Recent Progress in Enzyme Immobilization to Metal–Organic Frameworks to Enhance the CO2 Conversion Efficiency
Abstract
:1. Introduction
2. Engineered Metal–Organic Frameworks for CO2 Conversion with Enzymes
2.1. Enzyme Immobilization Strategies Within MOFs for Catalytic CO2 Conversion
2.1.1. Surface Immobilization of Enzymes on Metal–Organic Frameworks for Catalytic CO2 Conversion
2.1.2. Post-Synthetic Infiltration of Enzymes to Metal–Organic Frameworks for Catalytic CO2 Conversion
2.1.3. In Situ Immobilization of Enzymes to Metal–Organic Frameworks for Catalytic CO2 Conversion
2.2. Engineered MOF Composites for Enhanced Enzyme Immobilization and CO2 Conversion
2.2.1. CS/PVA Hydrogel-MOF Composites for Enzyme Immobilization
2.2.2. Fe3O4-MOF Composites for Enzyme Immobilization
2.2.3. SiO2-MOF Composites for Enzyme Immobilization
3. Innovative Strategies for Boosting CO2 Conversion Efficiency in Enzyme@MOFs
3.1. Boosting CO2 Utilization to Improve the Conversion Efficiency in Enzyme@MOFs
3.1.1. Strategies for Modifying MOFs to Enhance CO2 Adsorption for an Improved Conversion Efficiency in Enzyme@MOFs
3.1.2. Strategies for Enhancing CO2 Solubility to Improve the CO2 Conversion Efficiency in Enzyme@MOFs
3.1.3. Strategies for Maximizing CO2–Enzyme Contact to Improve the CO2 Conversion Efficiency in Enzyme@MOFs
3.2. Efficient Coenzyme Regeneration to Enhance CO2 Conversion in Enzyme@MOFs
3.2.1. Chemical Regeneration of Coenzyme to Improve the CO2 Conversion Efficiency in Enzyme@MOFs
3.2.2. Electrochemical Regeneration of the Coenzyme to Improve the CO2 Conversion Efficiency in Enzyme@MOFs
3.2.3. Photochemical Regeneration of the Coenzyme to Improve the CO2 Conversion Efficiency in Enzyme@MOFs
3.2.4. Enzymatic Regeneration of the Coenzyme to Improve the CO2 Conversion Efficiency in Enzyme@MOFs
3.3. Strategies for Multi-Enzyme Co-Immobilization to Enhance the CO2 Conversion Efficiency in Enzyme@MOFs
3.3.1. Random Co-Immobilization Strategy for Enhanced CO2 Conversion in Multi-Enzyme@MOFs
3.3.2. Compartmentalized Co-Immobilization Strategy for Enhanced CO2 Conversion in Multi-Enzyme@MOFs
3.3.3. Sequential Co-Immobilization Strategy for Enhanced CO2 Conversion in Multi-Enzyme@MOFs
4. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Behera, B.; Behera, P.; Sethi, N. Decoupling the role of renewable energy, green finance and political stability in achieving the sustainable development goal 13: Empirical insight from emerging economies. Sustain. Dev. 2024, 32, 119–137. [Google Scholar] [CrossRef]
- Lin, B.; Zhu, J. The role of renewable energy technological innovation on climate change: Empirical evidence from China. Sci. Total Environ. 2019, 659, 1505–1512. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Deng, Z.; He, G.; Wang, H.; Zhang, X.; Lin, J.; Qi, Y.; Liang, X. Challenges and opportunities for carbon neutrality in China. Nat. Rev. Earth Environ. 2022, 3, 141–155. [Google Scholar] [CrossRef]
- Zheng, X.; Lu, Y.; Yuan, J.; Baninla, Y.; Zhang, S.; Stenseth, N.C.; Hessen, D.O.; Tian, H.; Obersteiner, M.; Chen, D. Drivers of change in China’s energy-related CO2 emissions. Proc. Natl. Acad. Sci. USA 2020, 117, 29–36. [Google Scholar] [CrossRef]
- Aresta, M.; Dibenedetto, A.; Quaranta, E. State of the art and perspectives in catalytic processes for CO2 conversion into chemicals and fuels: The distinctive contribution of chemical catalysis and biotechnology. J. Catal. 2016, 343, 2–45. [Google Scholar] [CrossRef]
- Yang, J.; Sou, C.-K.; Lu, Y. Cell-free biocatalysis coupled with photo-catalysis and electro-catalysis: Efficient CO2-to-chemical conversion. Green Energy Environ. 2024, 9, 1366–1383. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, W.; Li, W. Recent advances in the catalytic conversion of CO2 to chemicals and demonstration projects in China. Mol. Catal. 2023, 541, 113093. [Google Scholar] [CrossRef]
- Schlager, S.; Dibenedetto, A.; Aresta, M.; Apaydin, D.H.; Dumitru, L.M.; Neugebauer, H.; Sariciftci, N.S. Biocatalytic and Bioelectrocatalytic Approaches for the Reduction of Carbon Dioxide using Enzymes. Energy Technol. 2017, 5, 812–821. [Google Scholar] [CrossRef]
- Molina-Fernandez, C.; Luis, P. Immobilization of carbonic anhydrase for CO2 capture and its industrial implementation: A review. J. CO2 Util. 2021, 47, 101475. [Google Scholar] [CrossRef]
- Calzadiaz-Ramirez, L.; Meyer, A.S. Formate dehydrogenases for CO2 utilization. Curr. Opin. Biotechnol. 2022, 73, 95–100. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, X.; Ji, X. Developing and Regenerating Cofactors for Sustainable Enzymatic CO2 Conversion. Processes 2022, 10, 230. [Google Scholar] [CrossRef]
- Shi, J.; Jiang, Y.; Jiang, Z.; Wang, X.; Wang, X.; Zhang, S.; Han, P.; Yang, C. Enzymatic conversion of carbon dioxide. Chem. Soc. Rev. 2015, 44, 5981–6000. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.Y.; Yang, W.H.; Zhang, H.Y.; Zhao, R. Metal—Organic Framework for the Immobilization of Oxidoreductase Enzymes: Scopes and Perspectives. Materials 2023, 16, 6572. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Jiao, L.; Wu, Y.; Hu, L.; Gu, W.; Zhu, C. Metal—Organic Frameworks Enhance Biomimetic Cascade Catalysis for Biosensing. Adv. Mater. 2021, 33, 2005172. [Google Scholar] [CrossRef]
- Mohamad, N.R.; Marzuki, N.H.C.; Buang, N.A.; Huyop, F.; Wahab, R.A. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol. Biotechnol. Equip. 2015, 29, 205–220. [Google Scholar] [CrossRef]
- Maghraby, Y.R.; El-Shabasy, R.M.; Ibrahim, A.H.; Azzazy, H.M.E.-S. Enzyme Immobilization Technologies and Industrial Applications. ACS Omega 2023, 8, 5184–5196. [Google Scholar] [CrossRef]
- Huang, S.; Kou, X.; Shen, J.; Chen, G.; Ouyang, G. “Armor-Plating” Enzymes with Metal—Organic Frameworks (MOFs). Angew. Chem. Int. Ed. 2020, 59, 8786–8798. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, F.; Li, H.; Su, S.; Gao, H.; Han, X.; Ren, S. Potential application of the immobilization of carbonic anhydrase based on metal organic framework supports. Process. Biochem. 2022, 122, 214–223. [Google Scholar] [CrossRef]
- Xv, J.; Zhang, Z.; Pang, S.; Jia, J.; Geng, Z.; Wang, R.; Li, P.; Bilal, M.; Cui, J.; Jia, S. Accelerated CO2 capture using immobilized carbonic anhydrase on polyethyleneimine/dopamine co-deposited MOFs. Biochem. Eng. J. 2022, 189, 108719. [Google Scholar] [CrossRef]
- Annamalai, J.; Murugan, P.; Ganapathy, D.; Nallaswamy, D.; Atchudan, R.; Arya, S.; Khosla, A.; Barathi, S.; Sundramoorthy, A.K. Synthesis of various dimensional metal organic frameworks (MOFs) and their hybrid composites for emerging applications—A review. Chemosphere 2022, 298, 134184. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, B.; Alsalme, A.; Xiang, S.C.; Zhang, Z.J.; Chen, B.L. Design and applications of water-stable metal-organic frameworks: Status and challenges. Coord. Chem. Rev. 2020, 423, 213507. [Google Scholar] [CrossRef]
- Rouf, S.; Greish, Y.E.; Al-Zuhair, S. Immobilization of formate dehydrogenase in metal organic frameworks for enhanced conversion of carbon dioxide to formate. Chemosphere 2021, 267, 128921. [Google Scholar] [CrossRef]
- An, H.; Xie, B.; Ren, M.; Li, Z.; Li, W.; Liu, Y.; Xu, Y.; Luo, D. Self-Activated Nucleases Formulation Based on Metal—Organic Frameworks with Enhanced Activity and Stability. ACS Mater. Lett. 2023, 5, 3331–3339. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.; Liu, J.; Hou, J.; Zhang, Y. Enzyme-embedded metal-organic framework membranes on polymeric substrates for efficient CO2 capture. J. Mater. Chem. A 2017, 5, 19954–19962. [Google Scholar] [CrossRef]
- Jin, C.; Zhang, S.; Zhang, Z.; Chen, Y. Mimic Carbonic Anhydrase Using Metal—Organic Frameworks for CO2 Capture and Conversion. Inorg. Chem. 2018, 57, 2169–2174. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.J.; Zeng, H.; Lu, W.G.; Li, D. Metal—Organic frameworks for hydrocarbon separation: Design, progress, and challenges. J. Mater. Chem. A 2023, 11, 20459–20469. [Google Scholar] [CrossRef]
- Khosrowshahi, M.S.; Aghajari, A.A.; Rahimi, M.; Maleki, F.; Ghiyabi, E.; Rezanezhad, A.; Bakhshi, A.; Salari, E.; Shayesteh, H.; Mohammadi, H. Recent progress on advanced solid adsorbents for CO2 capture: From mechanism to machine learning. Mater. Today Sustain. 2024, 27, 100900. [Google Scholar]
- Olajire, A.A. Synthesis chemistry of metal-organic frameworks for CO2 capture and conversion for sustainable energy future. Renew. Sustain. Energy Rev. 2018, 92, 570–607. [Google Scholar] [CrossRef]
- Wijaya, D.T.; Lee, C.W. Metal-Organic framework catalysts: A versatile platform for bioinspired electrochemical conversion of carbon dioxide. Chem. Eng. J. 2022, 446, 137311. [Google Scholar] [CrossRef]
- Liang, W.; Wied, P.; Carraro, F.; Sumby, C.J.; Nidetzky, B.; Tsung, C.-K.; Falcaro, P.; Doonan, C.J. Metal—Organic Framework-Based Enzyme Biocomposites. Chem. Rev. 2021, 121, 1077–1129. [Google Scholar] [CrossRef]
- Ye, N.; Kou, X.; Shen, J.; Huang, S.; Chen, G.; Ouyang, G. Metal—Organic Frameworks: A New Platform for Enzyme Immobilization. Chembiochem 2020, 21, 2585–2590. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Chapman, J.; Huang, A.; Williams, K.C.; Wagner, A.; Garapati, N.; Sierros, K.A.; Dinu, C.Z. User-Tailored Metal Organic Frameworks as Supports for Carbonic Anhydrase. ACS Appl. Mater. Interfaces 2018, 10, 41326–41337. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Chen, H.; Zhao, H.; Chen, R.; Yang, M.; Gao, J.; Yu, F.; Jiang, Y. Accelerating Electroenzymatic CO2 Reduction by Immobilizing Formate Dehydrogenase on Polyethylenimine-Modified Mesoporous Silica. ACS Sustain. Chem. Eng. 2022, 10, 633–644. [Google Scholar] [CrossRef]
- Li, P.; Chen, Q.; Wang, T.C.; Vermeulen, N.A.; Mehdi, B.L.; Dohnalkoya, A.; Browning, N.D.; Shen, D.; Anderson, R.; Gomez-Gualdron, D.A.; et al. Hierarchically Engineered Mesoporous Metal—Organic Frameworks toward Cell-free Immobilized Enzyme Systems. Chem 2018, 4, 1022–1034. [Google Scholar] [CrossRef]
- Dong, J.; Jiang, X.; Fan, Y.; Cheng, F.; Xue, S.; Li, C.; Zhang, L.; Cheng, G. High Enzymatic Activity of CO2 Conversion Achieved by Controllable Enzyme Immobilization and Microenvironment. ACS Sustain. Chem. Eng. 2023, 11, 11490–11501. [Google Scholar] [CrossRef]
- Berijani, K.; Morsali, A.; Garcia, H. Synthetic strategies to obtain MOFs and related solids with multimodal pores. Microporous Mesoporous Mater. 2023, 349, 112410. [Google Scholar] [CrossRef]
- Zhu, X.; Du, C.; Gao, B.; He, B. Strategies to improve the mass transfer in the CO2 capture process using immobilized carbonic anhydrase. J. Environ. Manag. 2023, 332, 117370. [Google Scholar] [CrossRef]
- Liang, S.; Zong, M.; Lou, W. Recent Advances in Enzymatic Catalysis for Preparation of High Value—Added Chemicals from Carbon Dioxide. Acta Chim. Sin. 2019, 77, 1099–1114. [Google Scholar] [CrossRef]
- Ren, S.; Chen, R.; Wu, Z.; Su, S.; Hou, J.; Yuan, Y. Enzymatic characteristics of immobilized carbonic anhydrase and its applications in CO2 conversion. Colloids Surf. B 2021, 204, 111779. [Google Scholar] [CrossRef]
- Yan, L.; Liu, G.; Liu, J.; Bai, J.; Li, Y.; Chen, H.; Zhou, L.; Gao, J.; Jiang, Y. Hierarchically porous metal organic framework immobilized formate dehydrogenase for enzyme electrocatalytic CO2 reduction. Chem. Eng. J. 2022, 450, 138164. [Google Scholar] [CrossRef]
- Shao, P.; Shen, Y.; Ye, J.; Zhao, J.; Wang, L.; Zhang, S. Shape controlled ZIF-8 crystals for carbonic anhydrase immobilization to boost CO2 uptake into aqueous MDEA solution. Sep. Purif. Technol. 2023, 315, 123683. [Google Scholar] [CrossRef]
- Kim, I.G.; Jo, B.H.; Kang, D.G.; Kim, C.S.; Choi, Y.S.; Cha, H.J. Biomineralization-based conversion of carbon dioxide to calcium carbonate using recombinant carbonic anhydrase. Chemosphere 2012, 87, 1091–1096. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Yi, S.; Wang, M. Biomimetic mineralization for carbon capture and sequestration. Carbon Capture Sci. Technol. 2024, 13, 100257. [Google Scholar] [CrossRef]
- Lyu, F.; Zhang, Y.; Zare, R.N.; Ge, J.; Liu, Z. One—Pot Synthesis of Protein-Embedded Metal—Organic Frameworks with Enhanced Biological Activities. Nano Lett. 2014, 14, 5761–5765. [Google Scholar] [CrossRef]
- Zhou, Z.; Gao, Z.; Shen, H.; Li, M.; He, W.; Su, P.; Song, J.; Yang, Y. Metal—Organic Framework in Situ Post—Encapsulating DNA—Enzyme Composites on a Magnetic Carrier with High Stability and Reusability. ACS Appl. Mater. Interfaces 2020, 12, 7510–7517. [Google Scholar] [CrossRef]
- Sicard, C. In Situ Enzyme Immobilization by Covalent Organic Frameworks. Angew. Chem. Int. Ed. 2023, 62, e202213405. [Google Scholar] [CrossRef]
- Gao, R.; Kou, X.; Huang, S.; Chen, G.; Ouyang, G. Developing Covalent Organic Framework Biocatalysts through Enzyme Encapsulation. Chembiochem 2024, 25, e202400339. [Google Scholar] [CrossRef]
- Lin, G.; Zeng, B.; Li, J.; Wang, Z.Y.; Wang, S.X.; Hu, T.; Zhang, L.B. A systematic review of metal organic frameworks materials for heavy metal removal: Synthesis, applications and mechanism. Chem. Eng. J. 2023, 460, 141710. [Google Scholar] [CrossRef]
- Chen, L.; Xu, Q. Metal—Organic Framework Composites for Catalysis. Matter 2019, 1, 57–89. [Google Scholar] [CrossRef]
- He, H.-H.; Guan, Z.-J.; Peng, Y.; Liang, Y.; Li, J.; Zhang, L.-L.; Fang, Y. Engineering the interactions between metal-organic frameworks and modifying agents: Design, structures, and applications. Coord. Chem. Rev. 2024, 499, 215515. [Google Scholar] [CrossRef]
- Li, X.Q.; Zhao, X.S.; Chu, D.D.; Zhu, X.L.; Xue, B.L.; Chen, H.; Zhou, Z.; Li, J.G. Silver nanoparticle-decorated 2D Co-TCPP MOF nanosheets for synergistic photodynamic and silver ion antibacterial. Surf. Interfaces 2022, 33, 102247. [Google Scholar] [CrossRef]
- Hou, A.D.; Du, Y.H.; Su, Y.M.; Pang, Z.X.; Liu, S.T.; Xian, S.N.; Zhao, X.S.; Ma, L.F.; Liu, B.Z.; Wu, H.X.; et al. CuS/Co-Ferrocene-MOF Nanocomposites for Photothermally Enhanced Chemodynamic Antibacterial Therapy. ACS Appl. Nano Mater. 2024, 7, 10998–11007. [Google Scholar] [CrossRef]
- Ren, S.; Li, C.; Tan, Z.; Hou, Y.; Jia, S.; Cui, J. Carbonic Anhydrase@ZIF-8 Hydrogel Composite Membrane with Improved Recycling and Stability for Efficient CO2 Capture. J. Agric. Food. Chem. 2019, 67, 3372–3379. [Google Scholar] [CrossRef]
- Wen, H.; Zhang, L.; Du, Y.; Wang, Z.; Jiang, Y.; Bian, H.; Cui, J.; Jia, S. Bimetal based inorganic-carbonic anhydrase hybrid hydrogel membrane for CO2 capture. J. CO2 Util. 2020, 39, 101171. [Google Scholar] [CrossRef]
- Liu, M.; Ye, Y.; Ye, J.; Gao, T.; Wang, D.; Chen, G.; Song, Z. Recent Advances of Magnetite (Fe3O4)—Based Magnetic Materials in Catalytic Applications. Magnetochemistry 2023, 9, 110. [Google Scholar] [CrossRef]
- Aguirre, M.E.; Ramirez, C.L.; Di Iorio, Y. Stable and Reusable Fe3O4/ZIF-8 Composite for Encapsulation of FDH Enzyme under Mild Conditions Applicable to CO2 Reduction. Chem. Eur. J. 2023, 29, e202301113. [Google Scholar] [CrossRef]
- Jeelani, P.G.; Mulay, P.; Venkat, R.; Ramalingam, C. Multifaceted Application of Silica Nanoparticles. A Review. Silicon 2020, 12, 1337–1354. [Google Scholar] [CrossRef]
- Zhao, R.; Liao, H.; Wu, X.R.; Cao, X.L. Selective adsorption behaviours of MOFs@SiO2 with different pore sizes and shell thicknesses. J. Solid. State Chem. 2020, 292, 121693. [Google Scholar] [CrossRef]
- Li, Y.; Yan, L.; Liu, G.; Chen, H.; Zhao, H.; Wang, L.; Gao, J.; Liu, Y.; Zheng, X.; Jiang, Y. Enhanced electroenzymatic CO2 reduction by a multifunctional ZIF-8 layer on silica nanoflower with immobilized enzyme. Chem. Eng. J. 2023, 466, 143198. [Google Scholar] [CrossRef]
- Kim, H.R.; Yoon, T.-U.; Kim, S.-I.; An, J.; Bae, Y.-S.; Lee, C.Y. Beyond pristine MOFs: Carbon dioxide capture by metal-organic frameworks (MOFs)-derived porous carbon materials. RSC Adv. 2017, 7, 1266–1270. [Google Scholar] [CrossRef]
- Hu, P.; Liu, H.; Wang, H.; Zhou, J.; Wang, Y.; Ji, H. Synergic morphology engineering and pore functionality within a metal-organic framework for trace CO2 capture. J. Mater. Chem. A 2022, 10, 881–890. [Google Scholar] [CrossRef]
- Jiao, Y.; Li, Z.; Ma, Y.; Zhou, G.; Wang, S.; Lu, G. The studies on gas adsorption properties of MIL-53 series MOFs materials. AIP Adv. 2017, 7, 085009. [Google Scholar] [CrossRef]
- He, Y.; Boone, P.; Lieber, A.R.; Tong, Z.; Das, P.; Hornbostel, K.M.; Wilmer, C.E.; Rosi, N.L. Implementation of a Core—Shell Design Approach for Constructing MOFs for CO2 Capture. ACS Appl. Mater. Interfaces 2023, 15, 23337–23342. [Google Scholar] [CrossRef] [PubMed]
- Ansone-Bertina, L.; Ozols, V.; Arbidans, L.; Dobkevica, L.; Sarsuns, K.; Vanags, E.; Klavins, M. Metal—Organic Frameworks (MOFs) Containing Adsorbents for Carbon Capture. Energies 2022, 15, 3473. [Google Scholar] [CrossRef]
- Hu, J.; Liu, Y.; Liu, J.; Gu, C.; Wu, D. High CO2 adsorption capacities in UiO type MOFs comprising heterocyclic ligand. Microporous Mesoporous Mater. 2018, 256, 25–31. [Google Scholar] [CrossRef]
- Fernando, J.S.R.; Asaithambi, S.S.; Chavan, S.M. Amino—Functionalizing Ce-Based MOF UiO-66 for Enhanced CO2 Adsorption and Selectivity. ChemPlusChem 2024, 89, e202400107. [Google Scholar] [CrossRef] [PubMed]
- Mutyala, S.; Yu, Y.-D.; Jin, W.-G.; Wang, Z.-S.; Zheng, D.-Y.; Ye, C.-R.; Luo, B. CO2 capture using amine incorporated UiO-66 in atmospheric pressure. J. Porous Mater. 2019, 26, 1831–1838. [Google Scholar] [CrossRef]
- Arstad, B.; Fjellvag, H.; Kongshaug, K.O.; Swang, O.; Blom, R. Amine functionalised metal organic frameworks (MOFs) as adsorbents for carbon dioxide. Adsorption 2008, 14, 755–762. [Google Scholar] [CrossRef]
- Yang, G.; Wang, Y.; Sun, M.; Xu, P.; Wang, C.; Huang, K.; Jiang, H.; Mintova, S.; Guo, H. Is amino-modification of HKUST-1 in PEI mixed-matrix membranes always favorable to CO2 separation. Microporous Mesoporous Mater. 2023, 359, 112649. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, N.; Tang, S.; He, X.; Chu, J.; Zeng, L.; Zhang, P.; Tang, K. PEI@MOFs thin film nanocomposite (TFN) membrane for efficient CO2 separation. Appl. Surf. Sci. 2023, 640, 158414. [Google Scholar] [CrossRef]
- Lin, Y.; Yan, Q.; Kong, C.; Chen, L. Polyethyleneimine Incorporated Metal—Organic Frameworks Adsorbent for Highly Selective CO2 Capture. Sci. Rep. 2013, 3, 1859. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wen, L.; Tan, T.; Lv, Y. Sequential Co-immobilization of Enzymes in Metal—Organic Frameworks for Efficient Biocatalytic Conversion of Adsorbed CO2 to Formate. Front. Bioeng. Biotechnol. 2019, 7, 394. [Google Scholar] [CrossRef]
- Wang, T.; Zhu, H.; Zeng, Q.; Liu, D. Strategies for Overcoming Defects of HKUST-1 and Its Relevant Applications. Adv. Mater. Interfaces 2019, 6, 1900423. [Google Scholar] [CrossRef]
- Diaz, J.C.; Gimenez-Marques, M. Alternative protein encapsulation with MOFs: Overcoming the elusive mineralization of HKUST-1 in water. Chem. Commun. 2023, 60, 51–54. [Google Scholar] [CrossRef]
- Tan, K.B.; Liu, Y.; Wang, Y.; Ali, S.; Wang, W.; Li, J.; Shang, L.; Yan, X.; Zhang, X.; Zhan, G. Catalytic deoxygenation of stearic acid into olefins over Pt catalysts supported on MOF-derived metal oxides. Catal. Sci. Technol. 2024, 14, 3436–3447. [Google Scholar] [CrossRef]
- Yan, D.; Li, M. Stearic acid-modified MOF-based composite phase change materials for solar-thermal energy conversion and storage. Sol. Energy 2023, 262, 111843. [Google Scholar] [CrossRef]
- Rouf, S.; Greish, Y.E.; Bruggen, B.V.d.; Al-Zuhair, S. Surface modification of HKUST-1 for enhanced activity of immobilized formate dehydrogenase used in CO2 hydrogenation. Carbon Resour. Convers. 2024, 7, 100199. [Google Scholar] [CrossRef]
- Solangi, N.H.; Hussin, F.; Anjum, A.; Sabzoi, N.; Mazari, S.A.; Mubarak, N.M.; Aroua, M.K.; Siddiqui, M.T.H.; Qureshi, S.S. A review of encapsulated ionic liquids for CO2 capture. J. Mol. Liq. 2023, 374, 121266. [Google Scholar] [CrossRef]
- Cui, G.; Wang, J.; Zhang, S. Active chemisorption sites in functionalized ionic liquids for carbon capture. Chem. Soc. Rev. 2016, 45, 4307–4339. [Google Scholar] [CrossRef]
- Chen, F.-F.; Huang, K.; Zhou, Y.; Tian, Z.-Q.; Zhu, X.; Tao, D.-J.; Jiang, D.; Dai, S. Multi—Molar Absorption of CO2 by the Activation of Carboxylate Groups in Amino Acid Ionic Liquids. Angew. Chem. Int. Ed. 2016, 128, 7166–7170. [Google Scholar] [CrossRef]
- Zhang, Z.; Muschiol, J.; Huang, Y.; Sigurdardottir, S.B.; von Solms, N.; Daugaard, A.E.; Wei, J.; Luo, J.; Xu, B.-H.; Zhang, S.; et al. Efficient ionic liquid-based platform for multi-enzymatic conversion of carbon dioxide to methanol. Green Chem. 2018, 20, 4339–4348. [Google Scholar] [CrossRef]
- Liu, G.; Wang, L.; Yan, L.; Zhao, H.; Li, Y.; Zhou, L.; He, Y.; Ma, L.; Liu, Y.; Gao, J.; et al. A dual-enzyme microreactor based on encapsulation and covalent bond for enzymatic electrocatalytic CO2 reduction. Chem. Eng. J. 2023, 475, 146186. [Google Scholar] [CrossRef]
- Liu, Q.; Bai, X.; Pham, H.; Hu, J.; Dinu, C.Z. Active Nanointerfaces Based on Enzyme Carbonic Anhydrase and Metal—Organic Framework for Carbon Dioxide Reduction. Nanomaterials 2021, 11, 1008. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.; Zhang, Y.; Hua, Y.; Zhang, C.; Jia, C.; Ju, D.; Yu, C.; Li, P.; Liu, J. Bioinspired Metalation of the Metal—Organic Framework MIL-125-NH2 for Photocatalytic NADH Regeneration and Gas-Liquid-Solid Three-Phase Enzymatic CO2 Reduction. Angew. Chem. Int. Ed. 2022, 61, e202206283. [Google Scholar] [CrossRef]
- Nielsen, C.F.; Lange, L.; Meyer, A.S. Classification and enzyme kinetics of formate dehydrogenases for biomanufacturing via CO2 utilization. Biotechnol. Adv. 2019, 37, 107408. [Google Scholar] [CrossRef]
- Amao, Y. Formate dehydrogenase for CO2 utilization and its application. J. CO2 Util. 2018, 26, 623–641. [Google Scholar] [CrossRef]
- Alissandratos, A.; Kim, H.-K.; Easton, C.J. Formate production through carbon dioxide hydrogenation with recombinant whole cell biocatalysts. Bioresour. Technol. 2014, 164, 7–11. [Google Scholar] [CrossRef]
- Di Spiridione, C.; Aresta, M.; Dibenedetto, A. Improving the Enzymatic Cascade of Reactions for the Reduction of CO2 to CH3OH in Water: From Enzymes Immobilization Strategies to Cofactor Regeneration and Cofactor Suppression. Molecules 2022, 27, 4913. [Google Scholar] [CrossRef]
- Fard, P.T.; Kim, K.; Lee, S.; Kim, J. Ligand effects in rhodium complexes for chemical NADH regeneration. Bull. Korean Chem. Soc. 2022, 43, 554–558. [Google Scholar] [CrossRef]
- Ren, S.; Wang, Z.; Bilal, M.; Feng, Y.; Jiang, Y.; Jia, S.; Cui, J. Co-immobilization multienzyme nanoreactor with co-factor regeneration for conversion of CO2. Int. J. Biol. Macromol. 2020, 155, 110–118. [Google Scholar] [CrossRef]
- Zhu, D.; Ao, S.; Deng, H.; Wang, M.; Qin, C.; Zhang, J.; Jia, Y.; Ye, P.; Ni, H. Ordered Coimmobilization of a Multienzyme Cascade System with a Metal Organic Framework in a Membrane: Reduction of CO2 to Methanol. ACS Appl. Mater. Interfaces 2019, 11, 33581–33588. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, P.; Noh, H.; Kung, C.-W.; Buru, C.T.; Wang, X.; Zhang, X.; Farha, O.K. Stabilization of Formate Dehydrogenase in a Metal—Organic Framework for Bioelectrocatalytic Reduction of CO2. Angew. Chem. Int. Ed. 2019, 58, 7682–7686. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, J.; Ji, M.; Liu, Y.; Wang, N.; Zhang, X.; Zhang, S.; Ji, X. Encapsulation of multiple enzymes in a metal-organic framework with enhanced electro-enzymatic reduction of CO2 to methanol. Green Chem. 2021, 23, 2362–2371. [Google Scholar] [CrossRef]
- Xing, X.; Liu, Y.; Lin, R.-D.; Zhang, Y.; Wu, Z.-L.; Yu, X.-Q.; Li, K.; Wang, N. Development of an Integrated System for Highly Selective Photoenzymatic Synthesis of Formic Acid from CO2. ChemSusChem 2023, 16, e202201956. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Yu, S.; Kang, H.; He, R.; Ning, Y.; Yu, Y.; Wang, M.; Chen, B. Construction of multi-enzyme cascade biomimetic carbon sequestration system based on photocatalytic coenzyme NADH regeneration. Renew. Energy 2020, 156, 107–116. [Google Scholar] [CrossRef]
- Gu, X.; Huang, T.; Hong, Y.; Wu, Y.; Wang, Z.; Zhang, Y.; Liu, S.; Han, J. Boosting the photocatalytic CO2 conversion efficiency of MOFs using a solid electron conveyor. J. Mater. Chem. A 2023, 11, 9784–9790. [Google Scholar] [CrossRef]
- Tang, Y.; Yang, J.; Zeng, J.; Hou, C.; Feng, J.; Li, G.; Li, H.; Chen, K.; Ouyang, P.; Tan, W. Promotion of CO2 reduction in a nanophotocatalyst by hydrogen peroxide. Sep. Purif. Technol. 2023, 311, 123206. [Google Scholar] [CrossRef]
- Zhou, J.; Tian, X.; Yu, S.; Zhao, Z.; Ji, Y.; Schwanebrg, U.; Chen, B.; Tan, T.; Cui, Z.; Wang, M. In-CdS@ZIF-8&FDH photo-enzyme nanosystem with high NADH regeneration ability via indium doping for enhanced CO2 reduction to formic acid. Chem. Eng. Sci. 2024, 285, 119613. [Google Scholar]
- Tian, Y.; Zhou, Y.; Zong, Y.; Li, J.; Yang, N.; Zhang, M.; Guo, Z.; Song, H. Construction of Functionally Compartmental Inorganic Photocatalyst-Enzyme System via Imitating Chloroplast for Efficient Photoreduction of CO2 to Formic Acid. ACS Appl. Mater. Interfaces 2020, 12, 34795–34805. [Google Scholar] [CrossRef]
- Yu, S.; Lv, P.; Xue, P.; Wang, K.; Yang, Q.; Zhou, J.; Wang, M.; Wang, L.; Chen, B.; Tan, T. Light-driven enzymatic nanosystem for highly selective production of formic acid from CO2. Chem. Eng. J. 2021, 420, 127649. [Google Scholar] [CrossRef]
- Maenaka, Y.; Suenobu, T.; Fukuzumi, S. Efficient catalytic interconversion between NADH and NAD+ accompanied by generation and consumption of hydrogen with a water-soluble iridium complex at ambient pressure and temperature. J. Am. Chem. Soc. 2012, 134, 367–374. [Google Scholar] [CrossRef]
- Wu, H.; Tian, C.; Song, X.; Liu, C.; Yang, D.; Jiang, Z. Methods for the regeneration of nicotinamide coenzymes. Green Chem. 2013, 15, 1773–1789. [Google Scholar] [CrossRef]
- Wang, W.; Liu, J. Hydride Transfer for NADH Regeneration: From Nature, Beyond Nature. Adv. Energy Sustain. Res. 2023, 4, 2200172. [Google Scholar] [CrossRef]
- Nolfi-Donegan, D.; Braganza, A.; Shiva, S. Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biol. 2020, 37, 101674. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Ma, C.; Zhu, Z. Enzymatic electrosynthesis as an emerging electrochemical synthesis platform. Curr. Opin. Electrochem. 2020, 19, 1–7. [Google Scholar] [CrossRef]
- Chiranjeevi, P.; Bulut, M.; Breugelmans, T.; Patil, S.A.; Pant, D. Current trends in enzymatic electrosynthesis for CO2 reduction. Curr. Opin. Green Sustain. Chem. 2019, 16, 65–70. [Google Scholar] [CrossRef]
- Immanuel, S.; Sivasubramanian, R.; Gul, R.; Dar, M.A. Recent Progress and Perspectives on Electrochemical Regeneration of Reduced Nicotinamide Adenine Dinucleotide (NADH). Chem. Asian. J. 2020, 15, 4256–4270. [Google Scholar] [CrossRef]
- Chen, H.; Yu, Y.; Yu, Y.; Ye, J.; Zhang, S.; Chen, J. Exogenous electron transfer mediator enhancing gaseous toluene degradation in a microbial fuel cell: Performance and electron transfer mechanism. Chemosphere 2021, 282, 131028. [Google Scholar] [CrossRef]
- Promkatkaew, M.; Suramitr, S.; Karpkird, T.; Ehara, M.; Hannongbua, S. DFT/TD-DFT investigation on the photoinduced electron transfer of diruthenium and viologen complexes. J. Lumin. 2020, 222, 117121. [Google Scholar] [CrossRef]
- Lee, Y.S.; Gerulskis, R.; Minteer, S.D. Advances in electrochemical cofactor regeneration: Enzymatic and non-enzymatic approaches. Curr. Opin. Biotechnol. 2022, 73, 14–21. [Google Scholar] [CrossRef]
- Bianco, A.; Zaffagnini, M.; Bergamini, G. Mediator-free NADH photochemical regeneration with the aid of the amino acid l-cysteine. Sustain. Energy Fuels 2022, 6, 4393–4397. [Google Scholar] [CrossRef]
- Cai, C.-X.; Zhou, Z.-W.; Liu, C.-X.; Lin, R.-D.; Wei, Y.-J.; Yu, X.-Q.; Wang, N. Efficient and Recyclable Photobiocatalytic System via Cofactor Regeneration for Chiral Aryl Alcohol Synthesis. ACS Sustain. Chem. Eng. 2023, 12, 37–47. [Google Scholar] [CrossRef]
- Sun, D.; Gao, R.; Liao, Q.; Meng, Z.; Liu, W. Nanoporous Graphitic Carbon Nitride as Catalysts for Cofactor Regeneration. ACS Appl. Nano Mater. 2022, 5, 11229–11240. [Google Scholar] [CrossRef]
- Ye, D.N.; Liu, L.; Peng, Q.M.; Qiu, J.B.; Gong, H.; Zhong, A.G.; Liu, S.Y. Effect of Controlling Thiophene Rings on D-A Polymer Photocatalysts Accessed via Direct Arylation for Hydrogen Production. Molecules 2023, 28, 4507. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, S.H.; Lee, J.S.; Lee, M.; Park, C.B. Zn-containing porphyrin as a biomimetic light-harvesting molecule for biocatalyzed artificial photosynthesis. Chem. Commun. 2011, 47, 10227–10229. [Google Scholar] [CrossRef]
- Chambers, M.B.; Wang, X.; Elgrishi, N.; Hendon, C.H.; Walsh, A.; Bonnefoy, J.; Canivet, J.; Quadrelli, E.A.; Farrusseng, D.; Mellot-Draznieks, C.; et al. Photocatalytic carbon dioxide reduction with rhodium-based catalysts in solution and heterogenized within metal-organic frameworks. Chem. Sus. Chem. 2015, 8, 603–608. [Google Scholar] [CrossRef]
- Gao, Y.; Suh, M.-J.; Kim, J.-H.; Yu, G. Imparting Multifunctionality in Zr-MOFs Using the One-Pot Mixed-Linker Strategy: The Effect of Linker Environment and Enhanced Pollutant Removal. ACS Appl. Mater. Interfaces 2022, 14, 24351–24362. [Google Scholar] [CrossRef]
- Jiang, Z.W.; Zhao, T.T.; Zhen, S.J.; Li, C.M.; Li, Y.F.; Huang, C.Z. A2D MOF-based artificial light-harvesting system with chloroplast bionic structure for photochemical catalysis. J. Mater. Chem. A 2021, 9, 9301–9306. [Google Scholar] [CrossRef]
- Chen, Y.; Li, P.; Zhou, J.; Buru, C.T.; Dordevic, L.; Li, P.; Zhang, X.; Cetin, M.M.; Stoddart, J.F.; Stupp, S.I.; et al. Integration of Enzymes and Photosensitizers in a Hierarchical Mesoporous Metal—Organic Framework for Light-Driven CO2 Reduction. J. Am. Chem. Soc. 2020, 142, 1768–1773. [Google Scholar] [CrossRef]
- Alpdagtas, S.; Turunen, O.; Valjakka, J.; Binay, B. The challenges of using NAD+ dependent formate dehydrogenases for CO2 conversion. Crit. Rev. Biotechnol. 2022, 42, 953–972. [Google Scholar] [CrossRef]
- Fard, P.T.; Albert, S.K.; Ko, J.; Lee, S.; Park, S.J.; Kim, J. Spatial Organization of Photocatalysts and Enzymes on Janus-Type DNA Nanosheets for Efficient CO2 Conversion. ACS Catal. 2022, 12, 9698–9705. [Google Scholar] [CrossRef]
- Iliuta, I.; Larachi, F. Direct-air capture conversion of CO2 in fixed-bed microreactors with immobilized formate dehydrogenase and glucose dehydrogenase: Concept feasibility. Chem. Eng. Res. Des. 2023, 193, 306–319. [Google Scholar] [CrossRef]
- Wang, S.Z.; Zhang, Y.H.; Ren, H.; Wang, Y.L.; Jiang, W.; Fang, B.S. Strategies and perspectives of assembling multi-enzyme systems. Crit. Rev. Biotechnol. 2017, 37, 1024–1037. [Google Scholar] [CrossRef] [PubMed]
- Hwang, E.T.; Lee, S. Multienzymatic Cascade Reactions via Enzyme Complex by Immobilization. ACS Catal. 2019, 9, 4402–4425. [Google Scholar] [CrossRef]
- Bilal, M.; Hussain, N.; Americo-Pinheiro, J.H.P.; Almulaiky, Y.Q.; Iqbal, H.M.N. Multi-enzyme co-immobilized nano-assemblies: Bringing enzymes together for expanding bio-catalysis scope to meet biotechnological challenges. Int. J. Biol. Macromol. 2021, 186, 735–749. [Google Scholar] [CrossRef]
- Li, R.Z.; Wu, Z.; Liu, X.C.; Chen, H.X.; Li, X.; Fan, D.D.; Wu, Z.S. Increasing Multienzyme Cascade Efficiency and Stability of MOF via Partitioning Immobilization. ACS Appl. Mater. Interfaces 2024, 16, 33235–33245. [Google Scholar] [CrossRef]
- Man, T.; Xu, C.; Liu, X.-Y.; Li, D.; Tsung, C.-K.; Pei, H.; Wan, Y.; Li, L. Hierarchically encapsulating enzymes with multi-shelled metal-organic frameworks for tandem biocatalytic reactions. Nat. Commun. 2022, 13, 305. [Google Scholar] [CrossRef]
- Jankowska, K.; Sigurdardottir, S.B.; Zdarta, J.; Pinelo, M. Co-immobilization and compartmentalization of cholesterol oxidase, glucose oxidase and horseradish peroxidase for improved thermal and H2O2 stability. J. Membr. Sci. 2022, 662, 121007. [Google Scholar] [CrossRef]
- Maleki, H.; Khoshnevisan, K.; Baharifar, H. Random and Positional Immobilization of Multi-enzyme Systems. In Methods in Molecular Biology; Humana: New York, NY, USA, 2022; Volume 2487, pp. 133–150. [Google Scholar]
- Chai, M.; Razmjou, A.; Chen, V. Metal-organic-framework protected multi-enzyme thin-film for the cascade reduction of CO2 in a gas-liquid membrane contactor. J. Membr. Sci. 2021, 623, 118986. [Google Scholar] [CrossRef]
- Chai, M.; Bazaz, S.R.; Daiyan, R.; Razmjou, A.; Warkiani, M.E.; Amal, R.; Chen, V. Biocatalytic micromixer coated with enzyme-MOF thin film for CO2 conversion to formic acid. Chem. Eng. J. 2021, 426, 130856. [Google Scholar] [CrossRef]
- Gomes, M.Z.d.V.; Masdeu, G.; Eiring, P.; Kuhlemann, A.; Sauer, M.; Akerman, B.; Palmqvist, A.E.C. Improved biocatalytic cascade conversion of CO2 to methanol by enzymes Co-immobilized in tailored siliceous mesostructured cellular foams. Catal. Sci. Technol. 2021, 11, 6952–6959. [Google Scholar] [CrossRef]
- Peng, F.; Ou, X.-Y.; Guo, Z.-W.; Zeng, Y.-J.; Zong, M.-H.; Lou, W.-Y. Co-immobilization of multiple enzymes by self-assembly and chemical crosslinking for cofactor regeneration and robust biocatalysis. Int. J. Biol. Macromol. 2020, 162, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, K.; Ye, L.; Cao, X.; Wang, P.; Xie, X.; Yang, M.; Xu, L.; Yan, Y.; Yan, J. In-situ co-immobilization of lipase, lipoxygenase and L-cysteine within a metal-amino acid framework for conversion of soybean oil into higher-value products. Food Chem. 2024, 458, 140187. [Google Scholar] [CrossRef]
- Schoffelen, S.; van Hest, J.C.M. Chemical approaches for the construction of multi-enzyme reaction systems. Curr. Opin. Struct. Biol. 2013, 23, 613–621. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Y.; Wang, X.; Jiang, J. Exploring Enzyme-Mimicking Metal—Organic Frameworks for CO2 Conversion through Vibrational Spectra-Based Machine Learning. J. Phys. Chem. Lett. 2024, 15, 6654–6661. [Google Scholar] [CrossRef]
NADH Regeneration System | Enzyme | Catalyst | Carriers | Product | Productivity | Reference |
---|---|---|---|---|---|---|
Chemical regeneration | / | Rh complex | / | NADH | 0.2 mM·h−1 | [89] |
Enzymatic regeneration | CA, FDH, GDH | GDH | PEI@ZIF-8 | Formate | 13.8 mM·h−1 | [90] |
FDH, FaldDH, ADH, GDH | GDH | ZIF-8@PVDF | Methanol | 2.383 μmol·h−1 | [91] | |
CA, FDH, GDH | GDH | HKUST-1 | Formate | 0.87 mM·h−1 | [74] | |
Electrochemical regeneration | FDH | NR | ZIF-8@SNF | Formate | 0.46 mM·h−1 | [59] |
FDH | NR | PEI@SBA-15 | Formate | 0.373 mM·h−1 | [33] | |
FDH | Rh complex | NU-1006 | Formate | 79.3 mM·h−1 | [92] | |
FDH, FaldDH, ADH | Rh complex | ZIF-8 | Formate | 0.107 mM·h−1 | [93] | |
FDH | MV | HP-UiO-66-NH2 | Formate | 0.609 mM·h−1 | [40] | |
CA, FDH | MV | ZIF-90 | Formate | 0.972 mM·h−1 | [82] | |
Photochemical regeneration | FDH | Rh complex | H2TCPP-UiO-66-NH2 | Formate | 0.254 mM·h−1 | [94] |
FDH, FaldDH | TCPP | TCPP-ZIF-8 | Formaldehyde | 0.968 mM·h−1 | [95] | |
FDH | Rh complex | NU-1006 | Formate | 79.34 mM·h−1 | [92] | |
FDH | CNMV | NU-1006 | Formate | 1.2 mM·h−1 | [96] | |
FDH | / | CdS-ZIF-67 | Formate | 0.51 mM·h−1 | [97] | |
FDH | Rh complex | In-CdS@ZIF-8 | Formate | 11.132 μM·h−1 | [98] | |
FDH | TPE-C3N4/PEI/Rh | MAF-7 | Formate | 1.861 mM·h−1 | [99] | |
CA, FDH | g-C3N4 | ZIF-8 | Formate | 39.6 μM·h−1 | [100] |
Co-Fixing Method | Immobilization Strategy | Enzyme | Carriers | Product * | Productivity | Reference |
---|---|---|---|---|---|---|
Random co-immobilization | In situ encapsulation | CA, FDH, GDH | PEI@ZIF-8 | Formate | 13.8 mM·h−1 | [90] |
In situ encapsulation | FDH, FaldDH, ADH | ZIF-8 | Methanol | 0.107 mM·h−1 | [93] | |
In situ encapsulation | CA, FDH | PDA/PEI @ZIF-8 | Formate | 1.4 μmol·h−1 | [130] | |
In situ encapsulation | CA, FDH | PDA/PEI @UiO-66-NH2 | Formate | 0.925 μmol·h−1 | [130] | |
In situ encapsulation | CA, FDH | ZIF-8@g-C3N4 | Formate | 39.6 μM·h−1 | [100] | |
In situ encapsulation | CA, FDH | PDA/PEI @ZIF-8 | Formate | 8.13 mM·h−1 | [131] | |
In situ encapsulation | FDH, FaldDH | TCPP-ZIF-8 | Formaldehyde | 0.968 mM·h−1 | [95] | |
Compartmental co-immobilization | In situ encapsulation | CA, FDH, GDH | HKUST-1 | Formate | 0.653 mM·h−1 | [72] |
Positional co-immobilization | In situ encapsulation | FDH, FaldDH, ADH, GDH | ZIF-8@PVDF | Methanol | 2.383 μmol·h−1 | [91] |
Surface fixation | FDH, ADH, FaldDH | MCF-MP | Methanol | 1.35 mM·h−1 | [132] | |
In situ encapsulation Covalent linkage | CA, FDH | ZIF-90 | Formate | 0.972 mM·h−1 | [82] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Y.; Yang, P.; Zhao, R.; Wang, F. Recent Progress in Enzyme Immobilization to Metal–Organic Frameworks to Enhance the CO2 Conversion Efficiency. Molecules 2025, 30, 251. https://doi.org/10.3390/molecules30020251
Cao Y, Yang P, Zhao R, Wang F. Recent Progress in Enzyme Immobilization to Metal–Organic Frameworks to Enhance the CO2 Conversion Efficiency. Molecules. 2025; 30(2):251. https://doi.org/10.3390/molecules30020251
Chicago/Turabian StyleCao, Yunhan, Pengyan Yang, Rui Zhao, and Fenghuan Wang. 2025. "Recent Progress in Enzyme Immobilization to Metal–Organic Frameworks to Enhance the CO2 Conversion Efficiency" Molecules 30, no. 2: 251. https://doi.org/10.3390/molecules30020251
APA StyleCao, Y., Yang, P., Zhao, R., & Wang, F. (2025). Recent Progress in Enzyme Immobilization to Metal–Organic Frameworks to Enhance the CO2 Conversion Efficiency. Molecules, 30(2), 251. https://doi.org/10.3390/molecules30020251