Analytical Differentiation of Wines from Three Terroirs Located in a Warm Winegrowing Area Based on Their Volatilome
Abstract
:1. Introduction
2. Results and Discussion
2.1. Main Oenological Variables for Wine Characterization
2.2. Major Volatile Compounds
2.3. Minor Volatile Compounds
2.4. Tentative Fingerprinting to Each Terroir Based on Volatile Compounds
3. Materials and Methods
3.1. Brief Description of the Winegrowing Area and Terroir
3.2. Wineries, Fermentation Technology, and Wine Samples
3.3. Analytical Methods
3.4. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Belda, I.; Zarraonaindia, I.; Perisin, M.; Palacios, A.; Acedo, A. From Vineyard Soil to Wine Fermentation: Microbiome Approximations to Explain the “Terroir” Concept. Front. Microbiol. 2017, 8, 821. [Google Scholar] [CrossRef]
- Carbonneau, A.; Cargnello, G.; Ojeda, H.; Tonietto, J.; Schultz, H. Synthesis of the Contribution of the GIESCO (Group of International Experts of Vitivinicultural Systems for Cooperation) to the Study of Terroirs A. In Proceedings of the VIII International Terroir Congress, Soave, VR, Italy, 14–18 June 2010; Available online: https://ives-openscience.eu/wp-content/uploads/2020/10/Carbonneau.pdf (accessed on 10 October 2024).
- OIV. Resolution OIV/VITI 333/2010. 2010. Available online: https://www.oiv.int/public/medias/379/viti-2010-1-en.pdf (accessed on 18 September 2024).
- Van Leeuwen, C. Terroir: The Effect of the Physical Environment on Vine Growth, Grape Ripening, and Wine Sensory Attributes. In Managing Wine Quality: Viticulture and Wine Quality; Reynolds, A.G., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2010; pp. 273–315. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Roby, J.P.; de Rességuier, L. Soil-Related Terroir Factors: A Review. Oeno One 2018, 52, 173–188. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Barbe, J.C.; Darriet, P.; Geffroy, O.; Gomès, E.; Guillaumie, S.; Helwi, P.; Laboyrie, J.; Lytra, G.; Le Menn, N.; et al. Recent Advancements in Understanding the Terroir Effect on Aromas in Grapes and Wines. Oeno One 2020, 54, 985–1006. [Google Scholar] [CrossRef]
- Georgiadou, E.C.; Mina, M.; Valanides, N.; Taliadorou, A.M.; Koundouras, S.; D’Onofrio, C.; Bellincontro, A.; Mencarelli, F.; Barbayiannis, N.; Fotopoulos, V.; et al. The Effect of Terroir on Volatilome Fingerprinting and Qualitative Attributes of Non-Irrigated Grapes Reveals Differences on Glycosylated Aroma Compounds. J. Sci. Food Agric. 2024, 105, 507–519. [Google Scholar] [CrossRef] [PubMed]
- Eder, M.L.R.; Fariña, L.; Carrau, F.; Rosa, A.L. Grape-Specific Native Microbial Communities Influence the Volatile Compound Profiles in Fermenting Grape Juices. Food Chem. 2024, 466, 142155. [Google Scholar] [CrossRef] [PubMed]
- Ruilong, L.; Siyu, Y.; Mengyuan, L.; Sijiang, G.; Xiaoyu, H.; Mengmeng, R.; Le, D.; Yinghui, S.; Yilin, Y.; Jicheng, Z.; et al. The Biogeography of Fungal Communities Across Different Chinese Wine-Producing Regions Associated with Environmental Factors and Spontaneous Fermentation Performance. Front. Microbiol. 2022, 12, 636639. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Thorngate, J.H.; Richardson, P.M.; Mills, D.A. Microbial Biogeography of Wine Grapes is Conditioned by Cultivar, Vintage, and Climate. Proc. Natl. Acad. Sci. USA 2013, 110, E139–E148. [Google Scholar] [CrossRef]
- Knight, S.J.; Klaere, S.; Fredizzi, B.; Goddard, M.R. Regional Microbial Signatures Positively Correlate with Differential Wine Phenotypes: Evidence for a Microbial Aspect to Terroir. Sci. Rep. 2015, 5, 14233. [Google Scholar] [CrossRef] [PubMed]
- González, M.L.; Chimeno, S.V.; Sturm, M.E.; Becerra, L.M.; Lerena, M.C.; Rojo, M.C.; Combina, M.; Mercado, L.A. Populations of Saccharomyces cerevisiae in Vineyards: Biodiversity and Persistence Associated with Terroir. Fermentation 2023, 9, 292. [Google Scholar] [CrossRef]
- Chen, Y.; Lei, X.; Jiang, J.; Qin, Y.; Jiang, L.; Liu, Y.-L. Microbial Diversity on Grape Epidermis and Wine Volatile Aroma in Spontaneous Fermentation Comprehensively Driven by Geography, Subregion, and Variety. Int. J. Food Microbiol. 2023, 404, 110315. [Google Scholar] [CrossRef]
- Luzzini, G.; Slaghenaufi, D.; Ugliano, M. Volatile Compounds in Monovarietal Wines of Two Amarone della Valpolicella Terroirs: Chemical and Sensory Impact of Grape Variety and Origin, Yeast Strain and Spontaneous Fermentation. Foods 2021, 10, 2474. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Q.; Li, Y.; Liu, S.; Tu, Q.; Yuan, C. Characterization of Wine Volatile Compounds from Different Regions and Varieties by HS-SPME/GC-MS Coupled with Chemometrics. Curr. Res. Food Sci. 2023, 6, 100418. [Google Scholar] [CrossRef] [PubMed]
- Petretto, G.L.; Mercenaro, L.; Urgeghe, P.P.; Fadda, C.; Valentoni, A.; Del Caro, A. Grape and Wine Composition in Vitis vinifera L. cv. Cannonau Explored by GC-MS and Sensory Analysis. Foods 2021, 10, 101. [Google Scholar] [CrossRef] [PubMed]
- Temerdashev, Z.A.; Abakumov, A.G.; Kaunova, A.A.; Shelud’ko, O.N.; Tsyupko, T.G. Assessment of Quality and Region of Origin of Wines. J. Anal. Chem. 2023, 78, 1724–1740. [Google Scholar] [CrossRef]
- Fayolle, E.; Follain, S.; Marchal, P.; Chéry, P.; Colin, F. Identification of Environmental Factors Controlling Wine Quality: A Case Study in Saint-Émilion Grand Cru Appellation, France. Sci. Total Environ. 2019, 694, 133718. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, C.; Ge, Q.; Huo, X.; Ma, T.; Fang, Y.; Sun, X. Geographical Characterization of Wines from Seven Regions of China by Chemical Composition Combined with Chemometrics: Quality Characteristics of Chinese ‘Marselan’ Wines. Food Chem. X 2024, 23, 101606. [Google Scholar] [CrossRef]
- Rossi, L.; Foschi, M.; Biancolillo, A.; Maggi, M.A.; D’Archivio, A.A. Optimization of HS-SPME-GC/MS Analysis of Wine Volatiles Supported by Chemometrics for the Aroma Profiling of Trebbiano d’Abruzzo and Pecorino White Wines Produced in Abruzzo (Italy). Molecules 2023, 28, 1534. [Google Scholar] [CrossRef]
- Uttl, L.; Bechynska, K.; Ehlers, M.; Kadlec, V.; Navratilova, K.; Dzuman, Z.; Fauhl-Hassek, C.; Hajslova, J. Critical Assessment of Chemometric Models Employed for Varietal Authentication of Wine Based on UHPLC-HRMS Data. Food Control 2023, 143, 109336. [Google Scholar] [CrossRef]
- Palma-López, J.; Sánchez-Rodríguez, A.R.; del Campillo, M.C.; León-Gutiérrez, J.M.; Ramírez-Pérez, P. Influence of Soil Properties on Grape and Must Quality in the Montilla-Moriles Protected Designation of Origin (Southern Spain). Catena 2024, 241, 108041. [Google Scholar] [CrossRef]
- Muñoz-Castells, R.; Moreno-García, J.; García-Martínez, T.; Mauricio, J.C.; Moreno, J. Effect of Bentonite Addition to Pedro Ximénez White Grape Musts before Their Fermentation with Selected Yeasts on the Major Volatile Compounds and Polyols of Wines and Tentative Relationships with the Sensorial Evaluation. Molecules 2022, 27, 8057. [Google Scholar] [CrossRef]
- Muñoz-Castells, R.; Moreno, J.; García-Martínez, T.; Mauricio, J.C.; Moreno-García, J. Chemometric Differentiation of White Wines from a Low-Aromatic Grape Obtained by Spontaneous Fermentation, Enriched with Non-Saccharomyces, or with a High-Glutathione-Producing Saccharomyces Yeast. Fermentation 2023, 9, 1023. [Google Scholar] [CrossRef]
- Muñoz-Castells, R.; Moreno, J.; García-Martínez, T.; Mauricio, J.C.; Moreno-García, J. Assessing the Impact of Commercial Lachancea thermotolerans Immobilized in Biocapsules on Wine Quality: Odor Active Compounds and Organoleptic Properties. Fermentation 2024, 10, 303. [Google Scholar] [CrossRef]
- Payan, C.; Gancel, A.L.; Jourdes, M.; Christmann, M.; Teissedre, P.L. Wine Acidification Methods: A Review. Oeno One 2023, 57, 113–126. [Google Scholar] [CrossRef]
- Carbonneau, A.; Deloire, A.; Jaillard, B. La Vigne: Physiologie, Terroir, Culture; Dunod: Paris, France, 2007; ISBN 2-10-049998-X. [Google Scholar]
- Budziak-Wieczorek, I.; Mašán, V.; Rząd, K.; Gładyszewska, B.; Karcz, D.; Burg, P.; Čížková, A.; Gagoś, M.; Matwijczuk, A. Evaluation of the Quality of Selected White and Red Wines Produced from Moravia Region of Czech Republic Using Physicochemical Analysis, FTIR Infrared Spectroscopy and Chemometric Techniques. Molecules 2023, 28, 6326. [Google Scholar] [CrossRef]
- OIV. International Standard for the Labelling of Wines. 2024. Available online: https://www.oiv.int/standards/international-standard-for-the-labelling-of-wines/part-iii-optional-information/optional-information/type-of-wine (accessed on 28 December 2024).
- Ćorković, I.; Pichler, A.; Šimunović, J.; Kopjar, M. A Comprehensive Review on Polyphenols of White Wine: Impact on Wine Quality and Potential Health Benefits. Molecules 2024, 29, 5074. [Google Scholar] [CrossRef] [PubMed]
- Lambrechts, M.G.; Pretorius, I.S. Yeast and Its Importance to Aroma—A Review. S. Afr. J. Enol. Vitic. 2000, 21, 97–129. [Google Scholar] [CrossRef]
- Hodson, G.; Wilkes, E.; Azevedo, S.; Battaglene, T. Methanol in Wine. In Proceedings of the 40th World Congress of Vine and Wine, BIO Web of Conferences, Sofia, Bulgaria, 29 May–2 June 2017; Volume 9, p. 02028. [Google Scholar] [CrossRef]
- David-Vaizant, V.; Alexandre, H. Flor Yeast Diversity and Dynamics in Biologically Aged Wines. Front. Microbiol. 2018, 9, 2235. [Google Scholar] [CrossRef] [PubMed]
- Darıcı, M.; Cabaroglu, T. Chemical and Sensory Characterization of Kalecik Karası Wines Produced from Two Different Regions in Turkey Using Chemometrics. J. Food Process. Preserv. 2022, 46, e16278. [Google Scholar] [CrossRef]
- Milheiro, J.; Filipe-Ribeiro, L.; Vilela, A.; Cosme, F.; Nunes, F.M. 4-Ethylphenol, 4-Ethylguaiacol and 4-Ethylcatechol in Red Wines: Microbial Formation, Prevention, Remediation and Overview of Analytical Approaches. Crit. Rev. Food Sci. Nutr. 2017, 59, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Zea, L.; Moreno, J.; Ortega, J.M.; Mauricio, J.C.; Medina, M. Comparative Study of the γ-Butyrolactone and Pantolactone Contents in Cells and Musts During Vinification by Three Saccharomyces cerevisiae Races. Biotechnol. Lett. 1995, 17, 1351–1356. [Google Scholar] [CrossRef]
- Parker, M.; Capone, D.L.; Francis, I.L.; Herderich, M.J. Aroma Precursors in Grapes and Wine: Flavor Release During Wine Production and Consumption. J. Agric. Food Chem. 2018, 66, 2281–2286. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Jin, G.J.; Wang, X.J.; Kong, C.L.; Liu, J.; Tao, Y.S. Chemical Profiles and Aroma Contribution of Terpene Compounds in Meili (Vitis vinifera L.) Grape and Wine. Food Chem. 2019, 284, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Bento-Silva, A.; Duarte, N.; Santos, M.; Costa, C.P.; Vaz Patto, M.C.; Rocha, S.M.; Bronze, M.R. Comprehensive Two-Dimensional Gas Chromatography as a Powerful Strategy for the Exploration of Broas Volatile Composition. Molecules 2022, 27, 2728. [Google Scholar] [CrossRef]
- Vigentini, I.; De Lorenzis, G.; Fabrizio, V.; Valdetara, F.; Faccincani, M.; Panont, C.A.; Picozzi, C.; Imazio, S.; Failla, O.; Foschino, R. The Vintage Effect Overcomes the Terroir Effect: A Three-Year Survey on the Wine Yeast Biodiversity in Franciacorta and Oltrepò Pavese, Two Northern Italian Vine-Growing Areas. Microbiology 2015, 161, 362–373. [Google Scholar] [CrossRef] [PubMed]
- Marin-Menguiano, M.; Romero-Sanchez, S.; Barrales, R.R.; Ibeas, J.I. Population Analysis of Biofilm Yeasts During Fino Sherry Wine Aging in the Montilla-Moriles D.O. Region. Int. J. Food Microbiol. 2017, 244, 67–73. [Google Scholar] [CrossRef] [PubMed]
- OIV. Compendium of International Methods of Wine and Must Analysis. Available online: https://www.oiv.int/standards/compendium-of-international-methods-of-wine-and-must-analysis (accessed on 8 September 2024).
- Vararu, F.; Moreno-García, J.; Niculaua, M.; Cotea, V.V.; Mayén, M.; Moreno, J. Fermentative Volatilome Modulation of Muscat Ottonel Wines by Using Yeast Starter Cultures. LWT-Food Sci. Technol. 2020, 129, 109575. [Google Scholar] [CrossRef]
- Martínez-García, R.; Mauricio, J.C.; García-Martínez, T.; Peinado, R.A.; Moreno, J. Towards a Better Understanding of the Evolution of Odour-Active Compounds and the Aroma Perception of Sparkling Wines During Ageing. Food Chem. 2021, 357, 129784. [Google Scholar] [CrossRef] [PubMed]
- Palenzuela, M.d.V.; López de Lerma, N.; Sánchez-Suárez, F.; Martínez-García, R.; Peinado, R.A.; Rosal, A. Aroma Composition of Wines Produced from Grapes Treated with Organic Amendments. Appl. Sci. 2023, 13, 8001. [Google Scholar] [CrossRef]
Oenological Parameters | AG2021 | AG2022 | LU2021 | LU2022 | SA2021 | SA2022 | HGs |
---|---|---|---|---|---|---|---|
Ethanol (% v/v) | 15.4 ± 0.1 e | 14.8 ± 0.1 c | 15.1 ± 0.1 d | 15.1 ± 0.1 d | 14.5 ± 0.1 b | 14.0 ± 0.1 a | 5 |
pH | 3.40 ± 0.00 b | 3.48 ± 0.00 d | 3.40 ± 0.02 b | 3.35 ± 0.00 a | 3.49 ± 0.01 d | 3.45 ± 0.01 c | 4 |
Volatile acidity (g L−1) | 0.38 ± 0.02 c | 0.50 ± 0.02 d | 0.39 ± 0.00 c | 0.27 ± 0.00 a | 0.57 ± 0.00 e | 0.35 ± 0.02 b | 5 |
Total acidity (g L−1) | 4.73 ± 0.00 d | 5.45 ± 0.00 f | 4.24 ± 0.00 c | 4.09 ± 0.00 a | 4.75 ± 0.01 e | 4.16 ± 0.00 b | 6 |
Malic Acid (g L−1) | 0.8 ± 0.1 c | 0.66 ± 0.07 b | 0.80 ± 0.04 c | 0.02 ± 0.00 a | 0.87 ± 0.01 d | 1.36 ± 0.02 e | 5 |
Lactic Acid (g L−1) | 0.3 ± 0.0 a | 0.39 ± 0.02 bc | 0.43 ± 0.01 c | 0.97 ± 0.08 e | 0.49 ± 0.01 d | 0.33 ± 0.03 ab | 5 |
Density (g L−1) | 986 ± 0 b | 986 ± 0 b | 985 ± 0 a | 985 ± 0 a | 986 ± 0 b | 986 ± 0 b | 2 |
Reducing sugars (g L−1) | 0.7 ± 0.0 b | 0.43 ± 0.0 a | 0.7 ± 0.0 b | 0.7 ± 0.0 b | 0.96 ± 0.00 c | 0.43 ± 0.00 a | 3 |
IPT (Absorbance 280 nm) | 7.40 ± 0.02 c | 10.19 ± 0.01 f | 5.64 ± 0.03 a | 8.60 ± 0.01 e | 7.71 ± 0.04 d | 6.70 ± 0.01 b | 6 |
Absorbance 420 nm | 0.177 ± 0.001 c | 0.1869 ± 0.0004 e | 0.081 ± 0.002 a | 0.1901 ± 0.0004 f | 0.1841 ± 0.0002 d | 0.105 ± 0.001 b | 6 |
Absorbance 520 nm | 0.043 ± 0.001 e | 0.0387 ± 0.0006 c | 0.0195 ± 0.0004 a | 0.0409 ± 0.0007 d | 0.0439 ± 0.0009 f | 0.022 ± 0.001 b | 6 |
Absorbance 620 nm | 0.0195 ± 0.0008 e | 0.0158 ± 0.0002 c | 0.010 ± 0.001 a | 0.0180 ± 0.0001 d | 0.0168 ± 0.0004 cd | 0.012 ± 0.001 b | 5 |
Compounds (mg L−1) | CAS | AG2021 | AG2022 | LU2021 | LU2022 | SA2021 | SA2022 | HGs |
---|---|---|---|---|---|---|---|---|
Methanol | 67-56-1 | 63 ± 4 a | 67 ± 4 a | 110 ± 6 c | 83 ± 7 b | 84 ± 8 b | 65 ± 4 a | 3 |
1-Propanol | 71-23-8 | 26 ± 1 a | 38 ± 2 c | 32 ± 2 b | 44 ± 3 d | 63 ± 3 e | 29.9 ± 0.3 b | 5 |
Isobutanol | 78-83-1 | 16 ± 1 a | 26.4 ± 0.9 c | 40 ± 2 e | 44 ± 1 f | 20 ± 1 b | 37.1 ± 0.8 d | 6 |
2-Methyl-1-Butanol | 137-32-6 | 29 ± 1 a | 34 ± 1 b | 43 ± 3 c | 52 ± 2 d | 34 ± 1 b | 42.6 ± 0.6 c | 4 |
3-Methyl-1-Butanol | 123-51-3 | 227 ± 3 a | 249 ± 5 b | 286 ± 15 c | 344 ± 15 d | 277 ± 1 c | 251.2 ± 0.9 b | 4 |
∑ Isoamyl Alcohols | 256 ± 3 a | 283 ± 6 b | 329 ± 17 d | 396 ± 16 e | 311 ± 2 c | 293.8 ± 0.3 bc | 5 | |
2-Phenylethanol | 60-12-8 | 36 ± 4 b | 25 ± 1 a | 41 ± 3 c | 30.8 ± 0.7 b | 57 ± 8 d | 36 ± 3 b | 4 |
Acetaldehyde | 75-07-0 | 186 ± 10 c | 88 ± 4 a | 332 ± 28 e | 118 ± 3 b | 241 ± 18 d | 125 ± 5 b | 5 |
1,1-Diethoxyethane | 105-57-7 | 0 a | 0 a | 2.3 ± 0.2 b | 0 a | 0 a | 0 a | 2 |
Acetoin | 513-86-0 | 30 ± 2 b | 20.2 ± 0.9 a | 42 ± 4 c | 63 ± 4 e | 48 ± 4 d | 33 ± 3 b | 5 |
Ethyl Acetate | 141-78-6 | 55 ± 3 b | 86.3 ± 0.9 d | 29 ± 2 a | 75 ± 1 c | 89 ± 1 d | 86 ± 3 d | 4 |
Ethyl Lactate | 97-64-3 | 22 ± 2 c | 12.4 ± 0.5 ab | 35 ± 1 d | 13.2 ± 0.4 b | 49 ± 3 e | 9.5 ± 0.2 a | 5 |
Diethyl Succinate | 123-25-1 | 5.0 ± 0.4 b | 3.6 ± 0.2 a | 8.6 ± 0.4 d | 6.6 ± 0.7 c | 8.5 ± 0.6 d | 5.1 ± 0.5 b | 4 |
2,3-Butanediol (levo) | 24347-58-8 | 704 ± 47 b | 701 ± 48 b | 801 ± 78 bc | 831 ± 34 c | 1359 ± 129 d | 441 ± 21 a | 4 |
2,3-Butanediol (meso) | 5341-95-7 | 227 ± 14 b | 211 ± 6 b | 274 ± 34 c | 265 ± 6 c | 365 ± 21 d | 155 ± 8 a | 4 |
Glycerol (g L−1) | 56-81-5 | 7.5 ± 0.7 a | 7.0 ± 0.5 a | 10 ± 1 b | 11 ± 1 b | 12 ± 1 b | 8.0 ± 0.6 a | 2 |
Compounds | CAS | AG2021 | AG2022 | LU2021 | LU2022 | SA2021 | SA2022 | HG |
---|---|---|---|---|---|---|---|---|
Acetates (8) | ||||||||
Butyl Acetate | 123-86-4 | 2.71 ± 0.04 b | 3.5 ± 0.2 d | 2.8 ± 0.2 b | 3.7 ± 0.3 d | 3.12 ± 0.03 c | 2.3 ± 0.2 a | 4 |
Isoamyl Acetate | 123-92-2 | 1989 ± 53 a | 4553 ± 240 c | 1784 ± 151 a | 5999 ± 305 d | 3301 ± 292 b | 7047 ± 618 e | 5 |
(Z)-3-Hexenyl Acetate | 3681-71-8 | 101 ± 5 b | 291 ± 21 c | 0.9 ± 0.2 a | 5.3 ± 0.8 a | 2.32 ± 0.09 a | 13.4 ± 0.1 a | 3 |
Hexyl Acetate | 142-92-7 | 44 ± 2 b | 128 ± 10 c | 21.6 ± 0.3 a | 197 ± 6 d | 58 ± 5 b | 257 ± 22 e | 5 |
Octyl Acetate | 112-14-1 | 3.3 ± 0.2 ab | 2.6 ± 0.2 a | 4 ± 1 c | 3.47 ± 0.03 ab | 4.0 ± 0.6 c | 6.37 ± 0.00 d | 4 |
Ethyl-phenyl Acetate | 101-97-3 | 1.6 ± 0.1 a | 64 ± 2 c | 1.0 ± 0.1 a | 54 ± 3 b | 2.8 ± 0.2 a | 90 ± 4 d | 4 |
2-Phenyl-ethyl Acetate | 103-45-7 | 1300 ± 80 b | 2394 ± 79 d | 760 ± 48 a | 2043 ± 87 c | 2794 ± 155 e | 3361 ± 165 f | 6 |
Geranyl Acetate | 105-87-3 | 23.7 ± 0.9 c | 52 ± 5 d | 6.5 ± 0.2 b | 78 ± 2 e | 4.0 ± 0.2 ab | 1.80 ± 0.01 a | 5 |
Ethyl Esters (12) | ||||||||
Ethyl Isobutyrate | 97-62-1 | 23.0 ± 0.6 c | 13.3 ± 0.5 b | 23 ± 2 c | 0 a | 21 ± 2 c | 0 a | 3 |
Ethyl Butyrate | 105-54-4 | 126 ± 6 b | 179 ± 13 c | 97 ± 4 a | 134 ± 4 b | 141 ± 13 b | 251 ± 7 d | 4 |
Ethyl 2-methyl-butyrate | 7452-79-1 | 4.3 ± 0.4 c | 0 a | 3.9 ± 0.2 b | 0 a | 6.3 ± 0.1 d | 0 a | 4 |
Ethyl 3-methyl-butyrate | 108-64-5 | 10.0 ± 0.4 b | 0 a | 9.3 ± 0.5 b | 0 a | 14 ± 1 c | 0 a | 3 |
Ethyl Hexanoate | 123-66-0 | 240 ± 20 a | 536 ± 42 c | 194 ± 16 a | 391 ± 20 b | 369 ± 18 b | 1552 ± 75 d | 4 |
Ethyl Heptanoate | 106-30-9 | 0.22 ± 0.02 b | 0 a | 0.22 ± 0.02 b | 0 a | 0.20 ± 0.01 b | 0.50 ± 0.04 c | 3 |
Ethyl Octanoate | 106-32-1 | 281 ± 7 b | 633 ± 16 d | 131 ± 12 a | 591 ± 20 c | 666 ± 28 e | 2192 ± 19 f | 6 |
Ethyl Decanoate | 110-38-3 | 445 ± 24 b | 1178 ± 116 d | 74 ± 2 a | 1910 ± 45 e | 701 ± 41 c | 3032 ± 73 f | 6 |
Ethyl Undecanoate | 627-90-7 | 0 a | 0 a | 0 a | 0 a | 0 a | 1.20 ± 0.01 b | 2 |
Ethyl Dodecanoate | 106-33-2 | 91 ± 6 b | 868 ± 45 c | 10.4 ± 0.9 a | 1271 ± 4 d | 23 ± 2 a | 1313 ± 19 f | 5 |
Ethyl Tetradecanoate | 124-06-1 | 13 ± 1 b | 32 ± 3 c | 7 ± 1 a | 37 ± 3 d | 8.5 ± 0.5 ab | 88 ± 5 e | 5 |
Ethyl Hexadecanoate | 628-97-7 | 46 ± 1 c | 128 ± 2 d | 7 ± 2 a | 119 ± 3 d | 21.5 ± 0.3 b | 159 ± 12 e | 5 |
Other Esters (5) | ||||||||
Phenethyl Butyrate | 103-52-6 | 0 a | 1.48 ± 0.02 b | 0 a | 0 a | 1.46 ± 0.08 b | 4.4 ± 0.4 c | 3 |
Phenethyl Hexanoate | 6290-37-5 | 0 a | 0.68 ± 0.02 d | 0 a | 0.52 ± 0.02 c | 0.31 ± 0.01 b | 0.69 ± 0.01 d | 4 |
Hexyl Hexanoate | 6378-65-0 | 0 a | 0 a | 0 a | 0 a | 0 a | 8.9 ± 0.2 b | 2 |
Phenethyl Benzoate | 94-47-3 | 3.17 ± 0.03 a | 3.5 ± 0.1 b | 3.1 ± 0.1 a | 3.5 ± 0.1 b | 3.1 ± 0.2 a | 3.46 ± 0.05 b | 2 |
(E)-Methyldihydrojasmonate | 2630-39-9 | 1.5 ± 0.3 b | 1.96 ± 0.08 c | 1.56 ± 0.05 bc | 1.7 ± 0.1 bc | 1.3 ± 0.2 b | 0.8 ± 0.3 a | 3 |
Higher Alcohols (6) | ||||||||
Hexanol | 111-27-3 | 1564 ± 102 b | 1687 ± 67 b | 1572 ± 86 b | 2304 ± 220 c | 1600 ± 6 b | 941 ± 23 a | 3 |
2-Ethyl-1-Hexanol | 104-76-7 | 51 ± 1 c | 42 ± 6 b | 46 ± 3 bc | 41 ± 2 b | 42 ± 4 b | 28 ± 2 a | 3 |
Furanmethanol | 98-00-0 | 0.001 ± 0.000 a | 0.001 ± 0.000 a | 9.7 ± 0.4 c | 4.8 ± 0.1 b | 11.7 ± 0.7 d | 4.60 ± 0.8 b | 4 |
Octanol | 111-87-5 | 84 ± 13 b | 0 a | 0 a | 172 ± 2 c | 173 ± 8 c | 230 ± 18 d | 4 |
Decanol | 112-30-1 | 31 ± 1 c | 16.3 ± 0.8 b | 0 a | 45.7 ± 0.9 d | 70 ± 3 e | 91.0 ± 0.2 f | 6 |
Dodecanol | 112-53-8 | 11 ± 3 bc | 8.0 ± 0.6 a | 10 ± 1 abc | 11.4 ± 0.6 c | 12.0 ± 0.9 c | 8.8 ± 0.5 ab | 3 |
Phenols (2) | ||||||||
4-Ethyl Guaiacol | 2785-89-9 | 0 a | 0 a | 0 a | 0 a | 1944 ± 117 b | 0 a | 2 |
2-Methoxy-4-Vinyl-phenol | 7786-61-0 | 42 ± 4 ab | 58 ± 6 b | 28 ± 3 a | 81 ± 1 c | 42 ± 3 ab | 338 ± 22 d | 4 |
Lactones (4) | ||||||||
γ-Butyrolactone | 96-48-0 | 13,367 ± 162 a | 15,996 ± 745 b | 21,014 ± 1767 c | 16,077 ± 885 b | 16,286 ± 864 b | 12,117 ± 1022 a | 3 |
γ-Nonalactone | 104-61-0 | 34 ± 2 e | 21.9 ± 0.9 d | 18.1 ± 0.2 bc | 20 ± 2 cd | 17.2 ± 0.1 b | 8.57 ± 0.07 a | 5 |
γ-Crotonolactone | 497-23-4 | 0.001 ± 0.000 b | 0 a | 0.001 ± 0.000 b | 0 a | 0.001 ± 0.000 b | 0.001 ± 0.000 | 2 |
β-Damascenone | 23726-93-4 | 16.4 ± 0.6 b | 37 ± 4 d | 3.8 ± 0.2 a | 56 ± 1 e | 23 ± 1 c | 88 ± 2 f | 6 |
Carbonyl Compounds (8) | ||||||||
Hexanal | 66-25-1 | 5.7 ± 0.4 c | 6.0 ± 0.7 bc | 4.7 ± 0.2 a | 4.95 ± 0.07 ab | 5.9 ± 0.3 c | 6.8 ± 0.7 d | 4 |
Furfural | 98-01-1 | 366 ± 11 b | 0.001 ± 0.000 a | 1009 ± 99 d | 426 ± 28 b | 660 ± 69 c | 388 ± 14 b | 4 |
Benzaldehyde | 100-52-7 | 0 a | 0 a | 0 a | 0 a | 1.7 ± 0.2 b | 2.87 ± 0.03 c | 3 |
Octanal | 124-13-0 | 0 a | 0.001 ± 0.000 a | 1.6 ± 0.1 a | 116 ± 9 b | 1.46 ± 0.02 a | 1.85 ± 0.06 a | 2 |
Decanal | 112-31-2 | 6.6 ± 0.5 bc | 5.2 ± 0.2 a | 6.15 ± 0.05 b | 7.4 ± 0.2 c | 9 ± 1 d | 9.4 ± 0.3 d | 4 |
(E)-2-Octenal | 2548-87-0 | 0 a | 0 a | 0 a | 0 a | 0 a | 6.9 ± 0.3 b | 2 |
(E)-2-Nonenal | 18829-56-6 | 0 a | 0 a | 0 a | 0 a | 4.3 ± 0.3 b | 9.9 ± 0.8 c | 3 |
3-Heptanone | 106-35-4 | 0.001 ± 0.000 a | 1.1 ± 0.2 b | 0.001 ± 0.000 a | 1.2 ± 0.1 b | 0.001 ± 0.000 a | 0.001 ± 0.000 a | 2 |
Terpenes and derivates (6) | ||||||||
(DL)-Limonene | 138-86-3 | 0.001 ± 0.000 a | 0 a | 0.001 ± 0.000 a | 0.001 ± 0.000 a | 0.001 ± 0.000 a | 4049 ± 233 b | 2 |
(E)-Geranyl Acetone | 3796-70-1 | 1.0 ± 0.2 a | 1.4 ± 0.1 b | 2.2 ± 0.1 d | 1.90 ± 0.01 c | 1.26 ± 0.07 b | 0.87 ± 0.06 a | 4 |
(Z)-Geranyl Acetone | 3879-26-3 | 1.90 ± 0.05 a | 1.88 ± 0.03 a | 1.91 ± 0.01 a | 2.3 ± 0.3 c | 2.0 ± 0.1 ab | 2.2 ± 0.2 bc | 3 |
(E)-Citral | 141-27-5 | 15 ± 1 b | 0 a | 0 a | 21.5 ± 0.1 c | 26 ± 3 d | 38 ± 3 e | 5 |
(Z)-Nerolidol | 7212-44-4 | 0.02 ± 0.00 a | 0.001 ± 0.000 a | 0.001 ± 0.000 a | 0.15 ± 0.04 c | 0.07 ± 0.02 b | 0.001 ± 0.000 a | 3 |
Farnesol | 4602-84-0 | 0.001 ± 0.000 a | 0.001 ± 0.000 a | 0.001 ± 0.000 a | 1.2 ± 0.5 b | 0.001 ± 0.000 a | 0.001 ± 0.000 a | 2 |
Miscellaneous (1) | ||||||||
2-Pentylfuran | 3777-69-3 | 0.001 ± 0.000 a | 0.001 ± 0.000 a | 0.001 ± 0.000 a | 0.001 ± 0.000 a | 0.001 ± 0.000 a | 12.4 ± 0.4 b | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuentes-Espinosa, J.M.; Muñoz-Castells, R.; Moreno-García, J.; García-Martínez, T.; Mauricio, J.C.; Moreno, J. Analytical Differentiation of Wines from Three Terroirs Located in a Warm Winegrowing Area Based on Their Volatilome. Molecules 2025, 30, 238. https://doi.org/10.3390/molecules30020238
Fuentes-Espinosa JM, Muñoz-Castells R, Moreno-García J, García-Martínez T, Mauricio JC, Moreno J. Analytical Differentiation of Wines from Three Terroirs Located in a Warm Winegrowing Area Based on Their Volatilome. Molecules. 2025; 30(2):238. https://doi.org/10.3390/molecules30020238
Chicago/Turabian StyleFuentes-Espinosa, José Miguel, Raquel Muñoz-Castells, Jaime Moreno-García, Teresa García-Martínez, Juan Carlos Mauricio, and Juan Moreno. 2025. "Analytical Differentiation of Wines from Three Terroirs Located in a Warm Winegrowing Area Based on Their Volatilome" Molecules 30, no. 2: 238. https://doi.org/10.3390/molecules30020238
APA StyleFuentes-Espinosa, J. M., Muñoz-Castells, R., Moreno-García, J., García-Martínez, T., Mauricio, J. C., & Moreno, J. (2025). Analytical Differentiation of Wines from Three Terroirs Located in a Warm Winegrowing Area Based on Their Volatilome. Molecules, 30(2), 238. https://doi.org/10.3390/molecules30020238