Enantioselective Preparation of (N,O)-, (N,N)- and (N,S)-Spiroketal Moieties
Abstract
1. Introduction
2. (N,O)-Spiroketals
2.1. Metallocatalyzed [4 + 2] Cycloaddition Reaction
2.2. Metallocatalyzed (4 + 2) Annulation Reaction
2.3. Metallocatalyzed (3 + 2) Annulation Reaction
2.4. Lewis Acid Catalysis
2.5. Organocatalysis
3. (N,N)-Spiroketals
3.1. CPA-Catalyzed (3 + 2) Annulation Reaction
3.2. Photocatalytic Process
4. (N,S)-Spiroketals
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IED hetero-DA reaction | Inverse Electron-Demand Hetero-Diels–Alder Reaction |
CP-RA | Cyclopropanation Reaction–Rearrangement |
DyKAT | Dynamic Kinetic Asymmetric Transformation |
CPA | Chiral Phosphoric Acid |
ortho-Quinone Methides | o-QMs |
α-Functionalized Propargylic Alcohols | α-FPAs |
SET | Single-Electron Transfer |
EnT | Energy Transfer |
ee | Enantiomeric Excess |
dr | Diastereomeric Excess |
rt | Room Temperature |
MS | Molecular Sieves |
cat | Catalyst |
References
- “Spiro compounds” in IUPAC Compendium of Chemical Terminology, 5th ed.; International Union of Pure and Applied Chemistry: Research Triangle Park, NC, USA, 2025; Online Version 5.0.0. [CrossRef]
- Varela, M.T.; Dias, G.G.; de Oliveira, L.F.N.; de Oliveira, G.G.; Aguiar, F.D.; Nogueira, J.P.; Cruz, L.R.; Dias, L.C. Spirocyclic compounds as innovative tools in drug discovery for medicinal chemists. Eur. J. Med. Chem. 2025, 287, 117368. [Google Scholar] [CrossRef]
- Moshnenko, N.; Kazantsev, A.; Chupakhin, E.; Bakulina, O.; Dar’in, D. Synthetic Routes to Approved Drugs Containing a Spirocycle. Molecules 2023, 28, 4209. [Google Scholar] [CrossRef]
- Gilles, L.; Antoniotti, S. Spirocyclic Compounds in Fragrance Chemistry: Synthesis and Olfactory Properties. ChemPlusChem 2022, 87, e202200227. [Google Scholar] [CrossRef] [PubMed]
- Kotha, S.B.; Deb, A.C.; Lahiri, K.; Manivannan, E. Selected Synthetic Strategies to Spirocyclics. Synthesis 2009, 165–193. [Google Scholar] [CrossRef]
- Acosta-Quiroga, K.; Rojas-Pẽna, C.; Nerio, L.S.; Gutíerrez, M.; Polo-Cuadrado, E. Spirocyclic derivatives as antioxidants: A review. RSC Adv. 2021, 11, 21926–21954. [Google Scholar] [CrossRef] [PubMed]
- Basavaraja, D.; Siddalingeshwar, V.D.; Athira, C.S.; Aiswarya, S.; Sreelakshmi, V.; Ancy, A.; Sasidhar, B.S. Spiro-hetrocycles: Recent advances in biological application and synthetic strategies. Tetrahedron 2025, 173, 134468. [Google Scholar] [CrossRef]
- Kamlar, M.; Urban, M.; Veselý, J. Enantioselective Synthesis of Spiro Heterocyclic Compounds Using a Combination of Organocatalysis and Transition-Metal Catalysis. Chem. Rec. 2023, 23, e202200284. [Google Scholar] [CrossRef]
- Sinibaldi, M.-E.; Canet, I. Synthetic Approaches to Spiroaminals. Eur. J. Org. Chem. 2008, 4391–4399. [Google Scholar] [CrossRef]
- Wang, X.; Yao, Z.; Dong, S.; Wei, F.; Wang, H.; Xu, Z. Synthesis of Fused Bicyclic Aminals through Sequential Gold/Lewis Acid Catalysis. Org. Lett. 2013, 15, 2234–2237. [Google Scholar] [CrossRef]
- Wang, X.; Dong, S.; Yao, Z.; Feng, L.; Daka, P.; Wang, H.; Xu, Z. Synthesis of Spiroaminals and Spiroketals with Bimetallic Relay Catalysis. Org. Lett. 2014, 16, 22–25. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, Z.; Jia, J.; Tung, C.-H.; Xu, Z. Synthesis of spiroaminals by bimetallic Au/Sc relay catalysis: TMS as a traceless controlling group. Chem. Commun. 2014, 50, 12084–12087. [Google Scholar] [CrossRef]
- Liang, M.; Zhang, S.; Jia, J.; Tung, C.-H.; Wang, J.; Xu, Z. Synthesis of Spiroketals by Synergistic Gold and Scandium Catalysis. Org. Lett. 2017, 19, 2526–2529. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Lin, L.; Hu, B.; Lian, X.; Wang, G.; Liu, X.; Feng, X. Bimetallic Gold(I)/Chiral N,N′-Dioxide Nickel(II) Asymmetric Relay Catalysis: Chemo- and Enantioselective Synthesis of Spiroketals and Spiroaminals. Angew. Chem. Int. Ed. 2016, 55, 6075–6078. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Wan, Q.; Kang, Q. Gold(I)/Chiral Rh(III) Lewis Acid Relay Catalysis Enables Asymmetric Synthesis of Spiroketals and Spiroaminals. Adv. Synth. Catal. 2018, 360, 4031–4036. [Google Scholar] [CrossRef]
- Yang, W.-L.; Shang, X.-Y.; Luo, X.; Deng, W.-P. Enantioselective Synthesis of Spiroketals and Spiroaminals via Gold and Iridium Sequential Catalysis. Angew. Chem. Int. Ed. Engl. 2022, 61, e202203661. [Google Scholar] [CrossRef]
- Yang, W.-L.; Shang, X.-Y.; Ni, T.; Yan, H.; Luo, X.; Zheng, H.; Li, Z.; Deng, W.-P. Diastereo- and Enantioselective Synthesis of Bisbenzannulated Spiroketals and Spiroaminals by Ir/Ag/Acid Ternary Catalysis. Angew. Chem. Int. Ed. 2022, 61, e202210207. [Google Scholar] [CrossRef]
- Chen, Y.; Yan, H.; Zheng, H.; Deng, W.-P.; Li, Z.; Yang, W.-L. Ir/Brønsted acid dual-catalyzed asymmetric synthesis of bisbenzannulated spiroketals and spiroaminals from isochroman ketals. Org. Chem. Front. 2024, 11, 5831–5840. [Google Scholar] [CrossRef]
- Xie, X.-Q.; Li, X.; Liu, P.-N. Enantioselective synthesis of spiro-N,O-ketals via iridium and Brønsted acid co-catalyzed asymmetric formal [4 + 2] cycloaddition. Chem. Commun. 2024, 60, 1448–1451. [Google Scholar] [CrossRef]
- Zhou, L.; Yan, W.-G.; Sun, X.-L.; Wang, L.; Tang, Y. A Versatile Enantioselective Catalytic Cyclopropanation-Rearrangement Approach to the Divergent Construction of Chiral Spiroaminals and Fused Bicyclic Acetals. Angew. Chem. Int. Ed. Engl. 2020, 59, 18964–18969. [Google Scholar] [CrossRef]
- Liu, Q.-J.; Zhu, J.; Song, X.-Y.; Wang, L.; Wang, S.R.; Tang, Y. Highly Enantioselective [3 + 2] Annulation of Indoles with Quinones to Access Structurally Diverse Benzofuroindolines. Angew. Chem. Int. Ed. 2018, 57, 3810–3814. [Google Scholar] [CrossRef]
- Chen, Y.; Li, G.-X.; Peng, A.-Q.; Tang, Y.; Wang, L. Rapid Construction of Enantioenriched Benzofurochromanes by SaBOX/Copper(II) Catalyzed Enantioselective [3 + 2] Annulation of γ-Chromenes with Quinones. Org. Lett. 2022, 24, 5525–5529. [Google Scholar] [CrossRef]
- Cheng, W.-F.; Gao, S.-Z.; Yang, Y.-C.; Wang, L. Copper Catalyzed [3 + 2] Annulation Reaction of Exocyclic Sulfonyl Enamides for the Synthesis of N,O-Spiroketal and Spiroketal. Chem. Eur. J. 2024, 30, e202401062. [Google Scholar] [CrossRef] [PubMed]
- Sengoku, T.; Murata, Y.; Aso, Y.; Kawakami, A.; Inuzuka, T.; Sakamoto, M.; Takahashi, M.; Yoda, H. Indium-Catalyzed Amide Allylation of N-Carbonyl Imides: Formation of Azaspiro-γ-lactones via Ring Opening–Reclosure. Org. Lett. 2015, 17, 5846–5849. [Google Scholar] [CrossRef] [PubMed]
- Sengoku, T.; Kamiya, Y.; Kawakami, A.; Takahashi, M.; Yoda, H. Use of β-Amido Allylboronate as a Nucleophilic Reagent in Catalytic Amide Allylation of N-Carbonyl Imides. Eur. J. Org. Chem. 2017, 40, 6096–6098. [Google Scholar] [CrossRef]
- Sengoku, T.; Shirai, A.; Takano, A.; Inuzuka, T.; Sakamoto, M.; Takahashi, M.; Yoda, H. Divergent Synthesis of Methylene Lactone- and Methylene Lactam-Based Spiro Compounds: Utility of Amido-Functionalized γ-Hydroxylactam as a Precursor for Cytotoxic N,O- and N,N-Spiro Compounds. J. Org. Chem. 2019, 84, 12532–12541. [Google Scholar] [CrossRef]
- Sengoku, T.; Miyoshi, A.; Tsuda, T.; Inuzuka, T.; Sakamoto, M.; Takahashi, M.; Yoda, H. Development of new catalytic enantioselective formation of methylenelactam-based N,O-spirocyclic compounds via ring opening-asymmetric reclosure of hydroxylactams. Tetrahedron 2020, 76, 131252. [Google Scholar] [CrossRef]
- Wang, T.; Huang, B.; Wang, Y.-Q. Enantioselective Synthesis of Spiro Chroman-Isoindolinones via Formal (4 + 2) Cycloaddition of In Situ-Generated ortho-Quinone Methides with 3-Methylene Isoindolinones. Adv. Synth. Catal. 2022, 364, 2596–2605. [Google Scholar] [CrossRef]
- Gayen, P.; Sar, S.; Ghorai, P. Stereodivergent Synthesis of Spiroaminals via Chiral Bifunctional Hydrogen Bonding Organocatalysis. Angew. Chem. Int. Ed. 2024, 63, e202404106. [Google Scholar] [CrossRef]
- Doraghi, F.; Mahdavian, A.M.; Karimian, S.; Larijani, B.; Mahdavi, M. Recent Progress in Application of Propargylic Alcohols in Organic Syntheses. Adv. Synth. Catal. 2023, 365, 2991–3019. [Google Scholar] [CrossRef]
- Liang, M.; Ma, H.; Song, X.-R.; Xiao, Q. Recent Advances in Radical Transformations of Propargylic Alcohols. Adv. Synth. Catal. 2024, 366, 2659–2677. [Google Scholar] [CrossRef]
- Xia, Y.; Liu, M.; Li, W.; Li, P. Recent Advances in Organocatalytic Enantioselective Reactions of α-Functionalized Propargylic Alcohols. Asian J. Org. Chem. 2024, 13, e202400377. [Google Scholar] [CrossRef]
- Qian, C.; Liu, M.; Sun, J.; Li, P. Chiral phosphoric acid-catalyzed regio- and enantioselective reactions of functionalized propargylic alcohols. Org. Chem. Front. 2022, 9, 1234–1240. [Google Scholar] [CrossRef]
- Unhale, R.A.; Sadhu, M.M.; Singh, V.K. Chiral Brønsted Acid Catalyzed Enantioselective Synthesis of Spiro-Isoindolinone-Indolines via Formal [3 + 2] Cycloaddition. Org. Lett. 2022, 24, 3319–3324. [Google Scholar] [CrossRef] [PubMed]
- Gaucherand, A.; Yen-Pon, E.; Domain, A.; Bourhis, A.; Rodriguez, J.; Bonne, D. Enantioselective synthesis of molecules with multiple stereogenic elements. Chem. Soc. Rev. 2024, 53, 11165–11206. [Google Scholar] [CrossRef]
- Xia, Y.; Liu, M.; Qian, C.; Li, P.; Dong, M.; Li, W. Asymmetric organocatalytic (3 + 2) annulation of propargylic alcohols with indolylnaphthalenols: Synergistic construction of axial and central chirality. Org. Chem. Front. 2023, 10, 30–34. [Google Scholar] [CrossRef]
- Wang, H.-Q.; Wu, S.-F.; Yang, J.-R.; Zhang, Y.-C.; Shi, F. Design and Organocatalytic Asymmetric Synthesis of Indolyl-Pyrroloindoles Bearing Both Axial and Central Chirality. J. Org. Chem. 2023, 88, 7684–7702. [Google Scholar] [CrossRef]
- Liu, F.; Guo, Y.; Lu, W.; Zhao, X.; Yin, Y.; Jiang, Z. Precise construction of spiro stereocenters via enantioselective radical addition through modulating photocatalysis from redox to energy transfer. Chem. Sci. 2025, 16, 10555–10562. [Google Scholar] [CrossRef]
- Qi, Z.; Zhang, Z.; Yang, L.; Zhang, D.; Lu, J.; Wei, J.; Wei, S.; Fu, Q.; Du, X.; Yi, D. Nitrogen-Radical-Triggered Trifunctionalizing ipso-Spirocyclization of Unactivated Alkenes with Vinyl Azides: A Modular Access to Spiroaminal Frameworks. Adv. Synth. Catal. 2021, 363, 3762–3768. [Google Scholar] [CrossRef]
- Deng, Y.; Li, Y.; Wang, Y.; Sun, S.; Ma, S.; Jia, P.; Li, W.; Wang, K.; Yan, W. Efficient enantioselective synthesis of CF2H- containing dispiro[benzo[b]thiophene-oxindolepyrrolidine]s via organocatalytic cycloaddition. Org. Chem. Front. 2022, 9, 210–215. [Google Scholar] [CrossRef]
- Sun, S.; Chen, D.; Guo, H.; Liu, Y.; Liu, X.; Yan, W.; Huang, J. Acid-Controlled Regional Diverse Synthesis of CF3-Containing Ketoimines and Application in the Construction of Bispiro[oxindole-pyrrolidine-benzothiophenone]s. Eur. J. Org. Chem. 2023, 26, e202300586. [Google Scholar] [CrossRef]
- Sun, S.; Deng, Y.; Chen, D.; Guo, H.; Sun, M.; He, H.; Yan, W.; Huang, J. The Asymmetric Construction α-CF2H Pyrrolidine via 1,3-Dipolar Cycloaddition of N-2,2-Difluoroethylthioisatin Ketoimines with Meldrum’s Acid Derived Electron-Deficient Olefins. Asian J. Org. Chem. 2023, 12, e202300184. [Google Scholar] [CrossRef]
- Deng, Y.; Yang, C.; Shi, S.; Cao, Y.; Jia, P.; Li, Y.; Huang, J.; Yan, W. Efficient enantioselective synthesis of CF2H-containing dispiro [benzo[b] thiophene-pyrrolidine-pyrazole]s via organocatalytic cycloaddition. Tetrahedron 2023, 144, 133580. [Google Scholar] [CrossRef]
- Zhao, J.-Q.; Zhang, X.-M.; He, Y.-Y.; Peng, Q.-Q.; Rao, H.-W.; Zhang, Y.-P.; Wang, Z.-H.; You, Y.; Yuan, W.-C. Catalytic Asymmetric Synthesis of Vicinally Bis(trifluoromethyl)-Substituted Molecules via Normal [3 + 2] Cycloaddition of N-2,2,2-Trifluoroethyl Benzothiophene Ketimines and β-Trifluoromethyl Enones. Org. Lett. 2023, 25, 8027–8032. [Google Scholar] [CrossRef]
- Zhai, J.S.; Xie, D.H.; Du, D.M. Bifunctional Squaramide-Catalyzed Asymmetric [3 + 2] Annluation Reactions of 2-Isothiocyanato-1-indanones with 2-Arylidene-1,3-indanediones. ChemistrySelect 2022, 7, e202203142. [Google Scholar] [CrossRef]
- Li, F.; Li, Z.; Wang, Y.; Zhou, Z. Synthesis of Chiral Spiro[oxindole-3,2′-pyrrolidine] Derivatives Integrated with Spiro Indane-1,3-dione and Trifluoromethyl Group Pharmacophores via Organocatalyzed Asymmetric [3 + 2] Annulation. Synthesis 2023, 55, 1427–1440. [Google Scholar] [CrossRef]
- Liu, H.-Y.; Du, D.-M. Organocatalyzed Enantioselective [3 + 2] Cycloaddition Reactions for Synthesis of Dispiro[benzothiophenone-indandionepyrrolidine] Derivatives. Molecules 2024, 29, 4856–4871. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sow, M.; Fauran, E.; Commeiras, L. Enantioselective Preparation of (N,O)-, (N,N)- and (N,S)-Spiroketal Moieties. Molecules 2025, 30, 4100. https://doi.org/10.3390/molecules30204100
Sow M, Fauran E, Commeiras L. Enantioselective Preparation of (N,O)-, (N,N)- and (N,S)-Spiroketal Moieties. Molecules. 2025; 30(20):4100. https://doi.org/10.3390/molecules30204100
Chicago/Turabian StyleSow, Mata, Edouard Fauran, and Laurent Commeiras. 2025. "Enantioselective Preparation of (N,O)-, (N,N)- and (N,S)-Spiroketal Moieties" Molecules 30, no. 20: 4100. https://doi.org/10.3390/molecules30204100
APA StyleSow, M., Fauran, E., & Commeiras, L. (2025). Enantioselective Preparation of (N,O)-, (N,N)- and (N,S)-Spiroketal Moieties. Molecules, 30(20), 4100. https://doi.org/10.3390/molecules30204100