Sandalwood Sesquiterpene (Z)-α-Santalol Exhibits In Vivo Efficacy Against Madurella mycetomatis in Galleria mellonella Larvae
Abstract
1. Introduction
2. Results and Discussion
2.1. In Vitro Activity Against Different Strains of Madurella mycetomatis
2.2. In Vivo Activity Against Madurella mycetomatis Infection in Galleria mellonella Larvae
3. Materials and Methods
3.1. Tested Materials
3.2. Biological Tests
3.2.1. Cultivation of Madurella mycetomatis Strains
3.2.2. In Vitro Activity Against M. mycetomatis
3.2.3. In Vivo Studies in the Galleria mellonella Model
3.2.4. In Vivo Efficacy of Royal Hawaiian Sandalwood (Santalum paniculatum) Essential Oil and Pure Santalols in the Galleria mellonella Model
3.2.5. In Vivo Toxicity Studies of Royal Hawaiian Sandalwood (Santalum paniculatum) Essential Oil and Pure Santalols in the Galleria mellonella Model
3.2.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EO | Essential oil |
MIC | Minimal inhibitory concentration |
PBS | Phosphate-buffered saline |
LD50 | Median lethal dose (lethal dose 50%) |
GC-MS | Gas chromatography-mass spectrometry |
SDA | Sabouraud Dextrose |
RPMI | Roswell Park Memorial Institute |
MOPS | Morpholinepropanesulfonic acid |
DMSO | Dimethyl sulfoxide |
References
- Zijlstra, E.E.; van de Sande, W.W.J.; Welsh, O.; Mahgoub, E.S.; Goodfellow, M.; Fahal, A.H. Mycetoma: A unique neglected tropical disease. Lancet Infect. Dis. 2016, 16, 100–112. [Google Scholar] [CrossRef]
- Nenoff, P.; van de Sande, W.W.; Fahal, A.H.; Reinel, D.; Schöfer, H. Eumycetoma and actinomycetoma—An update on causative agents, epidemiology, pathogenesis, diagnostics and therapy. J. Eur. Acad. Dermatol. Venereol. 2015, 29, 1873–1883. [Google Scholar] [CrossRef]
- Milani, B.; Dagne, D.A.; Choi, H.L.; Schito, M.; Stone, H.A. Diagnostic capacities and treatment practices on implantation mycoses: Results from the 2022 WHO global online survey. PLoS Negl. Trop. Dis. 2023, 17, e0011443. [Google Scholar] [CrossRef]
- Van de Sande, W.W.J.; Fahal, A.H. An updated list of eumycetoma causative agents and their differences in grain formation and treatment response. Clin. Microbiol. Rev. 2024, 37, e0003423. [Google Scholar] [CrossRef]
- Fahal, A.H.; Ahmed, E.S.; Bakhiet, S.M.; Bakhiet, O.E.; Fahal, L.A.; Mohamed, A.A.; Mohamedelamin, E.S.W.; Bahar, M.E.N.; Attalla, H.Y.; Siddig, E.E.; et al. Two dose levels of once-weekly fosravuconazole versus daily itraconazole in combination with surgery in patients with eumycetoma in Sudan: A randomised, double-blind, phase 2, proof-of-concept superiority trial. Lancet Infect. Dis. 2024, 24, 1254–1265. [Google Scholar] [CrossRef]
- Elkheir, L.Y.M.; Haroun, R.; Mohamed, M.A.; Fahal, A.H. Madurella mycetomatis causing eumycetoma medical treatment: The challenges and prospects. PLoS Negl. Trop. Dis. 2020, 14, e0008307. [Google Scholar] [CrossRef]
- Abd Algaffar, S.O.; Seegers, S.; Satyal, P.; Setzer, W.N.; Schmidt, T.J.; Khalid, S.A. Sandalwood Oils of Different Origins Are Active In Vitro against Madurella mycetomatis, the Major Fungal Pathogen Responsible for Eumycetoma. Molecules 2024, 29, 1846. [Google Scholar] [CrossRef]
- Kim, T.H.; Hatano, T.; Okamoto, K.; Yoshida, T.; Kanzaki, H.; Arita, M.; Ito, H. Antifungal and Ichthyotoxic Sesquiterpenoids from Santalum album Heartwood. Molecules 2017, 22, 1139. [Google Scholar] [CrossRef]
- Powers, C.N.; Osier, J.L.; McFeeters, R.L.; Brazell, C.B.; Olsen, E.L.; Moriarity, D.M.; Satyal, P.; Setzer, W.N. Antifungal and Cytotoxic Activities of Sixty Commercially Available Essential Oils. Molecules 2018, 23, 1549. [Google Scholar] [CrossRef]
- Konings, M.; Eadie, K.; Lim, W.; Fahal, A.H.; Mouton, J.; Tesse, N.; van de Sande, W. The synthetic synergistic cinnamon oil CIN-102 is active against Madurella mycetomatis, the most common causative agent of mycetoma. PLoS Negl. Trop. Dis. 2021, 15, e0009488. [Google Scholar] [CrossRef]
- Ma, J.; Todd, M.; van de Sande, W.W.J.; Biersack, B. Antifungal Activity of Natural Naphthoquinones and Anthraquinones against Madurella mycetomatis. Chem. Biodivers. 2023, 20, e202300151. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Konings, M.; Verbon, A.; van de Sande, W.W.J. A Falciformispora senegalensis grain model in Galleria mellonella larvae. Med. Mycol. 2023, 61, myad070. [Google Scholar] [CrossRef]
- Eadie, K.; Parel, F.; Helvert-van Poppel, M.; Fahal, A.; van de Sande, W. Combining two antifungal agents does not enhance survival of Galleria mellonella larvae infected with Madurella mycetomatis. Trop. Med. Int. Health 2017, 22, 696–702. [Google Scholar] [CrossRef]
- Kloezen, W.; Parel, F.; Brüggemann, R.; Asouit, K.; Helvert-van Poppel, M.; Fahal, A.; Mouton, J.; van de Sande, W. Amphotericin B and terbinafine but not the azoles prolong survival in Galleria mellonella larvae infected with Madurella mycetomatis. Med. Mycol. 2018, 56, 469–478. [Google Scholar] [CrossRef]
- Abd Algaffar, S.O.; Satyal, P.; Ashmawy, N.S.; Verbon, A.; van de Sande, W.W.J.; Khalid, S.A. In Vitro and In Vivo Wide-Spectrum Dual Antimycetomal Activity of Eight Essential Oils Coupled with Chemical Composition and Metabolomic Profiling. Microbiol. Res. 2024, 15, 1280–1297. [Google Scholar] [CrossRef]
- D’Agostino, M.; Tesse, N.; Lavergne, R.A.; Le Pape, P.; Frippiat, J.P.; Machouart, M.; Debourgogne, A. In vitro antifungal effect of a plant-based product, CIN-102, on antifungal resistant filamentous fungi and their biofilms. J. Med. Microbiol. 2021, 70, 001399. [Google Scholar] [CrossRef]
- Tsai, C.J.-Y.; Loh, J.M.S.; Proft, T. Galleria mellonella infection models for the study of bacterial diseases and for antimicrobial drug testing. Virulence 2016, 7, 214–229. [Google Scholar] [CrossRef]
- Browne, N.; Heelan, M.; Kavanagh, K. An analysis of the structural and functional similarities of insect hemocytes and mammalian phagocytes. Virulence 2013, 4, 597–603. [Google Scholar] [CrossRef]
- Desbois, A.P.; Coote, P.J. Wax moth larva (Galleria mellonella): An in vivo model for assessing the efficacy of antistaphylococcal agents. J. Antimicrob. Chemother. 2011, 66, 1785–1790. [Google Scholar] [CrossRef]
- Mylonakis, E.; Moreno, R.; El Khoury, J.B.; Idnurm, A.; Heitman, J.; Calderwood, S.B.; Ausubel, F.M.; Diener, A. Galleria mellonella as a model system to study Cryptococcus neoformans pathogenesis. Infect. Immun. 2005, 73, 3842–3850. [Google Scholar] [CrossRef]
- Slater, J.L.; Gregson, L.; Denning, D.W.; Warn, P.A. Pathogenicity of Aspergillus fumigatus mutants assessed in Galleria mellonella matches that in mice. Med. Mycol. 2011, 49 (Suppl. S1), S107–S113. [Google Scholar] [CrossRef]
- Khalid, S.A.; Abd Algaffar, S.; Tajuddeen, N.; Lombe, B.K.; Bringmann, G. Naphthylisoquinoline alkaloids: Novel agents against the causative pathogens of eumycetoma and actinomycetoma-en route to broad-spectrum antimycetomal drugs. Antimicrob. Agents Chemother. 2024, 68, e0161223. [Google Scholar] [CrossRef]
- Burdock, G.A.; Carabin, I.G. Safety assessment of sandalwood oil (Santalum album L.). Food Chem. Toxicol. 2008, 46, 421–432. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.; Zehra, Z.; Shamsi, A.; Beg, M.A.; Parray, Z.A.; Israil; Imam, M.A.; Gaur, N.A.; Hassan, M.I.; Chaudhary, A.A.; et al. Elucidating the Role of Santalol as a Potent Inhibitor of Tyrosinase: In Vitro and In Silico Approaches. Molecules 2022, 27, 8915. [Google Scholar] [CrossRef]
- Ochi, T.; Shibata, H.; Higuti, T.; Kodama, K.; Kusumi, T.; Takaishi, Y. Anti-Helicobacter pylori Compounds from Santalum album. J. Nat. Prod. 2005, 68, 819–824. [Google Scholar] [CrossRef]
- Paudel, P.; Pandey, P.; Paris, J.J.; Ashpole, N.M.; Mahdi, F.; Tian, J.-M.; Lee, J.; Wang, M.; Xu, M.; Chittiboyina, A.G.; et al. Cannabinoid Receptor Type II Ligands from Sandalwood Oil and Synthetic α-Santalol Derivatives. J. Nat. Prod. 2023, 86, 1786–1792. [Google Scholar] [CrossRef]
- Okugawa, H.; Ueda, R.; Matsumoto, K.; Kawanishi, K.; Kato, A. Effect of α-santalol and β-santalol from sandalwood on the central nervous system in mice. Phytomedicine 1995, 2, 119–126. [Google Scholar] [CrossRef]
- Ahmed, A.O.A.; van de Sande, W.W.J.; van Vianen, W.; van Belkum, A.; Fahal, A.H.; Verbrugh, H.A.; Bakker-Woudenberg, I.A.J.M. In Vitro Susceptibilities of Madurella mycetomatis to Itraconazole and Amphotericin B Assessed by a Modified NCCLS Method and a Viability-Based 2,3-Bis(2-Methoxy-4-Nitro-5-Sulfophenyl)-5-[(Phenylamino)Carbonyl]-2H-Tetrazolium Hydroxide (XTT) Assay. Antimicrob. Agents Chemother. 2004, 48, 2558–2569. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.O.; Mukhtar, M.M.; Kools-Sijmons, M.; Fahal, A.H.; de Hoog, S.; Van den Ende, B.G.; Zijlstra, E.E.; Verbrugh, H.; Abugroun, E.S.; Elhassan, A.M.; et al. Development of a species-specific PCR-restriction fragment length polymorphism analysis procedure for identification of Madurella mycetomatis. J. Clin. Microbiol. 1999, 37, 3175–3178. [Google Scholar] [CrossRef]
- Abd Algaffar, S.O.; Verbon, A.; van de Sande, W.W.J.; Khalid, S.A. Development and validation of an in vitro resazurin-based susceptibility assay against Madurella mycetomatis. Antimicrob. Agents Chemother. 2021, 65, e01338-20. [Google Scholar] [CrossRef]
Sample | MIC (µg/mL) | ||
---|---|---|---|
SAK-E07 | MM58 | P2 | |
Ess-EO5 | 16 | 64 | 64 |
(Z)-α-santalol | 27.5 | 27.5 | 27.5 |
(Z)-β-santalol | 55 | 55 | 55 |
Itraconazole | 0.25 | 0.25 | 0.062 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abd Algaffar, S.O.; Seegers, S.; Zhou, S.; Satyal, P.; Setzer, W.N.; Schmidt, T.J.; Khalid, S.A. Sandalwood Sesquiterpene (Z)-α-Santalol Exhibits In Vivo Efficacy Against Madurella mycetomatis in Galleria mellonella Larvae. Molecules 2025, 30, 4090. https://doi.org/10.3390/molecules30204090
Abd Algaffar SO, Seegers S, Zhou S, Satyal P, Setzer WN, Schmidt TJ, Khalid SA. Sandalwood Sesquiterpene (Z)-α-Santalol Exhibits In Vivo Efficacy Against Madurella mycetomatis in Galleria mellonella Larvae. Molecules. 2025; 30(20):4090. https://doi.org/10.3390/molecules30204090
Chicago/Turabian StyleAbd Algaffar, Shereen O., Stephan Seegers, Shaoqin Zhou, Prabodh Satyal, William N. Setzer, Thomas J. Schmidt, and Sami A. Khalid. 2025. "Sandalwood Sesquiterpene (Z)-α-Santalol Exhibits In Vivo Efficacy Against Madurella mycetomatis in Galleria mellonella Larvae" Molecules 30, no. 20: 4090. https://doi.org/10.3390/molecules30204090
APA StyleAbd Algaffar, S. O., Seegers, S., Zhou, S., Satyal, P., Setzer, W. N., Schmidt, T. J., & Khalid, S. A. (2025). Sandalwood Sesquiterpene (Z)-α-Santalol Exhibits In Vivo Efficacy Against Madurella mycetomatis in Galleria mellonella Larvae. Molecules, 30(20), 4090. https://doi.org/10.3390/molecules30204090