024, 500, 215526. [Google Scholar] [CrossRef]
- Li, L.; Yu, Y.T.; Hua, Y.; Li, X.N.; Zhang, H. Recent progress in polyoxometalate-viologen photochromic hybrids: Structural design, photochromic mechanism, and applications. Inorg. Chem. Front. 2023, 10, 1965–1985. [Google Scholar] [CrossRef]
- Liao, J.Z.; Meng, L.; Jia, J.H.; Liang, D.; Chen, X.L.; Yu, R.M.; Kuang, X.F.; Lu, C.Z. Anion–π Interaction-Induced Room-Temperature Phosphorescence of a Polyoxometalate-Based Charge-Transfer Hybrid Material. Chem.—A Eur. J. 2018, 24, 10498–10502. [Google Scholar] [CrossRef]
- Wu, X.-Y.; Zhang, H.-L.; Wang, S.-S.; Wu, W.; Lin, L.; Jiang, X.-Y.; Lu, C.-Z. Polyoxometalate-based room-temperature phosphorescent materials induced by anion–π interactions. Dalton Trans. 2020, 49, 3408–3412. [Google Scholar] [CrossRef]
- Di, Y.-M.; Li, M.-H.; You, M.-H.; Zhang, S.-Q.; Lin, M.-J. Photochromic and Room Temperature Phosphorescent Donor–Acceptor Hybrid Crystals Regulated by Core-Substituted Naphthalenediimides. Inorg. Chem. 2021, 60, 16233–16240. [Google Scholar] [CrossRef]
- Di, Y.-M.; Song, Y.-P.; Zhang, S.-Q.; Lin, M.-J. Anion–π(–π) Interactions in Donor–Acceptor Hybrid Materials to Control Photochromism and Room-Temperature Phosphorescence. Inorg. Chem. 2025, 64, 6183–6191. [Google Scholar] [CrossRef]
- Li, Y.; Gu, F.; Ding, B.; Zou, L.; Ma, X. Photo-controllable room-temperature phosphorescence of organic photochromic polymers based on hexaarylbiimidazole. Sci. China Chem. 2021, 64, 1297–1301. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, J.; Li, D.; Yang, J.; Fang, M.; Li, Z. Tunable Photoresponsive Behaviors Based on Triphenylamine Derivatives: The Pivotal Role of π-Conjugated Structure and Corresponding Application. Adv. Mater. 2021, 33, 2104002. [Google Scholar] [CrossRef]
- Bai, J.; Zhang, X.; Han, L.; Ma, J.; Zhao, Y.; Lan, Y.; Ma, Z.; Chen, M.; Guan, Y.; Ma, Z. Four Ounces Can Move a Thousand Pounds: A Nitrogen Atom Greatly Influences Phosphorescence and Photochromism. Adv. Opt. Mater. 2025, 13, e00646. [Google Scholar] [CrossRef]
- Nie, F.; Yan, D.P. Zero-dimensional halide hybrid bulk glass exhibiting reversible photochromic ultralong phosphorescence. Nat. Commun. 2024, 15, 5519. [Google Scholar] [CrossRef]
- Zhu, Y.Q.; Wang, X.H.; Wu, M.X. Intriguing Room Temperature Phosphorescence in Crystalline Porous Organic Frameworks. Adv. Funct. Mater. 2023, 33, 2308096. [Google Scholar] [CrossRef]
- Jiang, J.L.; Du, X.H.; Zhang, K.K. Achieving Ultralong Room-Temperature Phosphorescence in Covalent Organic Framework System. J. Phys. Chem. Lett. 2024, 15, 1658–1667. [Google Scholar] [CrossRef]
- Li, X.T.; Li, M.J.; Tian, Y.L.; Han, S.L.; Cai, L.; Ma, H.C.; Zhao, Y.Q.; Chen, G.J.; Dong, Y.B. A reversible photochromic covalent organic framework. Nat. Commun. 2024, 15, 8484. [Google Scholar] [CrossRef]
- Ma, T.T.; Huang, G.Z.; Wang, X.H.; Liang, Y.; Li, R.H.; Wang, B.; Yao, S.J.; Liao, J.P.; Li, S.L.; Yan, Y.; et al. Photochromic radical states in 3D covalent organic frameworks with zyg topology for enhanced photocatalysis. Natl. Sci. Rev. 2024, 11, nwae177. [Google Scholar] [CrossRef]
- Gao, Y.Y.; Li, Q.N.; Cai, H.T.; Wu, C.H.; Wei, Y.H.; Yang, Y.H. Optimized Photochromic Performance of Spiropyran through Incorporation into Hydrogen-Bonded Organic Frameworks and Applications in Anticounterfeiting and Information Encryption. ACS Appl. Mater. Interfaces 2025, 17, 8127–8135. [Google Scholar] [CrossRef]
- Lei, X.P.; Wang, J.; Zhao, H.Y.; Yang, T.J.; Bai, G.X.; Feng, X.; Zhou, Q.; Yi, L.M.; Yuan, W.Z. Unexpected tunable photoluminescence and emission mechanism during the gradual increase of cyclic glucose units. Chem. Eng. J. 2024, 496, 154155. [Google Scholar] [CrossRef]
- Nandi, S.; Barmavatu, P.; Adimule, V.; Keri, R.; Sunitha, D.; Bhat, R.; Hegde, V.; Alzahrani, A.Y.A.; Ben Moussa, S. Solvothermal synthesis of samarium incorporated pyrimidine based covalent organic frameworks for enhanced thermoluminescence, photoluminescence dynamics, zeta potential, visible light driven photocatalysis of Allura red dye. J. Mol. Struct. 2025, 1347, 143276. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, J.; Guo, J.; Wu, X.; Cao, Y.; Yang, Y.; Wang, J.; Wang, W. Covalent Engineering of Polyamide-6/COFs-2DPA Composites for High-Strength Room-Temperature Phosphorescence and DualMode Applications. ACS Appl. Mater. Interfaces 2025, 7, 8812–8820. [Google Scholar]
- Gu, L.; Shi, H.; Gu, M.; Ling, K.; Ma, H.; Cai, S.; Song, L.; Ma, C.; Li, H.; Xing, G.; et al. Dynamic Ultralong Organic Phosphorescence by Photoactivation. Angew. Chem.-Int. Ed. 2018, 57, 8425–8431. [Google Scholar] [CrossRef]
- Bian, L.; Shi, H.; Wang, X.; Ling, K.; Ma, H.; Li, M.; Cheng, Z.; Ma, C.; Cai, S.; Wu, Q.; et al. Simultaneously Enhancing Efficiency and Lifetime of Ultralong Organic Phosphorescence Materials by Molecular Self-Assembly. J. Am. Chem. Soc. 2018, 140, 10734–10739. [Google Scholar] [CrossRef]
- Khlifi, S.; Le Ray, N.F.; Paofai, S.; Amela-Cortes, M.; Akdas-Kilic, H.; Taupier, G.; Derien, S.; Cordier, S.; Achard, M.; Molard, Y. Self-erasable inkless imprinting using a dual emitting hybrid organic-inorganic material. Mater. Today 2020, 35, 34–41. [Google Scholar] [CrossRef]
- Bretel, G.; Le Grognec, E.; Jacquemin, D.; Hirose, T.; Matsuda, K.; Felpin, F.-X. Fabrication of Robust Spatially Resolved Photochromic Patterns on Cellulose Papers by Covalent Printing for Anticounterfeiting Applications. ACS Appl. Polym. Mater. 2019, 1, 1240–1250. [Google Scholar] [CrossRef]
- Hsu, C.-W.; Sauvee, C.; Sunden, H.; Andreasson, J. Writing and erasing multicolored information in diarylethene-based supramolecular gels. Chem. Sci. 2018, 9, 8019–8023. [Google Scholar] [CrossRef]
- Wu, H.; Chen, Y.; Liu, Y. Reversibly Photoswitchable Supramolecular Assembly and Its Application as a Photoerasable Fluorescent Ink. Adv. Mater. 2017, 29, 1605271. [Google Scholar] [CrossRef]
- Mei, J.-F.; Lv, Z.-P.; Lai, J.-C.; Jia, X.-Y.; Li, C.-H.; Zuo, J.-L.; You, X.-Z. A novel photo-responsive europium(III) complex for advanced anti-counterfeiting and encryption. Dalton Trans. 2016, 45, 5451–5454. [Google Scholar] [CrossRef]
- Cheng, H.-B.; Hu, G.-F.; Zhang, Z.-H.; Gao, L.; Gao, X.; Wu, H.-C. Photocontrolled Reversible Luminescent Lanthanide Molecular Switch Based on a Diarylethene-Europium Dyad. Inorg. Chem. 2016, 55, 7962–7968. [Google Scholar] [CrossRef]
- Zhu, S.; Li, M.; Tang, S.; Zhang, Y.-M.; Yang, B.; Zhang, S.X.-A. Electrochromic Switching and Microkinetic Behaviour of Oxazine Derivatives and Their Applications. Eur. J. Org. Chem. 2014, 2014, 1227–1235. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, Q.T.; Wang, X.; Liu, Q.; Hean, D.; Chou, K.C.; Wolf, M.O. Quinoline-containing diarylethenes: Bridging between turn-on fluorescence, RGB switching and room temperature phosphorescence. Chem. Sci. 2020, 11, 2729–2734. [Google Scholar] [CrossRef]
- Dai, X.Y.; Hu, Y.Y.; Sun, Y.; Huo, M.; Dong, X.; Liu, Y. A Highly Efficient Phosphorescence/Fluorescence Supramolecular Switch Based on a Bromoisoquinoline Cascaded Assembly in Aqueous Solution. Adv. Sci. 2022, 9, 2200524. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Y.H.; Liu, Y. Near-Infrared Phosphorescent Switch of Diarylethene Phenylpyridinium Derivative and Cucurbit[8]uril for Cell Imaging. Small 2022, 18, 2201821. [Google Scholar] [CrossRef] [PubMed]
- Luo, G.W.; Chen, Y.Q.; Zeng, Y.; Yu, T.J.; Chen, J.P.; Hu, R.; Yang, G.Q.; Li, Y. Funneling and Enhancing Upconversion Emission by Light-Harvesting Molecular Wires. J. Phys. Chem. Lett. 2021, 12, 9525–9530. [Google Scholar] [CrossRef] [PubMed]
- Luo, G.W.; Liu, Y.P.; Zeng, Y.; Yu, T.J.; Chen, J.P.; Hu, R.; Yang, G.Q.; Li, Y. Enhancing photon upconversion with thermally activated sensitization and singlet energy collection. J. Mater. Chem. C 2022, 10, 8596–8601. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Luo, G.W.; Chen, J.P.; Yu, T.J.; Hu, R.; Yang, G.Q.; Zeng, Y.; Li, Y. Triplet-triplet annihilation upconversion materials as electrophoretic inks. Chin. Chem. Lett. 2024, 35, 109009. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Luo, G.W.; Hu, R.; Yang, G.Q.; Chen, J.P.; Yu, T.J.; Zeng, Y.; Li, Y. Crystalline hydrogen-bonded organic framework for air-tolerant triplet-triplet annihilation upconversion. Chem. Commun. 2024, 60, 4475–4478. [Google Scholar] [CrossRef]
- Hu, Y.; Luo, G.W.; Niu, P.F.; Zhang, L.; Yu, T.J.; Chen, J.P.; Li, Y.; Zeng, Y. Activation of Perovskite Nanocrystals for Volumetric Displays Using Near-Infrared Photon Upconversion by Triplet Fusion. Molecules 2025, 30, 2273. [Google Scholar] [CrossRef]
- Huang, L.; Han, G. Triplet-triplet annihilation photon upconversion-mediated photochemical reactions. Nat. Rev. Chem. 2024, 8, 238–255. [Google Scholar] [CrossRef]
- Bharmoria, P.; Bildirir, H.; Moth-Poulsen, K. Triplet-triplet annihilation based near infrared to visible molecular photon upconversion. Chem. Soc. Rev. 2020, 49, 6529–6554. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, Z.; Toffoletti, A.; Zhao, J.; Barbon, A. Photoswitching of triplet-triplet annihilation upconversion with photo-generated radical from hexaphenylbiimidazole. J. Lumin. 2017, 183, 507–512. [Google Scholar] [CrossRef]
- You, M.-H.; Li, M.-H.; Di, Y.-M.; Zhang, S.-Q.; Lin, M.-J. Photochromic Polyoxometalate/Perylenediimide Donor–Acceptor Hybrid Crystals with Interesting Luminescent Properties. Inorg. Chem. 2021, 61, 105–112. [Google Scholar] [CrossRef]
- Gentili, P.L. Chemical AI in the Limelight: The Contribution of Photochromic Materials and Oscillatory Chemical Reactions. Adv. Opt. Mater. 2025, 13, 2500016. [Google Scholar] [CrossRef]
- Zhang, J.J.; Zou, Q.; Tian, H. Photochromic Materials: More Than Meets The Eye. Adv. Mater. 2013, 25, 378–399. [Google Scholar] [PubMed]


















Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Huang, Y.; Zeng, Z.; Luo, G. Recent Progress in Photoresponsive Room-Temperature Phosphorescent Materials: From Mechanistic Insights to Functional Applications. Molecules 2025, 30, 4120. https://doi.org/10.3390/molecules30204120
Chen Y, Huang Y, Zeng Z, Luo G. Recent Progress in Photoresponsive Room-Temperature Phosphorescent Materials: From Mechanistic Insights to Functional Applications. Molecules. 2025; 30(20):4120. https://doi.org/10.3390/molecules30204120
Chicago/Turabian StyleChen, Yeqin, Yu Huang, Zao Zeng, and Guiwen Luo. 2025. "Recent Progress in Photoresponsive Room-Temperature Phosphorescent Materials: From Mechanistic Insights to Functional Applications" Molecules 30, no. 20: 4120. https://doi.org/10.3390/molecules30204120
APA StyleChen, Y., Huang, Y., Zeng, Z., & Luo, G. (2025). Recent Progress in Photoresponsive Room-Temperature Phosphorescent Materials: From Mechanistic Insights to Functional Applications. Molecules, 30(20), 4120. https://doi.org/10.3390/molecules30204120

